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Abstract

The Lasso (Tibshirani, 1996) is an attractive technique for regularization and vari-
able selection for high-dimensional data, where the number of predictor variables p is
potentially much larger than the number of samples n. However, it was recently dis-
covered (Zhao and Yu, 2006; Zou, 2005; Meinshausen and Bühlmann, 2006) that the
sparsity pattern of the Lasso estimator can only be asymptotically identical to the true
sparsity pattern if the design matrix satisfies the so-called irrepresentable condition.
The latter condition can easily be violated in applications due to the presence of highly
correlated variables.

Here we examine the behavior of the Lasso estimators if the irrepresentable condi-
tion is relaxed. Even though the Lasso cannot recover the correct sparsity pattern, we
show that the estimator is still consistent in the !2-norm sense for fixed designs under
conditions on (a) the number sn of non-zero components of the vector βn and (b) the
minimal singular values of the design matrices that are induced by selecting of order sn

variables. The results are extended to vectors β in weak !q-balls with 0 < q < 1. Our
results imply that, with high probability, all important variables are selected. The set
of selected variables is a useful (meaningful) reduction on the original set of variables
(pn > n). Finally, our results are illustrated with the detection of closely adjacent
frequencies, a problem encountered in astrophysics.
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1 Introduction
The Lasso was introduced by Tibshirani (1996) and has since been proven to be very popular
and well studied (Knight and Fu, 2000; Zhao and Yu, 2006; Zou, 2005; Wainwright, 2006).
Some reasons for the popularity might be that the entire regularization path of the Lasso
can be computed efficiently (Osborne et al., 2000; Efron et al., 2004), that Lasso is able to
handle more predictor variables than samples and produces sparse models which are easy to
interpret. Several extensions and variations have been proposed (Yuan and Lin, 2005; Zhao
and Yu, 2004; Zou, 2005; Meier et al., 2006; Candes and Tao, 2005b).

1.1 Lasso-type estimation

The Lasso estimator, as introduced by (Tibshirani, 1996), is given by

β̂λ = argminβ ‖Y −Xβ‖2
#2 + λ‖β‖#1 , (1)

where X = (X1, . . . , Xp) is the n × p matrix whose columns consist of the n-dimensional
fixed predictor variables Xk, k = 1, . . . , p. The vector Y contains the n-dimensional set of
real-valued observations of the response variable.
The distribution of Lasso-type estimators has been studied in Knight and Fu (2000). Vari-
able selection and prediction properties of the Lasso have been studied extensively for high
dimensional data with p % n, a frequently encountered challenge in modern statistical
applications. Some studies (e.g. Greenshtein and Ritov, 2004; van de Geer, 2006) have fo-
cused mainly on the behavior of prediction loss. Much recent work aims at understanding
the Lasso estimates from the point of view of model selection, including Meinshausen and
Bühlmann (2006), Donoho et al. (2006), Zhao and Yu (2006), Candes and Tao (2005b) and
Zou (2005). For the Lasso estimates to be close to the model selection estimates when
the data dimensions grow, all the aforementioned papers assumed a sparse model and used
various conditions that state that the irrelevant variables are not too correlated with the
relevant ones. Incoherence is the terminology used in the deterministic setting of Donoho
et al. (2006) and “irrespresentability” is used in the stochastic setting (linear model) of Zhao
and Yu (2006). Here we focus exclusively on the properties of the estimate of the coefficient
vector under squared error loss and try to understand the behavior of the estimate under
a relaxed irrepresentable condition (hence we are in the stochastic or linear model setting).
The aim is to see whether the Lasso still gives meaningful models in this case.
More discussions on the connections with other works will be covered in Section 1.5 after
notions are introduced to state explicitly what the irrepresentable condition is so that the
discussions are clearer.
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1.2 Linear Model

We assume a linear model for the observations of the response variable Y = (Y1, . . . , Yn),

Y = Xβ + ε, (2)

where ε = (ε1, . . . , εn) is a vector containing independently and identically distributed noise
with E(εi) = 0. When there is a question of nonidentifiability for β when p > n, we define
β as

β = argmin{β: EY =Xβ}‖β‖#1 . (3)

The aim is to recover the vector β as well as possible from noisy observations Y . For the
equivalence between $1- and $0-sparse solutions see for example Gribonval and Nielsen (2003);
Donoho and Elad (2003); Donoho (2006).

1.3 Recovery of the sparsity pattern and the irrepresentable condition

There is empirical evidence that many signals in high-dimensional spaces allow for a sparse
representation. As an example, wavelet coefficients of images often exhibit exponential
decay, and a relatively small subset of all wavelet coefficients allow a good approximation to
the original image (Joshi et al., 1995; LoPresto et al., 1997; Mallat, 1989). For conceptual
simplicity, we assume in our regression setting first that the vector β is sparse in the $0-sense
and many coefficients of β are identically zero (this will later be relaxed). The corresponding
variables have thus no influence on the response variable and could be safely removed. The
sparsity pattern of β is understood to be the sign function of its entries, with sign(x) = 0
if x = 0, sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0. The sparsity pattern of a vector
might thus look like

sign(β) = (+1,−1, 0, 0, +1, +1,−1, +1, 0, 0, . . .),

distinguishing whether variables have a positive, negative or no influence at all on the re-
sponse variable. It is of interest whether the sparsity pattern of the Lasso estimator is a good
approximation to the true sparsity pattern. If these sparsity patterns agree asymptotically,
the estimator is said to be sign consistent (Zhao and Yu, 2006).

Definition 1 (Sign consistency) An estimator β̂λ is sign consistent if and only if

P
{
sign(β) = sign(β̂)

}
→ 1 n→∞.

It was shown independently in Zhao and Yu (2006), Zou (2005) in the linear model case and
Meinshausen and Bühlmann (2006) in Gaussian graphical model setting that sign consistency
requires a condition on the design matrix. The assumption was termed the irrepresentable
condition in Zhao and Yu (2006). Let C = n−1XT X. The dependence on n is neglected
notationally.
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Definition 2 (Irrepresentable condition) Let K = {k : βk (= 0} be the set of relevant
variables and let N = {1, . . . , p} \ K be the set of noise variables. The sub-matrix CHK

is understood as the matrix obtained from C by keeping rows with index in the set H and
columns with index in K. The irrepresentable condition is fulfilled if it holds element-wise
that

|CNKC−1
KK sign(βK)| < 1.

In Zhao and Yu (2006), an additional strong irrepresentable condition is defined which re-
quires that the above elements are not merely smaller than 1 but are uniformly bounded
away from 1. Zhao and Yu (2006), Zou (2005) and Meinshausen and Bühlmann (2006) show
that the Lasso is sign consistent only if the irrepresentable condition holds.

Proposition 1 (Sign consistency only under irrepresentable condition) Let Assump-
tions 1-4 in Section 2.2 be satisfied. Assume that the irrepresentable condition is not fulfilled.
Then there exists no sequence λ = λn such that the estimator β̂λn is sign consistent.

In practice, it might be difficult to verify whether the condition is fulfilled. This led various
authors to propose interesting extensions to the Lasso (Zhang and Lu, 2006; Zou, 2005;
Meinshausen, 2006). Before giving up on the Lasso altogether, however, we want to examine
in this paper in what sense the original Lasso procedure still gives sensible results, even if
the irrepresentable condition is not fulfilled.

1.4 $2-consistency

The aforementioned studies showed that if the irrepresentable condition is not fulfilled, the
Lasso cannot select the correct sparsity pattern. In this paper we show that the Lasso selects
in these cases the non-zero entries of β and some not-too-many additional zero entries of β
under relaxed conditions than the irrepresentable condition. The non-zero entries of β are
in any case included in the selected model. Moreover, the size of the estimated coefficients
allows to separate the few truly zero and the many non-zero coefficients. However, it is worth
noting that in the extreme cases when the variables are linearly dependent, these relaxed
conditions will be violated as well. In these situations, it is not sensible to use the $2-metric
on β to assess Lasso. Other metrics are to be investigated in our future research.
Our main result shows the $2-consistency of the Lasso, even if the irrepresentable condition
is relaxed. To be precise, an estimator is said to be $2-consistent if

‖β̂ − β‖#2 → 0 n→∞. (4)

Convergence rates will also be derived. An $2-consistent estimator is attractive, as important
variables are chosen with high probability and falsely chosen variables have very small coef-
ficients. The bottom line will be that even if the sparsity pattern of β cannot be recovered
by the Lasso, we can still obtain a good approximation.
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1.5 Related work.

