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1

Introduction

The Oxford English Dictionary provides the following two related definitions
of the word phylogeny :

1. The pattern of historical relationships between species or other groups
resulting from divergence during evolution.

2. A diagram or theoretical model of the sequence of evolutionary divergence
of species or other groups of organisms from their common ancestors.

In short, a phylogeny is the “family tree” of a collection of units designated
generically as taza. Figure 1.1 is a simple example of a phylogeny for four
primate species. Strictly speaking, phylogenies need not be trees. For instance,
biological phenomena such as hybridization and horizontal gene transfer can
lead to non-tree-like reticulate phylogenies for organisms. However, we will
only be concerned with trees in these notes.

Phylogenetics (that is, the construction of phylogenies) is now a huge en-
terprise in biology, with several sophisticated computer packages employed
extensively by researchers using massive amounts of DNA sequence data to
study all manner of organisms. An introduction to the subject that is accessi-
ble to mathematicians is [67], while many of the more mathematical aspects
are surveyed in [125].

It is often remarked that a tree is the only illustration Charles Darwin
included in The Origin of Species. What is less commonly noted is that Dar-
win acknowledged the prior use of trees as representations of evolutionary
relationships in historical linguistics — see Figure 1.2. A recent collection of
papers on the application of computational phylogenetic methods to historical
linguistics is [69)].

The diversity of life is enormous. As J.B.S Haldane often remarked ' in
various forms:

! See Stephen Jay Gould’s essay “A special fondness for beetles” in his book [77]
for a discussion of the occasions on which Haldane may or may not have made
this remark.
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Orangutan

r

Chimpanzee Human

Fig. 1.1. The phylogeny of four primate species. Illustrations are from the Tree of
Life Web Project at the University of Arizona

I don’t know if there is a God, but if He exists He must be inordinately
fond of beetles.

Thus, phylogenetics leads naturally to the consideration of very large trees
— see Figure 1.3 for a representation of what the phylogeny of all organ-
isms might look like and browse the Tree of Life Web Project web-site at
http://www.tolweb.org/tree/ to get a feeling for just how large the phylo-
genies of even quite specific groups (for example, beetles) can be.

Not only can phylogenetic trees be very large, but the number of possible
phylogenetic trees for even a moderate number of taxa is enormous. Phyloge-
netic trees are typically thought of as rooted bifurcating trees with only the
leaves labeled, and the number of such trees for n leaves is (2n—3) x (2n—5) x
-+ X 7x5x3x1—see, for example, Chapter 3 of [67]. Consequently, if we try
to use statistical methods to find the “best” tree that fits a given set of data,
then it is impossible to exhaustively search all possible trees and we must
use techniques such as Bayesian Markov Chain Monte Carlo and simulated
annealing that randomly explore tree space in some way. Hence phylogenetics
leads naturally to the study of large random trees and stochastic processes
that move around spaces of large trees.
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Anatolian

Iranian

Cedltic Tocharian

Germanic
Armenian

Baltic Slavic

Albanian

Fig. 1.2. One possible phylogenetic tree for the Indo-European family of languages
from [118]

Although the investigation of random trees has a long history stretching
back to the eponymous work of Galton and Watson on branching processes,
a watershed in the area was the sequence of papers by Aldous [12, 13, 10].
Previous authors had considered the asymptotic behavior of numerical fea-
tures of an ensemble of random trees such as their height, total number of
vertices, average branching degree, etc. Aldous made sense of the idea of a se-
quence of trees converging to a limiting “tree-like object”, so that many such
limit results could be read off immediately in a manner similar to the way
that limit theorems for sums of independent random variables are straight-
forward consequences of Donsker’s invariance principle and known properties
of Brownian motion. Moreover, Aldous showed that, akin to Donsker’s invari-
ance principle, many different sequences of random trees have the same limit,
the Brownian continuum random tree, and that this limit is essentially the
standard Brownian excursion “in disguise”.

We briefly survey Aldous’s work in Chapter 2, where we also present some
of the historical development that appears to have led up to it, namely the
probabilistic proof of the Markov chain tree theorem from [21] and the algo-
rithm of [17, 35] for generating uniform random trees that was inspired by
that proof. Moreover, the asymptotic behavior of the tree—generating algo-



4 1 Introduction

A

A

Sl
\\ Bacteria

Archaea

Fig. 1.3. A somewhat impressionistic depiction of the phylogenetic tree of all life
produced by David M. Hillis, Derrick Zwickl, and Robin Gutell, University of Texas

rithm when the number of vertices is large is the subject of Chapter 5, which
is based on [63].

Perhaps the key conceptual difficulty that Aldous had to overcome was
how to embed the collection of finite trees into a larger universe of “tree-like
objects” that can arise as re-scaling limits when the number of vertices goes
to infinity. Aldous proposed two devices for doing this. Firstly, he began with
a classical bijection, due to Dyck, between rooted planar trees and suitable
lattice paths (more precisely, the sort of paths that can appear as the “positive
excursions” of a simple random walk). He showed how such an encoding of
trees as continuous functions enables us to make sense of weak convergence
of random trees as just weak convergence of random functions (in the sense
of weak convergence with respect to the usual supremum norm). Secondly, he
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noted that a finite tree with edge lengths is naturally isomorphic to a compact
subset of £1, the space of absolutely summable sequences. This enabled him to
treat weak convergence of random trees as just weak convergence of random
compact sets (where compact subsets of ¢! are equipped with the Hausdorff
distance arising from the usual norm on ¢!).

Although Aldous’s approaches are extremely powerful, the identification
of trees as continuous functions or compact subsets of £! requires, respectively,
that they are embedded in the plane or leaf-labeled. This embedding or label-
ing can be something of an artifact when the trees we are dealing with don’t
naturally come with such a structure. It can be particularly cumbersome when
we are considering tree-valued stochastic processes, where we have to keep
updating an artificial embedding or labeling as the process evolves. Aldous’s
perspective is analogous to the use of coordinates in differential geometry:
explicit coordinates are extremely useful for many calculations but they may
not always offer the smoothest approach. Moreover, it is not clear a priori
that every object we might legitimately think of as tree-like necessarily has
a representation as an excursion path or a subset of ¢!. Also, the topologies
inherited from the supremum norm or the Hausdorff metric may be too strong
for some purposes.

We must, therefore, seek more intrinsic ways of characterizing what is
meant by a “tree-like object”. Finite combinatorial trees are just graphs that
are connected and acyclic. If we regard the edges of such a tree as intervals, so
that a tree is a cell complex (and, hence, a particular type of topological space),
then these two defining properties correspond respectively to connectedness
in the usual topological sense and the absence of subspaces that are homeo-
morphic to the circle. Alternatively, a finite combinatorial tree thought of as
a cell complex has a natural metric on it: the distance between two points is
just the length of the unique “path” through the tree connecting them (where
each edge is given unit length). There is a well-known characterization of the
metrics that are associated with trees that is often called (Buneman’s) four
point condition — see Chapter 3. Its significance seems to have been recognized
independently in [149, 130, 36] — see [125] for a discussion of the history.

These observations suggest that the appropriate definition of a “tree-like
object” should be a general topological or metric space with analogous prop-
erties. Such spaces are called R-trees and they have been studied extensively —
see [46, 45, 137, 39]. We review some of the relevant theory and the connection
with 0-hyperbolicity (which is closely related to the four point condition) in
Chapter 3.

We note in passing that R-trees, albeit ones with high degrees of symmetry,
play an important role in geometric group theory — see, for example, [126, 110,
127, 30, 39]. Also, 0-hyperbolic metric spaces are the simplest example of the
d-hyperbolic metric spaces that were introduced in [79] as a class of spaces
with global features similar to those of complete, simply connected manifolds
of negative curvature. For more on the motivation and subsequent history
of this notion, we refer the reader to [33, 39, 80]. Groups with a natural J-
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hyperbolic metric have turned out to be particularly important in a number
of areas of mathematics, see [79, 20, 40, 76].

In order to have a nice theory of random R-trees and R-tree-valued sto-
chastic processes, it is necessary to metrize a collection of R-trees, and, since
R-trees are just metric spaces with certain special properties, this means that
we need a way of assigning a distance between two metric spaces (or, more cor-
rectly, between two isometry classes of metric spaces). The Gromov-Hausdorff
distance — see [80, 37, 34] — does exactly this and turns out to be very pleasant
to work with. The particular properties of the Gromov-Hausdorff distance for
collections of R-trees have been investigated in [63, 65, 78] and we describe
some of the resulting theory in Chapter 4.

Since we introduced the idea of using the formalism of R-trees equipped
with the Gromov-Hausdorff metric to study the asymptotics of large random
trees and tree-valued processes in [63, 65], there have been several papers that
have adopted a similar point of view — see, for example, [49, 101, 102, 103, 50,
81, 78].