Here we discuss further the existing works on Lasso mentioned earlier on. Prediction loss for
high-dimensional regression with Lipschitz loss functions under an $1-penalty is examined
in van de Geer (2006). Also bounds for the $1-distance between the vector β and its Lasso
estimate are derived. Similar interesting results as in van de Geer (2006) are obtained for
random designs and squared error loss in Bunea et al. (2006b), both in terms of prediction
loss and $1-metric. A difference with the model selection results in these papers is that we are
able to obtain $2-consistency for fixed designs even if the sparsity sn (the number of non-zero
coefficients) is growing almost as fast as n, while the previous results need sn = o(

√
n), partly

because they require a data-independent choice of the penalty parameter. The previous study
of (Bunea et al., 2006a) considers fixed designs (as we do), and obtains very nice results,
albeit limited to the setting p ≤ n, while we are interested in the high-dimensional case
where the number p of predictor variables is possibly very much larger than the sample size
n.
Moreover, we would like to compare the results of this manuscript briefly with results in
Donoho (2004) and Candes and Tao (2005b). These papers derive bounds on the $2-norm
distance between β and β̂ for $1-norm constrained estimators. In Donoho (2004) the de-
sign is random and the random predictor variables are assumed to be independent. The
results are thus not directly comparable to the results derived here for general fixed designs.
Nevertheless, results in Meinshausen and Bühlmann (2006) suggest that the irrepresentable
condition is with high probability fulfilled for independently normal distributed predictor
variables. The results in Donoho (2004) can thus not directly be used to study the behav-
ior of the Lasso under a violated irrepresentable condition, which is our goal in the current
manuscript.
Candes and Tao (2005b) study the properties of the so-called “Dantzig selector”, which is
very similar to the Lasso, and derive remarkably sharp bounds on the $2-distance between
the vector β and the proposed estimator β̂. The results are derived under the condition of
a Uniform Uncertainty Principle (UUP), which was introduced in Candes and Tao (2005a).
The UUP is a relaxation of the irrepresentable condition and is very similar to our assump-
tions on sparse eigenvalues in this manuscript. It would be of interest to study the connection
between the Lasso and “Dantzig selector” further, as the solutions share many similarities.

2 Main assumptions and results
First, we introduce the notion of sparse eigenvalues, which will play a crucial role in providing
bounds for the convergence rates of the Lasso estimator. Thereafter, the assumptions are
explained in detail and the main results are given.
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2.1 Sparse eigenvalues

The notion of sparse eigenvalues is not new and has been used before (Donoho, 2006); we
merely intend to fixate notation. The m-sparse minimal eigenvalue of a matrix is the minimal
eigenvalue of any m×m-dimensional submatrix.

Definition 3 The m-sparse minimal eigenvalue and m-sparse maximal eigenvalue of C are
defined as

φmin(m) = min
β:‖β‖!0

≤m

βT Cβ

βT β
, and φmax(m) = max

β:‖β‖!0
≤m

βT Cβ

βT β
. (5)

The minimal eigenvalue of the unrestricted matrix C is equivalent to φmin(p). If the number of
predictor variables p is larger than sample size, p > n, this eigenvalue is zero, as φmin(m) = 0
for any m > n.
A crucial factor contributing to the convergence of the Lasso estimator is the behavior of
the smallest m-sparse eigenvalue, where the number m of variables over which the minimal
eigenvalues is computed is roughly identical to the sparsity s of the true underlying vector.

2.2 Assumptions for high-dimensional data

We make some assumptions to prove the main result for high-dimensional data. We under-
stand the term “high-dimensional” to imply here and in the following that we have potentially
many more predictor variables than samples, pn % n. While we are mainly interested in the
pn > n case, the results are also relevant for pn ≤ n scenarios. First, a convenient technical
assumption.

Assumption 1 The predictor variables are normalized, ‖Xk‖2
#2 = n for all k, n and

maxk∈N ‖Xk‖#∞ <∞.

As predictor variables are normalized in practice anyway, the first part of the assumption
is not very restrictive. The second part is mostly a technical assumption and simplifies
exposition.

Assumption 2 The noise satisfies E(exp |εi|) <∞ and E(ε2
i ) = σ2 for some σ2 > 0.

The assumption of exponential tail bounds for the noise is fairly standard and certainly
covers the case of Gaussian errors.

Assumption 3 There exists some σ2
y <∞ such that E(Y 2

i ) ≤ σ2
y for all i ∈ N.

This assumption is equivalent to a re-scaling of the coefficient vectors β so that the signal-
to-noise ratio stays approximately constant for all values of n in our triangular setup.
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Assumption 4 For all n, the maximal eigenvalue φmax(min{n, p}) for any selection of
min{n, p} columns is bounded from above by some finite value. The minimal eigenvalue
for any selection of min{n, p} columns is strictly positive, φmin(min{n, p}) > 0.

Both parts of the assumption could be relaxed at the cost of increased notational complexity.
It might be interesting to check if the assumptions are reasonable for a random design matrix.
The latter part of Assumption 4 is fulfilled with probability 1 if the distribution of the random
predictor variables is non-singular. Consider now the first part of the assumption about a
bounded maximal eigenvalue. To be specific, assume multivariate normal predictors. If the
maximal eigenvalue of the population covariance matrix, which is induced by selecting n
variables, is bounded from above by an arbitrarily large constant, it follows by Theorem
2.13 Davidson and Szarek (2001) or Lemma A3.1 in Paul (2006) that the condition number
of the induced sample covariance matrix observes a Gaussian tail bound. Using an entropy
bound for the possible number of subsets when choosing n out of p variables, Assumption 4
is thus fulfilled with probability converging to 1 for n → ∞ as long as log pn = o(nκ) for
some κ < 1, and is thus maybe not overly restrictive.

2.3 Incoherent designs

As apparent from the interesting discussion in Candes and Tao (2005b), one cannot allow
arbitrarily large “coherence” between variables if one still hopes to recover the correct sparsity
pattern. Assume that there are two vectors β and β̃ so that the signal can be represented by
either vector Xβ = Xβ̃ and both vectors are equally sparse, say ‖β‖#0 = ‖β̃‖0 = s and are
not identical. We have no hope of distingushing between β and β̃ in such a case: if indeed
Xβ = Xβ̃ and β and β̃ are not identical, it follows that the minimal sparse eigenvalue
φmin(2s) = 0 vanishes as X(β − β̃) = 0 and ‖β − β̃‖#0 ≤ 2s. The sparse minimal eigenvalue
of a selection of order s variables indicates thus if we have any hope of recovering the true
sparse underlying vector from noisy observations. A design is called mn-incoherent in the
following if the minimal eigenvalue of a collection of mn variables is bounded from below by
a constant.

Definition 4 (mn-incoherent designs) Let mn be a sequence with mn = o(n) for n→∞.
A design is called incoherent for mn if the minimal eigenvalue of a collection of mn variables
is bounded from below, that is if

lim inf
n→∞

φmin(mn) > 0. (6)

Our main result will require a sn log n-incoherent design. Most of the previous results on
Lasso and related $1-constrained estimators have used similar, if slightly stronger, concepts.
Donoho and Huo (2001) defined the mutual coherence M between two orthonormal basis
as the maximal absolute value of the inner product of two elements in the two orthonormal
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basis. One could extend this definition to arbitrary dictionaries where basis elements are
scaled to have unit norm. Under the common assumption M = O(1/n), the design is
certainly incoherent in the meaning above, as the eigenvalue of any selection of order sn

variables, with sn = o(n), will be bounded from below by a constant for sufficiently large
values of n. The notion of incoherence above covers thus a wider spectrum.
Candes and Tao (2005b) use a Uniform Uncertainty Principle (UUP) to discuss the con-
vergence of the so-called Dantzig selector. The UUP can only be fulfilled if the minimal
eigenvalue of a selection of sn variables is bounded from below by a constant, where sn

is again the number of non-zero coefficients of β. In the original version of, a necessary
condition for (UUP) is

φmin(sn) + φmin(2sn) + φmin(3sn) > 2.