As we noted above, stochastic processes that move through a space of
finite trees are an important ingredient for several algorithms in phylogenetic
analysis. Usually, such chains are based on a set of simple rearrangements
that transform a tree into a “neighboring” tree. One standard set of moves
that is implemented in several phylogenetic software packages is the set of
subtree prune and re-graft (SPR) moves that were first described in [134] and
are further discussed in [67, 19, 125]. Moreover, as remarked in [19],

The SPR operation is of particular interest as it can be used to model
biological processes such as horizontal gene transfer and recombina-
tion.

Section 2.7 of [125] provides more background on this point as well as a com-
ment on the role of SPR moves in the two phenomena of lineage sorting and
gene duplication and loss. Following [65], we investigate in Chapter 9 the be-
havior when the number of vertices goes to infinity of the simplest Markov
chain based on SPR moves.

Tree-valued Markov processes appear in contexts other than phylogenetics.
For example, a number of such processes appear in combinatorics associated
with the random graph process, stochastic coalescence, and spanning trees —
see [115]. One such process is the wild chain, a Markov process that appears as
a limiting case of tree—valued Markov chains arising from pruning operations
on Galton—-Watson and conditioned Galton—Watson trees in [16, 14].

The state space of the wild chain is the set T* consisting of rooted R-
trees such that each edge has length 1, each vertex has finite degree, and
if the tree is infinite there is a single path of infinite length from the root.
The wild chain is reversible (that is, symmetric). Its equilibrium measure is
the distribution of the critical Poisson Galton—Watson branching process (we
denote this probability measure on rooted trees by PGW(1)). When started in
a state that is a finite tree, the wild chain holds for an exponentially distributed
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amount of time and then jumps to a state that is an infinite tree. Then, as
must be the case given that the PGW(1) distribution assigns all of its mass
to finite trees, the process instantaneously re-enters the set of finite trees.
In other words, the sample—paths of the wild chain bounce backwards and
forwards between the finite and infinite trees.

As we show in Chapter 6 following [15], the wild chain is a particular in-
stance of a general class of symmetric Markov processes that spend Lebesgue
almost all of their time in a countable, discrete part of their state-space
but continually bounce back and forth between this region and a continu-
ous “boundary”. Other processes in this general class are closely related to
the Markov processes on totally disconnected Abelian groups considered in
[59]. A special case of these latter group-valued processes, where the group is
the additive group of a local field such as the p-adic numbers, is investigated
in [4,5,7,6,2,8,9, 87, 131, 68].

Besides branching models such as Galton—Watson processes, another fa-
miliar source of random trees is the general class of coalescing models — see
[18] for a recent survey and bibliography.

Kingman’s coalescent was introduced in [90, 89] as a model for genealogies
in the context of population genetics and has since been the subject of a large
amount of applied and theoretical work — see [136, 144, 83] for an indication
of some of the applications of Kingman’s coalescent in genetics.

Families of coalescing Markov processes appear as duals to interacting par-
ticle systems such as the voter model and stepping stone models . Motivated
by this connection, [22] investigated systems of coalescing Brownian motions
and the closely related coalescing Brownian flow . Coalescing Brownian mo-
tion has recently become a topic of renewed interest, primarily in the study
of filtrations and “noises” — see, for example, [140, 132, 138, 55].

In Chapter 8 we show, following [60, 44], how Kingman’s coalescent and
systems of coalescing Brownian motions on the circle are each naturally as-
sociated with random compact metric spaces and we investigate the fractal
properties of those spaces. A similar study was performed in [28] for trees aris-
ing from the beta-coalescents of [116]. There has been quite a bit of work on
fractal properties of random trees constructed in various ways from Galton—
Watson branching processes; for example, [82] computed the Hausdorff di-
mension of the boundary of a Galton—Watson tree equipped with a natural
metric — see also [104, 96].

We observe that Markov processes with continuous sample paths that take
values in a space of continuous excursion paths and are reversible with respect
to the distribution of standard Brownian excursion have been investigated in
[148, 147, 146]. These processes can be thought of as R-tree valued diffusion
processes that are reversible with respect to the distribution of the Brownian
continuum random tree.

Moving in a slightly different but related direction, there is a large lit-
erature on random walks with state-space a given infinite tree: [145, 105]
are excellent bibliographical references. In particular, there is a substantial
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amount of research on the Martin boundary of such walks beginning with
[52, 38, 122].