In some sense, this requirement is weaker than sn log n-incoherent design as the minimal
eigenvalues are calculated over maximally 3sn instead of sn log n variables. In another sense,
sn log n-incoherent design is weaker as the eigenvalue can be bounded from below by an
arbitrarily small constant.

Incoherent designs and the irrepresentable condition. One might ask in what sense
the notion of incoherent designs is more general than the irrepresentable condition. At first,
it might seem like we are simply replacing the strict condition of irrepresentable condition
by a similarly strong condition on the design matrix.
Consider first the classical case of a fixed number p of variables. If the covariance matrix
C = Cn is converging to a positive definite matrix for large sample sizes, the design is auto-
matically incoherent. On the other hand, it is easy to violate the irrepresentable condition
in this case; for examples see Zou (2005).
The notion of incoherent designs is only a real restriction in the high-dimensional case
with pn > n. Even then, it is clear that the notion of incoherence is a relaxation from
irrepresentable condition, as the irrepresentable condition can easily be violated even though
all sparse eigenvalues are bounded well away from zero.

2.4 Main result for high-dimensional data (pn > n)

Before we state our main result, we would like to use and explain the concept of active
variables (Osborne et al., 2000; Efron et al., 2004) so that the penalty parameter has a
useful interpretation as an upper bound on the number of active variables.

Active variables. Let Gλ be the p-dimensional gradient vector with respect to β of the
squared error loss, Gλ = (Y −Xβ̂λ)T X, where β̂λ is the Lasso estimator. It follows by the
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KKT conditions or, alternatively, results in Osborne et al. (2000) or Efron et al. (2004) that
the maximum of the absolute values of the components Gλ = (Gλ

1 , . . . , G
λ
p) is bounded by λ,

max
1≤k≤p

|Gλ
k | ≤ λ.

We call variables with maximal absolute value of the gradient active variables. The set of
active variables is denoted by

Aλ := {k : |Gλ
k | = λ}. (7)

The number of selected variables (variables with a non-zero coefficient) is at most as large as
the number of active variables, as any variable with a non-zero estimated coefficient has to
be an active variable (Osborne et al., 2000). In Lemma 2, we derive an upper probabilistic
bound on the number of active variables when setting the penalty parameter to λ. Set

mλ := σ2
yφmax

n2

λ2
, (8)

where φmax = φmax(min{n, p}) is the bounded maximal eigenvalue of a selection of min{n, p}
variables. Let λn be a sequence of penalty parameters. Then, with probability converging to
1 for n →∞, we have that |Aλn| ≤ mλn . Instead of the penalty parameter λ, we will often
use the equivalent value of mλ, as it offers in our opinion the better intuition.

Main result. We will discuss the implications of the theorem after the proof, as its inter-
pretation might not be inaccessible at first.

Theorem 1 (Convergence in $2-norm) Let Assumptions 1-4 be satisfied and assume the
sn log n-incoherent design condition (6). Let mλn be the bound (8) on the number of active
variables under penalty parameter λn. The $2-norm of the error is then bounded for n→∞
as

‖β − β̂λn‖2
#2 ≤ Op

( log pn

n

mλn

φ2
min(mλn)

)
+ O

( sn

mλn

)
. (9)

A proof is given in Section 3.

Remark 1 It might be of interest to compare the results for variance and bias with equiv-
alent results for orthogonal designs. In the case of orthogonal designs, each OLS-coefficient
β̂0

k , k = 1, . . . , p is soft-thresholded by the quantity n−1λn to get β̂λ
k . The squared bias of

coefficients with |βk| % n−1λn is thus n−2λ2
n (under the condition that n is sufficiently large,

so that |β̂0
k| ≥ n−1λn with high probability). The total squared bias is thus sn/mλn , which

is identical to the order we derive for incoherent designs so the bound cannot be improved
in general.
The variance part can also be compared to the variance of an estimator for orthogonal
designs, which is proportional to mλn/n, the number of selected parameters divided by the
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sample size. In our result, we get an additional log pn factor, which stems from the fact that
the subset of mλn variables can be chosen among pn variables. An additional factor of the
reciprocal of φ2

min(mλn) adjusts for correlated designs.

Remark 2 It can be seen from the proofs that non-asymptotic bounds can be obtained
with essentially the same results. As the constants of the non-asymptotic bounds are not
very tight, we choose to present only the asymptotic result for clarity of exposition.

Organization of the remainder. The main question of concern for us is: under what
circumstances can we find a sequence mλn such that both the variance and bias term vanish
asymptotically? If such a sequence exists, then we know that there is a sequence of penalty
parameters λn so that

‖β − β̂λn‖2
#2 → 0 n→∞.

Sufficient conditions for $2-consistency for $0-sparse vectors are derived in the following sec-
tion. Thereafter results will be extended to vectors in weak $q-balls. We will define the
notion of effective sparsity and show that there is a one-to-one correspondence between the
results for $0-sparse vectors and vectors in weak $q-balls.
Lastly, a major implication of the results is shown, namely that the Lasso can be tuned
to reliably pick all important variables if selecting a small subset of the total number of
variables. As already know, some unimportant variables will unfortunately also be included
in this set, but can be removed in a second stage.

2.5 $2-consistency

We can immediately derive sufficient conditions for $2-consistency in the sense of (4), asking
under what circumstances there exists a penalty parameter sequence λn so that ‖β − β̂λn‖#2

converges in probability to 0 for large values of the sample size n. The following corollary can
be derived from Theorem 1 by choosing mλn = sn log n, using the incoherence assumption (6).

Corollary 1 ($2-consistency) Let the assumptions of Theorem 1 be satisfied. The Lasso
estimator is $2-consistent under the condition that

sn log pn

( log n

n

)
→ 0 n→∞. (10)

The result allows thus for the number of relevant variables sn to grow almost as fast as the
number of samples n if pn is not exponential in n, while still enjoying $2-consistency.

Remark 3 To achieve the most general result for $2-consistency, the rate λn of the penalty
parameter has to depend on the unknown sparsity sn. The results offer thus not so much
help in picking the correct penalty parameter, but merely states that somewhere along the
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solutions paths (when varying λ) there is a solution close to the true vector. How to choose
the penalty parameter in a data driven way is further research.
Under less general circumstances, we can achieve $2-consistency with a fixed penalty param-
eter sequence that does not depend on the unknwon smoothness. Specifically, if limiting
the growth rate of sn, pn to be sn - nρ1 and n/ log pn % nρ2 for some 0 ≤ ρ1 < ρ2 < 1,
then any sequence mλn . nρ with ρ1 < ρ < ρ2 achieves $2-consistency, irrespective of the
actual sparsity, as long as the stronger incoherence assumption lim infn→∞ φmin(mλn) > 0 is
fulfilled.

2.6 Some results for weak $q-balls

So far, we have been assuming that the vector β is sparse in an $0-sense, with most entries of
β being identically zero. This is a conceptually simple assumption. It is easy to formulate the
problem and understand the results for the $0-sparse setting. In the end, however, it might
be overly simplistic to assume that most of the entries are identically zero. It is perhaps
more interesting to assume that most of the entries are very small, as is the case for wavelet
coefficients of natural images (Joshi et al., 1995; LoPresto et al., 1997; Mallat, 1989). We
can for example consider the case that the vector β lies in a weak $q-ball with 0 < q < 2. Let
|β(1)| ≥ |β(2)| ≥ . . . ≥ |β(p)| be the ordered entries of β. The vector β lies in a weak $1-ball if
there exists a constant sq,n > 0 such that

∀1 ≤ k ≤ p : |β(k)| ≤ sq,n k−1/q. (11)

If a vector β has a $q-(quasi-)norm ‖β‖#q , then it also lies in a weak $q-ball with the sparsity
sq,n, that is

sq,n ≤ ‖β‖#q .

In the $q-sparse setting, it does not make sense trying to recover the correct sparsity pattern,
as all coefficients are in general different from zero. We can, however, ask if the most
important coefficients are recovered, neglecting coefficients with very small absolute value.
Consider the case 0 < q < 1, where coefficients decay faster than 1/k. As can be seen in the
following, the bound on the $2-distance between β and its estimate β̂λ is very similar to the
$0-sparse setting.

Effective Sparsity. There is a simple connection between the results for $0-sparse and
$q-sparse vectors. Specifically, we are interested in settings where $2-consistency of the Lasso
estimator can be achieved. If we define the effective sparsity as sq,n raised to the power of
2q/(2− q), the results of the $0-sparse setting are directly applicable to the $q-sparse setting
with 0 < q < 1.
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Definition 5 (Effective sparsity) The effective sparsity seff
n of a vector β in a weak $q-ball

with sparsity sq,n is defined as

seff
n = s

2q
2−q

q,n . (12)

To motivate the notion of effective sparisty, suppose that the decay of the absolute value of
the components of β is fast. A good approximation to β in the $2-sense can then be obtained
by retaining just a few large components of β. Assume that the entries of β are ordered so
that |β1| ≥ |β2| ≥ . . . ≥ |βp|. Let β̃d be the approximation that retains only the d largest
components,

β̃d
k =

{
βk k ≤ d
0 d > s

The effective sparsity measures the minimal number d = dn of non-zero components neces-
sary to obtain an approximation β̃dn of β that satisfies

‖β̃dn − β‖#2 → 0 n→∞. (13)

To be precise, let B be the set B = {β : ‖β‖#q ≤ sq,n for all n}. Then, for any sequence dn

which satisfies (13) for every vector β ∈ B, the number of retained coefficients dn needs to
be at least of the same order as the effective sparsity, that is lim infn→∞ dn/seff

n > 0. On the
other hand, retaining exactly seff

n components satisfies (13) for every vector β ∈ B. A proof
of this is straightforward but omitted here. The notion of effective sparsity is thus inherent
to the nature of the problem.
The definition of effective sparsity will be helpful in the following. Suppose we want to see
whether $2-consistency can be achieved for vectors in a weak $q-ball with sparsity sq,n. The
effective sparsity of this setting can then be calculated according to (12). We can then look
at the $0-sparse vectors, where the number of non-zero entries is set to the effective sparsity
of the original problem. If $2-consistency can be achieved for the $0-sparse setting, it can
also be achieved for the $q-sparse setting. With the notion of effective sparsity, a bound on
the $2-distance between the Lasso estimator and the true vector can be derived.

Theorem 2 Let the assumptions of Theorem 1 be fulfilled, except that the vector β is only
assumed to be in a weak $q-ball for some 0 < q < 1. Let again mλn be the bound on the
number of active variables (8) and assume mn-incoherent design. Then

‖β − β̂λn‖2
#2 = Op

( log pn

n
mλn

)
+ O

{( seff
n

mλn

)1−q/2
}

.

A proof is given in Section 4.
The place of the sparsity measure sn, the number of non-zero elements, is now taken by
the effective sparsity seff

n . The implications of Theorem 2 are similar to those of $0-sparse
vectors. The Lasso is thus able to recover not only $0-sparse vectors but also vectors which
are sparse in the sense of lying in a weak $q-ball for some small value of q.

12



2.7 Sign consistency with two-step procedures

The results show that the Lasso estimator can be made sign consistent in a two-step proce-
dure even if the irrepresentable condition is relaxed but under the assumption that non-zero
coefficients of β are “sufficiently” large. One possibility is hard-thresholding of the obtained
coefficients, neglecting variables with very small coefficients. This effect has already been ob-
served empirically in (Valdés-Sosa et al., 2005). Other possibilities include soft-thresholding
and relaxation methods such as the Gauss-Dantzig selector (Candes and Tao, 2005b) or the
Relaxed Lasso (Meinshausen, 2006) with an additional thresholding step.
We start with a corollary that follows directly from Theorem 1, stating that important
variables are chosen with high probability. Let L be the subset of large coefficients and Z
be the subset of zero coefficients,

L := {k : β4
k %

sn log pn

n
},

Z := {k : βk = 0}

where an % bn is again meant to imply that an/bn →∞ for n→∞. The following corollary
states that the Lasso can distinguish between variables in L and Z.

Corollary 2 Let the assumptions of Theorem 2 be satisfied and assume
√

snn-incoherent
design. There exists a penalty sequence λn such that, with probability converging to 1 for
n → ∞, the absolute value of coefficients in L is larger than the absolute value of any
coefficient in Z,

∀kl ∈ L, kz ∈ Z : |β̂λn
kl
| > |β̂λn

kz
|. (14)

Proof. The proof follows from the results of Theorem 1. Event (14) is fulfilled if ‖β̂λn −
β‖∞ ≤ mink∈L |βk|. Choosing a penalty sequence λn with m2

λn
= nsn log−1 pn yields with

Theorem 1 that ‖β̂λn−β‖4
#2 ≤ Op(n−1sn log pn). The bound on the $2-distance gives trivially

the identical bound on the $∞-distance between β̂λn and β. Furthermore, by definition of
the set L, mink∈L |βk| % (n−1sn log pn)1/4, which comples the proof. !

Remark 4 The corollary implies that variables with sufficiently large regression coefficients
are chosen with very large probability by the Lasso, that is for n→∞,

P (∀k ∈ L : β̂λn
k (= 0) → 1.

As also some additional unwanted variables are chosen (which cannot be avoided if the
irrepresentable condition is violated), the result implies that the Lasso is successful in nar-
rowing down the choice of pn % n variables to a subset of variables with cardinality much
smaller than n (at least of smaller order than

√
nsn). All important variables are with large

13



probability in this much smaller Lasso-selected subset. A two-step procedure would try to
filter out those important variables from the selected subset. Consistent variable selection
could for example be achieved by simple thresholding of small coefficients in the initial Lasso
estimator.

Remark 5 It is apparent that the large bias of the Lasso estimator allows only for a slow
rate of decay of coefficients in the set L. To alleviate this problem, one could first reduce
the bias of the selected coefficients and apply thresholding after this relaxation step. Even
though we view this bias-reduction step as important, we refrain from giving more details
due to space constraints.

In conclusion, even though one cannot achieve sign consistency in general with just a single
Lasso estimation, it can often be achieved in a two-stage procedure.

3 Proof of Theorem 1
The first term on the right hand side of (9) is a variance-type and the second term rep-
resent a bias-type contribution. Let βλ

n be the estimator under the absence of noise, that
is βλ = β̂λ,0, where β̂λ,ξ is defined as in (30). The $2-distance can then be bounded by
‖β̂λ − β‖2

#2 ≤ 2‖β̂λ − βλ‖2
#2 + 2‖βλ − β‖2

#2 . The first term on the right hand side represents
the variance of the estimation, while the second term represents the bias. The bound on the
variance term follows by Lemma 6. The bias contribution follows directly from Lemma 1. !

3.1 Part I of Proof: Bias

Let K be the set of non-zero elements of β, that is K = {k : βk (= 0}. The cardinality of K
is again denoted by s = sn. For the following, let βλ be the estimator β̂λ under the absence
of noise, σ = 0. The solution βλ can, for each value of λ, be written as βλ = β + γλ, where

γλ = argminζ∈Rp f(ζ), (15)

where the function f(ζ) is given by

f(ζ) = nζT Cζ + λ
∑

k∈Kc

|ζk| + λ
∑

k∈K

(
|βk + ζk| − |βk|

)
. (16)

The vector γλ is the bias of the Lasso estimator. We derive first a bound on the $2-norm of
γλ.

Lemma 1 Let κ > 0 be the minimal eigenvalue with lim infn→∞ φmin(sn log sn) > κ. The
$2-norm of γλ, as defined in (15), is bounded for sufficiently large values of n by

‖γλ‖#2 ≤
λ

n

√
sn

κ
.