The literature on diffusions on tree-like or graph-like structures is more
modest. A general construction of diffusions on graphs using Dirichlet form
methods is given in [141]. Diffusions on tree-like objects are studied in [42, 93]
using excursion theory ideas, local times of diffusions on graphs are investi-
gated in [53, 54], and an averaging principle for such processes is considered
n [71]. One particular process that has received a substantial amount of at-
tention is the so-called Walsh’s spider. The spider is a diffusion on the tree
consisting of a finite number of semi—infinite rays emanating from a single
vertex — see [142, 26, 139, 25].

A higher dimensional diffusion with a structure somewhat akin to that
of the spider, in which regions of higher dimensional spaces are “glued” to-
gether along lower dimensional boundaries, appears in the work of Sowers
[133] on Hamiltonian systems perturbed by noise — see also [111]. A general
construction encompassing such processes is given in [64]. This construction
was used in [24] to build diffusions on the interesting fractals introduced in
[95] to answer a question posed in [84].

In Chapter 7 we describe a particular Markov process with state—space an
R-tree that does not have any leaves (in the sense that any path in the tree can
be continued indefinitely in both directions). The initial study of this process
in [61] was motivated by Le Gall’s Brownian snake process — see, for example,
[97, 98, 99, 100]. One agreeable feature of this process is that it serves as a
new and convenient “test bed” on which we can study many of the objects of
general Markov process theory such as Doob h-transforms, the classification
of entrance laws, the identification of the Martin boundary and representation
of excessive functions, and the existence of non-constant harmonic functions
and the triviality of tail o-fields.

We use Dirichlet form methods in several chapters, so we have provided
a brief summary of some of the more salient parts of the theory in Appen-
dix A. Similarly, we summarize some results on Hausdorff dimension, packing
dimension and capacity that we use in various places in Appendix B.
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Around the continuum random tree

2.1 Random trees from random walks

2.1.1 Markov chain tree theorem

Suppose that we have a discrete time Markov chain X = {X,, },en, with state
space V and irreducible transition matrix P. Let m be the corresponding sta-
tionary distribution. The Markov chain tree theorem gives an explicit formula
for 7, as opposed to the usual implicit description of 7 as the unique proba-
bility vector that solves the equation 7P = m. In order to describe this result,
we need to introduce some more notation.

Let G = (V, E) be the directed graph with vertex set V' and directed edges
consisting of pairs of vertices (7,j) such that p;; > 0. We call p;; the weight
of the edge (i, 7).

A rooted spanning tree of G is a directed subgraph of G that is a spanning
tree as an undirected graph (that is, it is a connected subgraph without any
cycles that has V as its vertex set) and is such that each vertex has out-degree
1, except for a distinguished vertex, the root, that has out-degree 0. Write A
for the set of all rooted spanning trees of G and A; for the set of rooted
spanning trees that have i as their root.

The weight of a rooted spanning tree T is the product of its edge weights,
which we write as weight (7).

Theorem 2.1. The stationary distribution m is given by

o Y rea, weight(T)
" Ypea weight(T)
Proof. Let X = {X,}nez be a two-sided stationary Markov chain with the

transition matrix P (so that X,, has distribution 7 for all n € Z).
Define a map f : VZ — A as follows — see Figure 2.2.

e The root of f(z) is xo.
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Fig. 2.1. A rooted spanning tree. The solid directed edges are in the tree, whereas
dashed directed edges are edges in the underlying graph that are not in the tree.
The tree is rooted at d. The weight of this tree is paaPedPveD fePeb-

e For i # wo, the unique edge in f(z) with tail i is (i,2.(;)+1) =
(T7(i), Tr(i)+1) Where 7(i) := sup{m < 0 : x,,, = i}.

It is clear that f is well-defined almost surely under the distribution of
X and so we can define a stationary, A-valued, Z-indexed stochastic process
Y = {Yn}nEZ by _ _

Y, = f(0"(X)), neZ,

where 6 : VZ — V7% denotes the usual shift operator defined by 6(x),, := 2,4 1.

It is not hard to see that Y is Markov. More specifically, consider the
following forward procedure that produces a spanning tree rooted at j from
a spanning tree S rooted at ¢ — see Figure 2.3.

Attach the directed edge (i, ) to S.

This creates a directed graph with unique directed loop that contains ¢
and j (possibly a self loop at 7).

Delete the unique directed edge out of j.