14



Proof. We write in the following γ instead of γλ for notational simplicity. Let γ(K) be
the vector with coefficients γk(K) = γk1{k ∈ K}, that is γ(K) is the bias of the truly
non-zero coefficients. Analogously, let γ(Kc) be the bias of the truly zero coefficients with
γk(Kc) = γk1{k /∈ K}. Clearly, γ = γ(K)+γ(Kc). The value of the function f(ζ), as defined
in (16), is 0 if setting ζ = 0. For the true solution γλ, it follows hence that f(γλ) ≤ 0. Hence,
using that ζT Cζ ≥ 0 for any ζ,

‖γ(Kc)‖#1 =
∑

k∈Kc

|ζk| ≤
∣∣
∑

k∈K

(
|βk + ζk| − |βk|

)∣∣ ≤ ‖γ(K)‖#1 . (17)

As ‖γ(K)‖#0 ≤ sn, it follows that ‖γ(K)‖#1 ≤
√

sn‖γ(K)‖#2 ≤
√

sn‖γ‖#2 and hence, using
(17),

‖γ‖#1 ≤ 2
√

sn‖γ‖#2 . (18)

This result will be used further below. We use now again that f(γλ) ≤ 0 (as ζ = 0 yields the
upper bound f(ζ) = 0). Using the previous result that ‖γ(K)‖#1 ≤

√
sn‖γ‖#2 , and ignoring

the non-negative term ‖γ(Kc)‖#1 , it follows that

nγT Cγ ≤ λ
√

sn‖γ‖#2 . (19)

Consider now the term γT Cγ. Bounding this term from below and plugging the result
into (19) will yield the desired upper bound on the $2-norm of γ. Let |γ(1)| ≥ |γ(2)| ≥ . . . ≥
|γ(p)| be the ordered entries of γ.
Let {un}n∈N be a sequence of positive integers, to be chosen later, and define the set of the
“un-largest coefficients” as U = {k : |γk| ≥ |γ(un)|}. Define analogously to above the vectors
γ(U) and γ(U c) by γk(U) = γk1{k ∈ U} and γk(U c) = γk1{k /∈ U}. The quantity γT Cγ can
be written as

γT Cγ = γ(U)T Cγ(U) = ‖a + b‖2
#2 , (20)

where a := n−1/2Xγ(U) and b := n−1/2Xγ(U c). Then

γT Cγ = aT a + 2bT a + bT b ≥ ‖a‖2
#2 − 2‖a‖#2‖b‖#2 . (21)

As γ(U) has by definition only un non-zero coefficients,

‖a‖2
#2 = ‖γ(U)T Cγ(U)‖2

#2 ≥ φmin(un)‖γ(U)‖2
#2 = φmin(un)(‖γ‖2

#2 − ‖γ(U c)‖2
#2). (22)

As γ(U c) has at most n non-zero coefficients,

‖b‖2
#2 = ‖γ(U c)T Cγ(U c)‖2

#2 ≤ φmax(n)‖γ(U c)‖2
#2 (23)

Using (22) and (23) in (21),

‖a‖2
#2 − 2‖a‖#2‖b‖#2 ≥ φmin(un)(‖γ‖2

#2 − ‖γ(U c)‖2
#2)

−2
√

φmin(un)φmax(n)‖γ‖#2‖γ(U c)‖#2 .
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and hence

γT Cγ ≥ φmin(un)‖γ‖2
#2

(
1− 2

√
φmax(n)

φmin(un)

‖γ(U c)‖#2

‖γ‖#2

−
‖γ(U c)‖2

#2

‖γ‖2
#2

)
. (24)

Before proceeding, we need to bound the norm ‖γ(U c)‖#2 as a function of un. Assume for
the moment that the $1-norm ‖γ‖#1 is identical to some $ > 0. Then it holds for every
k = 1, . . . , p that γ(k) ≤ $/k. Hence,

‖γ(U c)‖2
#2 ≤ ‖γ‖

2
#1

p∑

k=un+1

1

k2
≤ (4sn‖γ‖2

#2)
1

un
, (25)

having used the result (18) from above that ‖γ‖#1 ≤ 2
√

sn‖γ‖#2 . Plugging this result
into (24),

γT Cγ ≥ φmin(un)‖γ‖2
#2

(
1− 2

√
4snφmax(n)

unφmin(un)
− 4sn

un

)
(26)

Choosing a sequence un = sn log n, it holds with the assumption lim infn→∞ φmin(sn log n) >
κ, that for sufficiently large values of n, by the assumption of a bounded maximal eigenvalue
φmax(n),

γT Cγ ≥ κ‖γ‖2
#2 .

Using the last result together with (19), which says that γT Cγ ≤ n−1λ
√

sn‖γ‖#2 , it follows
that for large n,

‖γ‖#2 ≤
λ

n

√
sn

κ
,

which completes the proof. !

3.2 Part II of Proof: Variance

First, bounds for the number of selected and active variables are derived. These bounds are
later used to assess the variance of the estimator under noisy observations.

A bounds on the number of active variables A decisive part in the variance of the
estimator is determined by the number of selected variables. Instead of directly bounding
the number of selected variables, we derive bounds for the number of active variables. As
any variable with a non-zero regression coefficient is also a active variable, these bounds lead
trivially to bounds for the number of selected variables.
Let again Aλ be the set of active variables,

Aλ = {k : |Gλ
k | = λ}.
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The number of selected variables (variables with a non-zero coefficient) is at most as large
as the number of active variables, as any variable with a non-zero estimated coefficient has
to be an active variable (Osborne et al., 2000).

Lemma 2 With probability tending to 1 for n→∞, the number |Aλ| of active variables of
the estimator β̂λ is bounded by

∣∣Aλ

∣∣ ≤ σ2
yφmax(|Aλ|)

n2

λ2
≤ σ2

yφmax(min{n, p})n
2

λ2
:= mλ,

where φmax(|Aλ|) is the bounded maximal eigenvalue of a selection of at most |Aλ| ≤ min{n, p}
variables.

Proof. Let R(λ) be the vector residuals, R(λ) = Y − Xβ̂λ. For any k in the |Aλ|-
dimensional space spanned by the active variables,

|Gλ
k | = |RT (λ)Xk| = λ. (27)

Let RA(λ) be the projection PAR(λ) of the residuals R(λ) into the |Aλ|-dimensional space
spanned by the |Aλ| active variables. Then, by (27),

‖XT
ARA(λ)‖2

#2 = ‖XT
AR(λ)‖2

#2 = |Aλ|λ2. (28)

As RA(λ) is the projection onto the space spanned by |Aλ| active variables, it holds that for
|Aλ| ≤ n, with the notation v = XT

AR(λ),

RA(λ) = XA(XT
AXA)−1v,

and hence
‖RA(λ)‖2

#2 = vT (XT
AXA)−1v ≥ {nφmax(|Aλ|)}−1‖v‖2

#2 .

Using the result (28), it follows that ‖v‖2
#2 ≥ |Aλ|λ2 and hence

‖RA(λ)‖2
#2 ≥ {nφmax(|Aλ|)}−1|Aλ|λ2.

The sum of squared residuals is bounded uniformly over all subsets M of the active vari-
ables by ‖RA(λ)‖2

#2 ≤ ‖Y ‖
2
#2 . By assumption 3, it holds with probability converging to 1 for

n→∞, that ‖Y ‖2
#2 ≤ nσ2

y , which completes the proof. !
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De-noised response We need for the following a little extension of the result above.
Define for 0 < ξ < 1 the de-noised version of the response variable,

Y (ξ) = Xβ + ξε. (29)

We can regulate the amount of noise with the parameter ξ. For ξ = 0, only the signal is
retained. The original observations with the full amount of noise are recovered for ξ = 1.
Now consider for 0 ≤ ξ ≤ 1 the estimator β̂λ,ξ,

β̂λ,ξ = argminβ‖Y (ξ)−Xβ‖2
#2 + λ‖β‖#1 . (30)

The ordinary Lasso estimate is recovered under the full amount of noise so that β̂λ,1 = β̂λ.
Using the notation from the previous results, we can write for the estimate in the absence
of noise, β̂λ,0 = βλ. The definition of the de-noised version of the Lasso estimator will be
helpful for the proof as it allows to characterize the variance of the estimator.

Number of active variables for the de-noised estimator. In analogy to the gradient
Gλ of the loss function, let Gλ,ξ be the gradient vector with respect to β of the squared error
loss when estimating the de-noised version of the observations,

Gλ,ξ = (Y (ξ)−Xβ̂λ,ξ)T X. (31)

Variables are called again active if the absolute value of the respective gradient is equal to
the maximal value λ. The active variables are denoted by Aλ,ξ. The result of Lemma 2 can
now easily be shown to hold uniformly over all de-noised versions of the estimator.

Lemma 3 With probability converging to 1 for n→∞, the number |Aλ,ξ| of active variables
of the de-noised estimator is bounded by

∣∣Aλ,ξ

∣∣ ≤ σ2
y

n2

λ2
φmax(

∣∣Aλ,ξ

∣∣.

Proof. The proof follows analogously to the proof of Lemma 2. In analogy to RA, let
RA,ξ be the projection of the residuals Y (ξ) − Xβ̂λ,ξ onto the space spanned by the active
variables. The bound ‖RA,ξ‖#2 ≤ sup0≤ξ≤1 ‖Y (ξ)‖#2 holds uniformly over all values of ξ with
0 ≤ ξ ≤ 1. By assumption 3, the term n−1 sup0≤ξ≤1 ‖Y (ξ)‖#2 is, with probability converging
to 1 for n→∞, bounded by σ2

y . The proof follows then exactly like the proof of Lemma 2. !

This uniform bound is used below to bound the variance of the Lasso estimator.
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Variance of restricted OLS Next, we consider the variance of the Lasso estimator as
a function of the penalty parameter. Let θ̂M ∈ Rp be for every subset M ⊆ {1, . . . , p} with
|M | ≤ n the restricted OLS-estimator of the noise vector ε,

θ̂M = (XT
MXM)−1XT

Mε. (32)

First, we bound the $2-norm of this estimator. The result is useful for bounding the variance
of the final estimator, based on the derived bound on the number of active variables.

Lemma 4 The $2-norm of the restricted estimator θ̂M is uniformly over all sets M with
|M | ≤ mλn, where mλn is as defined in (8), bounded for n→∞ by

max
M :|M |≤mλn

‖θ̂M‖2
#2 = Op

( log pn

n

mλn

φ2
min(mλn)

)
.

Proof. It follows directly from the definition of θ̂M that, for every M with |M | ≤ mλn ,

‖θ̂M‖2
#2 ≤

1

n2φ2
min(mλn)

‖XT
Mε‖2

#2 . (33)

It remains to be shown that, for n→∞,

max
M :|M |≤mλn

‖XT
Mε‖2

#2 = Op(mλnn log pn).

As E(exp |εi|) < ∞ and maxk ‖Xk‖#∞ < ∞, it follows by Bernstein’s inequality that
|XT

k ε|2 = Op(n) for every k ≤ pn and due to the exponential tail bound

max
k≤pn

|XT
k ε|2 = Op(n log pn);

and hence,
max

M :|M |≤mλn

‖XT
Mε‖2

#2 ≤ mλn max
k≤pn

|XT
k ε|2 = Op(nmλn log pn).

Using this in conjunction with (33) completes the proof. !

Variance of estimate is bounded by restricted OLS variance We show that the
variance of the Lasso estimator can be bounded by the variances of restricted OLS estimators,
using bounds on the number of active variables.

Lemma 5 If, for a fixed value of λ, the number of active variables of the de-noised estimators
β̂λ,ξ is for every 0 ≤ ξ ≤ 1 bounded by m, then

‖β̂λ,0 − β̂λ,1‖2
#2 ≤ max

M :|M |≤m
‖θ̂M‖2

#2 .
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Proof. The key in the proof is that the solution path of β̂λ,ξ, if increasing the value of ξ
from 0 to 1, can be expressed piecewise in terms of the restricted OLS solution. The set
M(ξ) of active variables is the set with maximal absolute gradient,

M(ξ) = {k : |Gλ,ξ
k | = λ}.

Note that the estimator β̂λ,ξ and also the gradient Gλ,ξ
k are continuous functions in both λ

and ξ (Efron et al., 2004). Let 0 = ξ1 < ξ2 < . . . < ξL+1 = 1 be the points of discontinuity of
M(ξ). At these locations, variables either join the active set or are dropped from the active
set.
Fix some j with 1 ≤ j ≤ J . Denote by Mj the set of active variables M(ξ) for any
ξ ∈ (ξj, ξj+1). We show in the following that the solution β̂λ,ξ is for all ξ in the interval
(ξj, ξj+1) given by

∀ξ ∈ (ξj, ξj+1) : β̂λ,ξ = β̂λ,ξj + (ξ − ξj)θ̂
Mj , (34)

where θ̂Mj is the restricted OLS estimator of noise, as defined in (32). The local effect of
increased noise (larger value of ξ) on the estimator is thus to shift the coefficients of the
active set of variables along the least squares direction.
Once (34) is shown, the claim follows by piecing together the piecewise linear parts and using
continuity of the solution as a a function of ξ to obtain

‖β̂λ,0 − β̂λ,1‖#2 ≤
J∑

j=1

‖β̂λ,ξj − β̂λ,ξj+1‖#2

≤ max
M :|M |≤m

‖θ̂M‖#2

J∑

j=1

(ξj+1 − ξj) = max
M :|M |≤m

‖θ̂M‖#2 .

It thus remains to show (34). A necessary and sufficient condition for β̂λ,ξ with ξ ∈ (ξj, ξj+1)
to be a valid solution is that for all k ∈ Mj with non-zero coefficient β̂λ,ξ

k (= 0, the gradient
is equal to λ times the negative sign,

Gλ,ξ
k = −λ sign(β̂λ,ξ

k ), (35)

that for all variables with k ∈ Mj with zero coefficient β̂λ,ξ
k = 0 the gradient is equal in

absolute value to λ
|Gλ,ξ

k | = λ, (36)

and for variables k /∈Mj not in the active set,

|Gλ,ξ
k | < λ. (37)

These conditions are a consequence of the requirement that the subgradient of the loss
function contains 0 for a valid solution.
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Note that the gradient of the active variables in Mj is unchanged if replacing ξ ∈ (ξj, ξj+1)
by some ξ′ ∈ (ξj, ξj+1) and replacing β̂λ,ξ by β̂λ,ξ + (ξ′ − ξ)θ̂Mj . That is, for all k ∈Mj,

(
Y (ξ)−Xβ̂λ,ξ

)T
Xk =

{
Y (ξ′)−X

(
β̂λ,ξ + (ξ′ − ξ)θ̂Mj

)}T
Xk,

as the difference of both sides is equal to

(ξ′ − ξ)
(
ε−Xθ̂Mj

)T
Xk,

and
(
ε−Xθ̂Mj

)T
Xk = 0 for all k ∈Mj, as θ̂Mj is the OLS of ε, regressed on the variables in

Mj. Equalities (35) and (36) are thus fulfilled for the solution and it remains to show that
(37) also holds. For sufficiently small values of ξ′ − ξ, inequality (37) is clearly fulfilled for
continuity reasons. Note that if |ξ′ − ξ| is large enough such that for one variable k /∈ Mj

inequality (37) becomes an equality, then the set of active variables changes and thus either
ξ′ = ξj+1 or ξ′ = ξj. We have thus shown that the solution β̂λ,ξ can for all ξ ∈ (ξj, ξj+1) be
written as

β̂λ,ξ = β̂λ,ξj + (ξ − ξj)θ̂
Mj ,

which proves (34) and thus completes the proof. !

Lemma 6 Under the assumptions of Theorem 1, the variance term is bounded by

‖β̂λ − βλ‖2
#2 = Op

( log pn

n

mλn

φ2
min(mλn)

)
,

where mλn = n2λ−2σ2
yφmax(min{n, p}).

By Lemma 5 and 4, the variance can be bounded by

‖β̂λ − βλ‖2
#2 = Op

( log pn

n

m̃

φ2
min(m̃)

)
,

where m̃ = sup0≤ξ≤1 mλ,ξ is the maximal number of active variable of the de-noised esti-
mate (30). Using Lemma 3, the number m̃ of active variables is bounded, with probability
converging to 1 for n→∞, by mλn = n2λ−2

n σ2
yφmax(min{n, p}), which completes the proof.

4 Proof of Theorem 2
The proof of Theorem 2 is in most parts analogous to the proof of Lemma 1 as the bound
on the variance part remains unchanged. Only a bound on the $2-norm of the bias has to be
recalculated. First, we derive a bound on the $1-norm of γλ, similar to (17). The solution
βλ can be written as β + γλ, where

γλ = argminζ∈Rp f(ζ), (38)
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and the function f(ζ) defined in (16) is now written as

f(ζ) = nζT Cζ + λ
∑

k≤p

(
|βk + ζk| − |βk|

)
.