This deletion breaks the loop and produces a spanning tree rooted at j.
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Fig. 2.2. The construction of the rooted tree f(x) for V. = {a,b,c,d,e, f} and
("'733_27'11_171,0) = ("'7e7f7c7a7c7d7d7a7f7b7f7a7c7c7f7c)

Then, given {Y;, : m < n}, the tree Y, is obtained from the tree Y, with
root i by choosing the new root j in the forward procedure with conditional
probability p;;.

It is easy to see that a rooted spanning tree 7' € A can be constructed
from S € A by the forward procedure if and only if S can be constructed from
T by the following reverse procedure for a suitable vertex k.

Let T have root j.

Attach the directed edge (j,k) to T

This creates a directed graph with unique directed loop containing j and
k (possibly a self loop at 7).

Delete the unique edge, say (i, j), directed into j that lies in this loop.
This deletion breaks the loop and produces a rooted spanning tree rooted
at .

Moving up rather than down the page in Figure 2.3 illustrates the reverse
procedure.

Let S and T be rooted spanning trees such that 7' can be obtained from
S by the forward procedure, or, equivalently, such that S can be obtained
from T by the reverse procedure. Write ¢ and j for the roots of S and T,
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Fig. 2.3. The forward procedure. The dashed line represents a directed path through
the tree that may consist of several directed edges.

respectively, and write k for the (unique) vertex appearing in the description
of the reverse procedure. Denote by @ the transition matrix of the .A-valued
process Y. We have observed that

If S has root ¢ and 7" has root j, then Qg7 = pj.
To get T from S we first attached the edge (i,7) and then deleted the
unique outgoing edge (4, k) from j.
e To get S from T we would attach the edge (j,k) to T and then delete the
edge (i,7).
Thus, if we let p be the probability measure on 4 such that py is proportional
to the weight of U for U € A, then we have

psQst = prRrs,

where Rpg := pji. In particular,
ZpSQST = ZPTRTS = pr,
S S

since R is a stochastic matrix. Hence p is the stationary distribution cor-
responding to the irreducible transition matrix . That is, p is the one-
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dimensional marginal of the stationary chain Y. We also note in passing that
R is the transition matrix of the time-reversal of Y.

Thus,
™ = Z{pT : root of T'is 7 }
_ ZTeAi weight(T')
D req Weight(T)
as claimed. ]

The proof we have given of Theorem 2.1 is from [21], where there is a
discussion of the history of the result.

2.1.2 Generating uniform random trees

Proposition 2.2. Let (X;) en, be the natural random walk on the complete
graph K, with transition matriz P given by P;; = ﬁ for i # 5 and Xy
uniformly distributed. Write

T, =min{j 20: X;=v}, v=12,...,n
Let T be the directed subgraph of K, with edges
(Xr,, Xr,-1), v #Xo.
Then T is uniformly distributed over the rooted spanning trees of K,.

Proof. The argument in the proof of Theorem 2.1 plus the time-reversibility
of X. (m]

Remark 2.3. The set of rooted spanning trees of the complete graph K, is
just the set of of n"~! rooted trees with vertices labeled by {1,2,...,n}, and
so the random tree T produced in Proposition 2.2 is nothing other than a
uniform rooted random tree with n labeled vertices.

Proposition 2.2 suggests a procedure for generating uniformly distributed
rooted random trees with n labeled vertices. The most obvious thing to do
would be to run the chain X until all n states had appeared and then con-
struct the tree T from the resulting sample path. The following algorithm,
presented independently in [17, 35], improves on this naive approach by, in
effect, generating Xy and the pairs (X,, 1, X;, ), v # Xy without generating
the rest of the sample path of X.

Algorithm 2.4. Fizn > 2. Let Us, ..., U, be independent and uniformly dis-
tributed on 1, ..., n, and let Il be an independent uniform random permutation
of 1,...,n.
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Fig. 2.4. Step (i) of Algorithm 2.4 for n = 6 and (V2, Vs, V4, V5, Vs) = (1,1, 3,2, 3)

(i) For 2 <i < n connect vertex i to vertex V; = (i — 1) A U; (that is, build a
tree rooted at 1 with edges (i,V;)).
(ii) Relabel the vertices 1,...,n as Iy, ..., II, to produce a tree rooted at Il .

See Figure 2.4 for an example of Step (i) of the algorithm.
Proposition 2.5. The rooted random tree with n labeled vertices produced by
Algorithm 2.4 is uniformly distributed.

Proof. Let Zy,Z1,... be independent and uniform on 1,2,...,n. Define
1,2y« v vy T, 51,627...,§n € Ny and )\27~-~>)\n € {1,2,...,7’L} by

51 = 07
T = ZO»
§i+1:=min{m>£i:Zm¢{7r1,...,7n}}, 1<t<n—1,

Ti+1 Z=Z5H_17 1<i<n—17
Ai+1 = Z§i+1*1’ 1<z<n—1

Consider the random tree T labeled by {1,2,...,n} with edges (m;, \;), 2 <
1< n.
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Note that this construction would give the same tree if the sequence Z was
replaced by the subsequence Z’ in which terms Z; identical with their prede-
cessor Z; 1 were deleted. The process Z’ is just the natural random walk on
the complete graph. Thus, the construction coincides with the construction of
Proposition 2.2. Hence, the tree T is a uniformly distributed tree on n labeled
vertices. To complete the proof, we need only argue that this construction is
equivalent to Algorithm 2.4.

It is clear that m is a uniform random permutation. The construction of
the tree of T can be broken into two stages.

(i) Connect i to 77;1_1, 1=2,...,n.
(ii) Relabel 1,...,n as 71,...,7,.
Thus, it will suffice to show that the conditional joint distribution of the
random variables 7T);17 i =2,...,n, given 7 is always the same as the (un-
conditional) joint distribution of the random variables V;, i = 2,...,n, in
Algorithm 2.4 no matter what the value of 7 is.

To see that this is so, first fix 4 and condition on Z1,..., Z¢, as well as 7.

Note the following two facts.

e With probability 1 —i/n we have &1 = &; + 1, which implies that A\; 1 =
Z¢, and, hence, 77;1_11 = 1.

e Otherwise, &4+1 = & + M + 1 for some random integer M > 1. Con-
ditioning on the event {M = m}, we have that the random variables

Zg 41, -+ Zg,4m are independent and uniformly distributed on the pre-
viously visited states {mi,...,m;}. In particular, \;11 = Z¢ 1y, is uni-
formly distributed on {my,...,m;}, and so 71-;1-1+1 is uniformly distributed
on {1,...,i}.

Combining these two facts, we see that

Piryl, =ulZy,..., Ze, mp = 1/n=P{Vij1 =u}, 1<u<i—1,
Piryl, =ilZ1,..., Ze,mp = 1= (i—1)/n =P{Viy1 =i},

as required. O

2.2 Random trees from conditioned branching processes

If we were to ask most probabilists to propose a natural model for generating
random trees, they would first think of the family tree of a Galton—Watson
branching process. Such a tree has a random number of vertices and if we
further required that the random tree had a fixed number n of vertices, then
they would suggest simply conditioning the total number of vertices in the
Galton-Watson tree to be n. Interestingly, special cases of this mechanism for
generating random trees produce trees that are also natural from a combina-
torial perspective, as we shall soon see.
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Let (p;)ien, be a probability distribution on the non-negative integers that
has mean one. Write T' for the family tree of the Galton-Watson branching
process with offspring distribution (p;)ien, started with 1 individual in gen-
eration 0. For n > 1 denote by T,, a random tree that arises by conditioning
on the total population size |T'| being n (we suppose that the event {|T'| = n}
has positive probability). More precisely, we think of the trees T and T, as
rooted ordered trees: a rooted tree is ordered if we distinguish the offspring of
a vertex according with a “birth order”. Equivalently, a rooted ordered tree
is a rooted planar tree: the birth order is given by the left-to-right ordering
of offspring in the given embedding of the tree in the plane. The distribution
of the random tree T is then

P{T = t} = de(v,t)

vEL
D;(t
R
120

=: w(t),

where d(v,t) is the number of offspring of vertex v in ¢, and D;(t) is the
number of vertices in ¢ with ¢ offspring. Thus, P{T,, = t} is proportional to
w(t).

Ezample 2.6. If the offspring distribution (p;):en, is the geometric distribution
p; = 2-(+1) " e Ny, then T}, is uniformly distributed (on the set of rooted
ordered trees with n vertices).

Ezample 2.7. Suppose that the offspring distribution (p;)ien, is the Poisson
distribution p; = ei;!l, 1 € Np. If we randomly assign the labels {1,2,...,n} to
the vertices of T, and ignore the ordering, then T, is a uniformly distributed
rooted labeled tree with n vertices.