In the proof of Lemma 1, K was the set of variables with truly non-zero coefficients. In
the current setting, all coefficients are potentially different from zero. Let instead K be in
the following the set of variables whose coefficient is among the rn largest, where rn is some
sequence (to be chosen later) with rn → ∞ for n → ∞. Assume without loss of generality
that |β1| ≥ |β2| ≥ . . . ≥ |βp|. Then,

K = {k : k ≤ rn}.

We can use again that f(γλ) ≤ 0 as setting ζ = 0 yields already the upper bound f(0) = 0.
Using that C is positive semi-definite,

∑

k∈Kc

(|βk + γk| − |βk|) ≤ −
∑

k∈K

(|βk + γk| − |βk|).

Note that on the one hand |c+d|−|d| ≤ |c| for all c, d ∈ R. On the other hand, |c+d|−|d| ≥
|c| − 2|d| for all c, d ∈ R. Thus

‖γ(Kc)‖#1 − 2‖β(Kc)‖#1 =
∑

k∈Kc

(|γk| − 2|βk|) ≤
∑

k∈K

|γk| = ‖γ(K)‖#1 .

As β lies in a weak $q-ball with 0 < q < 1, we have, by summing up the smallest entries of
β that there exists some constant c > 0 so that

2‖β(Kc)‖#1 ≤ csq,n r(q−1)/q
n ,

and hence similarly as before

‖γ‖#1 = ‖γ(Kc)‖#1 +‖γ(K)‖#1 ≤ 2‖γ(K)‖#1 + csq,nr
(q−1)/q
n ≤ 2

√
rn‖γ‖#2 + csq,nr(q−1)/q

n , (39)

where the last inequality follows due to γ(K) having at most rn non-zero entries, essentially
by definition of K. Note that the last inequality holds for any sequence rn. We are going to
choose rn further below in a way that minimzes the bound on the bias.
Just as in the proof of Lemma 1, let |γ(1)| ≥ |γ(2)| ≥ . . . ≥ |γ(p)| be the ordered entries of γ,
let un be some sequence for n →∞ and define U = {k : |γk| ≤ |γ(un)|}. Analogously to the
proof of Lemma 1, we obtain the bound (24) in slightly different notation as

γT Cγ ≥ φmin(un)‖γ‖2
#2 − 2

√
φmax(n)φmin(un)‖γ‖#2‖γ(U c)‖#2 . (40)

By the same argument as in the proof of Lemma 1, it also holds that γT Cγ ≤ λ‖γ‖#1/n.
Just as in (25), we have additionally

‖γ(U c)‖#2 ≤ ‖γ‖#1/
√

un,
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and hence

λn‖γ‖#1/n ≥ φmin(un)‖γ‖2
#2 − 2

√
φmax(n)φmin(un)‖γ‖#2‖γ‖#1/

√
un,

which is equivalent to

φmin(un)‖γ‖2
#2 ≤ ‖γ‖#1(λn/n + 2

√
u−1

n φmin(un)φmax(n)‖γ‖#2). (41)

We have still complete freedom in choosing the sequences {un}n=1,...,∞ and {rn}n=1,...,n. We
now choose un = mλn , where mλn is given in (8) with mλn . n2λ−2

n . By assumption, there
exists some κ > 0 such that lim infn→∞ φmin(mλn) > κ and the last equation (41) implies
thus that there exists a constant c(κ) > 0 so that for sufficiently large value of n,

‖γ‖2
#2 ≤ c(κ)

λn

n
‖γ‖#1(1 + ‖γ‖#2).

As long as we focus on cases for which ‖γ‖#2 stays bounded (it will turn out below that this
holds true), it follows that

‖γ‖2
#2 = O(

λn

n
‖γ‖#1).

Combing with the bound (39) on the $1-norm of γ then yields

‖γ‖2
#2 = O

(λn

n

√
rn‖γ‖#2 +

λn

n
sq,nr(q−1)/q

n

)
.

We can still choose rn freely. We choose rn to make both terms on the right hand side of
the last equation of the same order. Using in particular rn . (nsq,n/λn)q, it follows with
mλn . n2/λ2

n and the definition (12) of the effective sparsity as seff
n = s 2q/(2−q)

q,n that

‖γ‖2
#2 = O

{ sq
q,n

m1−q/2
λn

}
= O

{( seff
n

mλn

)1−q/2}
,

which completes the proof. !

5 Numerical Illustration: Frequency Detection
Instead of extensive numerical simulations, we would like to illustrate a few aspects of Lasso-
type variable selection if the irrepresentable condition is not fulfilled. We are not making
claims that the Lasso is superior to other methods for high-dimensional data. We merely
want to draw attention to the fact that (a) the Lasso might not be able to select the correct
variables but (b) comes nevertheless close to the true vector in an $2-sense.
An illustrative example is frequency detection. It is of interest in some areas of the physical
sciences to accurately detect and resolve frequency components; two examples are variable
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Figure 1: The energy log ∆E(ω) for a noise level σ = 0.2 is shown on the left for a range of
frequencies ω. A close-up of the region around the peak is shown on the right. The two frequencies
ω1 and ω2 are marked with solid vertical lines, while the resonance frequency (ω1 + ω2)/2 is shown
with a broken vertical line.

stars (Pojmanski, 2002) and detection of gravitational waves (Cornish and Crowder, 2005;
Umstätter et al., 2005). A non-parametric approach is often most suitable for fitting of the
involved periodic functions (Hall et al., 2000). However, we assume here for simplicity that
the observations Y = (Y1, . . . , Yn) at time points t = (t1, . . . , tn) are of the form

Yi =
∑

ω∈Ω

βω sin(2πωti + φω) + εi,

where Ω contains the set of fundamental frequencies involved, and εi for i = 1, . . . , n is
independently and identically distributed noise with εi ∼ N (0, σ2). To simplify the problem
even more, we assume that the phases are known to be zero, φω = 0 for all ω ∈ Ω. Otherwise
one might like to employ the Group Lasso (Yuan and Lin, 2006), grouping together the sine
and cosine part of identical frequencies.
It is of interest to resolve closely adjacent spectral lines (Hannan and Quinn, 1989) and we
will work in this setting in the following. We choose for the experiment n = 200 evenly
spaced observation times. There are supposed to be two closely adjacent frequencies with
ω1 = 0.0545 and ω2 = 0.0555 = ω1 + 1/300, both entering with βω1 = βω2 = 1. As we have
the information that the phase is zero for all frequencies, the predictor variables are given
by all sine-functions with frequencies evenly spaced between 1/200 and 1/2, with a spacing
of 1/600 between adjacent frequencies.
In the chosen setting, the irrepresentable condition is violated for the frequency ωm = (ω1 +
ω2)/2. Even in the absence of noise, this resonance frequency is included in the Lasso-
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estimate for all positive penalty parameters, as can be seen from the results further below.
As a consequence of a violated irrepresentable condition, the largest peak in the periodgram
is in general obtained for the resonance frequency. In Figure 1 we show the periodogram
(Scargle, 1982) under a moderate noise level σ = 0.2. The periodogram shows the amount
of energy in each frequency, and is defined through the function

∆E(ω) =
∑

i

Y 2
i −

∑

i

(Yi − Ŷ (ω)
i )2,

where Ŷ (ω) is the least squares fit of the observations Y , using only sine and cosine functions
with frequency ω as two predictor variables. There is clearly a peak at frequency ωm. As
can be seen in the close-up around ωm, it is not immediately obvious from the periodogram
that there are two frequencies at frequencies ω1 and ω2. As said above, the irrepresentable
condition is violated for the resonance frequency and it is of interest to see which frequencies
are picked up by the Lasso estimator.
The results are shown in Figures 2 and 3. Figure 3 highlights that the two true frequencies
are with high probability picked up by the Lasso. The resonance frequency is also selected
with high probability, no matter how the penalty is chosen. This result could be expected as
the irrepresentable condition is violated and the estimator can thus not be sign consistent.
We expect from the theoretical results in this manuscript that the coefficient of the falsely
selected resonance frequency is very small if the penalty parameter is chosen correctly. And
it can indeed be seen in Figure 2 that the coefficients of the true frequencies are much larger
than the coefficient of the resonance frequency for an appropriate choice of the penalty
parameter.
These results reinforce our conclusion that the Lasso might not be able to pick up the correct
sparsity pattern, but delivers nevertheless useful approximations as falsely selected variables
are chosen only with a very small coefficient; this behavior is typical and expected from the
results of Theorem 1. Falsely selected coefficients can thus be removed in a second step,
either by thresholding variables with small coefficients or using other relaxation techniques.
In any case, it is reassuring to know that all important variables are included in the Lasso
estimate.