2.3 Finite trees and lattice paths

Although rooted planar trees are not particularly difficult to visualize, we
would like to have a quite concrete way of “representing” or “coordinatizing”
the planar trees with n vertices that is amenable to investigating the behavior
of a random such trees as the number of vertices becomes large. The following
simple observation is the key to the work of Aldous, Le Gall and many others
on the connections between the asymptotics of large random trees and models
for random paths.

Given a rooted planar tree with n vertices, start from the root and tra-
verse the tree as follows. At each step move away from the root along the
leftmost edge that has not been walked on yet. If this is not possible then
step back along the edge leading toward the root. We obtain a with steps of
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+1 by plotting the height (that is, the distance from the root) at each step.
Appending a +1 step at the beginning and a —1 step at the end gives a lattice
excursion path with 2n steps that we call the Harris path of the tree, although
combinatorialists usually call this object a Dyck path . We can reverse this
procedure and obtain a rooted planar tree with n vertices from any lattice
excursion path with 2n steps.

Fig. 2.5. Harris path of a rooted combinatorial tree (figure courtesy of Jim Pitman).

2.4 The Brownian continuum random tree

Put S, = Z?zl X;, where the random variables X; are independent with
P{X; = 1} = 1/2. Conditional on S; = +1, the path Sy, S1,...,Sn, where
N = min{k > 0: Sy = 0}, is the Harris path of the Galton-Watson branching
process tree with offspring distribution p; = 270+ i € Ny. Therefore, if we
condition on S; = +1 and N = 2n, we get the Harris path of the Galton—
Watson branching process tree conditioned on total population size n, and we
have observed is the uniform rooted planar tree on n vertices.

We know that suitably re-scaled simple random walk converges to Brown-
ian motion. Similarly, suitably re-scaled simple random walk conditioned to
be positive on the first step and return to zero for the first time at time 2n
converges as n — o to the standard Brownian excursion. Of course, simple
random walk is far from being the only process that has Brownian motion as
a scaling limit, and so we might hope that there are other random trees with
Harris paths that converge to standard Brownian excursion after re-scaling.
The following result of Aldous [10] shows that this is certainly the case.

Theorem 2.8. Let T,, be a conditioned Galton—Watson tree, with offspring
mean 1 and variance 0 < 0 < 0. Write H,(k), 0 < k < 2n for the Harris
path associated with Ty, , and interpolate H,, linearly to get a continuous process
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real-valued indexed by the interval [0, 2n] (which we continue to denote by H,, ).
Then, as n — oo through possible sizes of the unconditioned Galton—Watson

tree,
Hn(2nu)>
o = (2B5")gcyer -
< N 0<u<l1 Osust

where B is the standard Brownian excursion and = 1is the usual weak con-
vergence of probability measures on C[0,1].

The Harris path construction gives a bijection between excursion-like lat-
tice paths with steps of +1 and rooted planar trees. We will observe in Exam-
ple 3.14 that any continuous excursion path gives rise to a tree-like object via
an analogy with one direction of this bijection. Hence Theorem 2.8 shows that,
in some sense, any conditioned finite-variance Galton—Watson tree converges
after re-scaling to the tree-like object associated with 2B°*. Aldous called this
latter object the Brownian continuum random tree .

2.5 Trees as subsets of #!

We have seen in Sections 2.3 and 2.4 that representing trees as continuous
paths allows us to use the metric structure on path space to make sense of
the idea of a family of random trees converging to some limit random object.
In this section we introduce an alternative “coordinatization” of tree-space
as the collection of compact subsets of the Banach space ¢! := {(x1,22,...) :
> lzi] < oo}. This allows us to use the machinery that has been developed for
describing random subsets of a metric space to give another way of expressing
such convergence results.

Equip ¢! with the usual norm. Any finite tree with edge lengths can be
embedded isometrically as a subset of ¢! (we think of such a tree as a one-
dimensional cell complex, that is, as a metric space made up of the vertices
of the tree and the connecting edges — not just as the finite metric space
consisting of the vertices themselves). For example, the tree of Figure 2.6 is
isometric to the set

{te; : 0 <t < d(p,a)}
U {d(p,d)er +tes 1 0 <t < d(d,b)}
u {d(p,d)e; +d(d,e)es +teg : 0 <t < d(e, )},
where e; = (1,0,0,...), ea = (0,1,0,...), etc.
Recall Algorithm 2.4 for producing a uniform tree on n labeled vertices.
Let 8™ be the subset of ¢! that corresponds to the tree produced by the
algorithm. We think of this tree as having edge lengths all equal to 1. More

precisely, define a random length random sequence (C’;-l, B;””), 0<j<Jn, as
follows:

o Cl=DB}:=0,
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o,

Fig. 2.6. A rooted tree with edge lengths

e (7 is the jth element of {i : U; <i — 1},
BT :=Ucy.