6 Concluding Remarks
It has recently been discovered that the Lasso cannot recover the correct sparsity pattern in
certain circumstances, even not asymptotically for p fixed and n → ∞. This shed a little
doubt on whether the Lasso is a good method for identification of sparse models for both
low- and high-dimensional data.
Here we have shown that the Lasso can continue to deliver good approximations to sparse
coefficient vectors β in the sense that the $2-difference ‖β − β̂λ‖#2 vanishes for large sample
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Figure 2: An example where the Lasso is bound to select wrong variables, while being a good
approximation to the true vector in the !2-sense. Top row: The noise level increases from left to
right as σ = 0, 0.1, 0.2, 1. For one run of the simulation, paths of the estimated coefficients are
shown as a function of the square root

√
λ of the penalty parameter. The actually present signal

frequencies ω1 and ω2 are shown as solid lines, the resonance frequency as a broken line, and all
other frequencies are shown as dotted lines. Bottom row: the shaded areas contain, for 90% of all
simulations, the regularization paths of the signal frequencies (region with solid borders), resonance
frequency (area with broken borders) and all other frequencies (area with dotted boundaries). The
path of the resonance frequency displays reverse shrinkage, as its coefficient gets in general smaller
for smaller values of the penalty. As expected from the theoretical results, if the penalty parameter
is chosen correctly, it is possible to separate the signal and resonance frequencies for sufficiently
low noise levels by just retaining large and neglecting small coefficients. It is also apparent that
the coefficient of the resonance frequency is small for a correct choice of the penalty parameter but
very seldom identically zero.

26



0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

λ

lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

λ

lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

λ

lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

λ

lo
ss

λ

av
er

ag
e 

nu
m

be
r o

f s
el

ec
te

d 
va

ria
bl

es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
5

1
2

10
10

0

λ

av
er

ag
e 

nu
m

be
r o

f s
el

ec
te

d 
va

ria
bl

es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
5

1
2

10
10

0

λ

av
er

ag
e 

nu
m

be
r o

f s
el

ec
te

d 
va

ria
bl

es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
5

1
2

10
10

0

λ

av
er

ag
e 

nu
m

be
r o

f s
el

ec
te

d 
va

ria
bl

es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
5

1
2

10
10

0

Figure 3: The top row shows the !2-distance between β and β̂λ separately for the signal frequencies
(solid blue line), resonance frequency (broken red line) and all other frequencies (dotted gray line).
It is evident that the distance is quite small for all three categories simultaneously if the noise
level is sufficiently low (the noise level is again increasing from left to right as σ = 0, 0.1, 0.2, 1).
The bottom row show on the other hand the average number of selected variables (with non-
zero estimated regression coefficient) in each of the three categories as a function of the penalty
parameter. It is impossible to choose the correct model, as the resonance frequency is always
selected, no matter how low the noise level and no matter how the penalty parameter is chosen.
This illustrates that sign consistency does not hold if the irrepresentable condition is violated, even
though the estimate can be close to the true vector β in the !2-sense.
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sizes n, even if it fails to discover the correct sparsity pattern. The conditions needed for
a good approximation the $2-sense are weaker than the irrepresentable condition needed for
sign consistency. We pointed out that the correct sparsity pattern could be recovered in
a two-stage procedure. The first step consists in a regular Lasso fit. Variables with small
absolute coefficient are then removed from the model in a second step.
We derived possible scenarios under which $2-consistency can be achieved as a function of
the sparsity of the vector β, the number of samples and the number of variables. The only
condition on the design matrix we impose is that singular minimal eigenvalues of the design
matrix induced by selecting a small number of variables are bounded away from zero by an
arbitrarily small constant.
It was also shown that recovery of sparse vectors β is possible if sparseness is measured in
other ways than the number of non-zero entries of β. We obtain recovery of vectors in weak
$q-balls with 0 < q < 1. In summary, the Lasso is selecting all sufficiently large coefficients,
and possibly some other unwanted variables. The number of variables can thus be narrowed
down considerably with the Lasso, while keeping all important variables. These results will
hopefully support that the Lasso is a useful model identification method for high-dimensional
data.

References
Bunea, B., A. Tsybakov, and M. Wegkamp (2006a). Aggregation for gaussian regression.

Annals of Statistics, to appear .

Bunea, F., A. Tsybakov, and M. Wegkamp (2006b). Sparsity oracle inequalities for the lasso.
Technical report.

Candes, E. and T. Tao (2005a). Decoding by linear programming. Information Theory,
IEEE Transactions on 51 (12), 4203–4215.

Candes, E. and T. Tao (2005b). The Dantzig selector: statistical estimation when p is much
larger than n. Arxiv preprint math.ST/0506081 .

Cornish, N. and J. Crowder (2005). LISA data analysis using Markov chain Monte Carlo
methods. Physical Review D 72 (4), 43005.

Davidson, K. and S. Szarek (2001). Local operator theory, random matrices and Banach
spaces. In Handbook on the Geometry of Banach spaces, Vol. 1, WB Johnson, J. Linden-
strauss eds.

Donoho, D. (2004). For Most Large Underdetermined Systems of Linear Equations, the
minimal $1-norm near-solution approximates the sparsest near-solution. Technical report,
Department of Statistics, Stanford University.

28



Donoho, D. (2006). For most large underdetermined systems of linear equations, the mini-
mal 1-norm solution is also the sparsest solution. Communications on Pure and Applied
Mathematics 59, 0797–0829.

Donoho, D. and M. Elad (2003). Optimally sparse representation in general (nonorthogonal)
dictionaries via $1-minimization. PNAS 100 (5), 2197–2202.

Donoho, D., M. Elad, and V. Temlyakov (2006). Stable recovery of sparse overcomplete
representations in the presence of noise. Information Theory, IEEE Transactions on 52 (1),
6–18.

Donoho, D. and X. Huo (2001). Uncertainty principles and ideal atomic decomposition.
Information Theory, IEEE Transactions on 47 (7), 2845–2862.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least angle regression. Annals
of Statistics 32, 407–451.

Greenshtein, E. and Y. Ritov (2004). Persistence in high-dimensional predictor selection and
the virtue of over-parametrization. Bernoulli 10 (6), 971–988.

Gribonval, R. and M. Nielsen (2003). Sparse representations in unions of bases. IEEE
Transactions on Information Theory 49 (12), 3320–3325.

Hall, P., J. Reimann, and J. Rice (2000). Nonparametric estimation of a periodic function.
Biometrika 87 (3), 545–557.

Hannan, E. and B. Quinn (1989). The resolution of closely adjacent spectral lines. J. Time
Ser. Anal 10 (1).

Joshi, R., V. Crump, and T. Fischer (1995). Image subband coding using arithmetic coded
trellis codedquantization. Circuits and Systems for Video Technology, IEEE Transactions
on 5 (6), 515–523.

Knight, K. and W. Fu (2000). Asymptotics for lasso-type estimators. Annals of Statistics 28,
1356–1378.

LoPresto, S., K. Ramchandran, and M. Orchard (1997). Image coding based on mixture
modeling of wavelet coefficients and a fast estimation-quantization framework. Proc. Data
Compression Conf , 221–230.

Mallat, S. (1989). A theory for multiresolution signal decomposition: the waveletrepresenta-
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on 11 (7), 674–693.

29
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Bayard, L. Melie-Garćıa, and E. Canales-Rodŕıguez (2005). Estimating brain functional
connectivity with sparse multivariate autoregression. Philosophical Transactions of the
Royal Society B: Biological Sciences 360 (1457), 969–981.

van de Geer, S. (2006). High-dimensional generalized linear models and the lasso. Technical
Report 133, ETH Zürich.
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