Define p™ : [0,C%.] — ' by p™(0) := 0 and

p"(x) = p"(B}) + (x — C})ejpy for CF <z <Cfy, 0<j<J"—1

Put 8™ := p"([0,C%.]).
It is not hard to show that

(n Y20y, n 2By, (Y203 n 2By, .. )
= ((C1, B1),(C2, Ba),...),

where = denotes weak convergence and ((C1, By), (C2, Ba),...) are defined
as follows. Put Cy = By := 0. Let (C1,C4,...) be the arrival times in an
inhomogeneous Poisson process on R, with intensity tdt. Let B; := &C},
where the {{;};en are independent, identically distributed uniform random
variables on [0, 1], independent of {C;}en.

Define p: Ry — £* by p(0) := 0 and

p(x) :== p(B;j) + (x — Cj)ejy1 for Cj < x < Cjyq.
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Set
s = oll0,1).
t=0
It seems reasonable that
n28M = 8

in some sense. Aldous [12] showed that S is almost surely a compact subset of
¢! and that there is convergence in the sense of weak convergence of random
compact subsets of ¢! equipped with the Hausdorff metric that we will discuss
in Section 4.1. Aldous studied S further in [13, 10]. In particular, he showed
that S is tree-like in various senses: for example, for any two points z,y € S
there is a unique path connecting z and y (that is, a unique homeomorphic
image of the unit interval), and this path has length ||z — y|:.

Because the uniform rooted tree with n labeled vertices is a conditioned
Galton—Watson branching process (for the Poisson offspring distribution), we
see from Theorem 2.8 that the Poisson line-breaking “tree” S is essentially the
same as the Brownian continuum random tree, that is, the random tree-like
object associated with the random excursion path 2B¢*. In fact, the random
tree p(Cy) has the same distribution as the subtree of the Brownian CRT
spanned by n i.i.d. uniform points on the unit interval.
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R-trees and 0-hyperbolic spaces

3.1 Geodesic and geodesically linear metric spaces

We follow closely the development in [39] in this section and leave some of the
more straightforward proofs to the reader.

Definition 3.1. A segment in a metric space (X,d) is the image of an isom-
etry a: [a,b] = X. The end points of the segment are aa) and a(b).

Definition 3.2. A metric space (X,d) is geodesic if for all x,y € X, there
is a segment in X with endpoints {x,y}, and (X,d) is geodesically linear if,
for all x,y € X, there is a unique segment in X with endpoints {x,y}.

Example 3.3. Euclidean space R? is geodesically linear. The closed annulus
{z € R? : 1 < |z| < 2} is not geodesic in the metric inherited from R?, but
it is geodesic in the metric defined by taking the infimum of the Euclidean
lengths of piecewise-linear paths between two points. The closed annulus is
not geodesically linear in this latter metric: for example, a pair of points of
the form z and —z are the endpoints of two segments — see Figure 3.1. The
open annulus {z € R? : 1 < |z| < 2} is not geodesic in the metric defined
by taking the infimum over all piecewise-linear paths between two points: for
example, there is no segment that has a pair of points of the form z and —z
as its endpoints.

Lemma 3.4. Consider a metric space (X,d). Let o be a segment in X with
endpoints x and z, and let T be a segment in X with endpoints y and z.

(a) Suppose that d(u,v) = d(u, z) +d(z,v) for allue o andve . Theno uT
is a segment with endpoints x and y.

(b) Suppose that o N7 = {z} and o U T is a segment. Then o UT has endpoints
x and y.
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Fig. 3.1. Two geodesics with the same endpoints in the intrinsic path length metric
on the annulus

Lemma 3.5. Let (X, d) be a geodesic metric space such that if two segments
of (X, d) intersect in a single point, which is an endpoint of both, then their
union is a segment. Then (X, d) is a geodesically linear metric space.

Proof. Let o, T be segments, both with endpoints u, v. Fix w € o, and define v’
to be the point of 7 such that d(u,w) = d(u,w") (so that d(v,w) = d(v,w")).
We have to show w = w’.

Let p be a segment with endpoints w,w’. Now o = o1 U 03, where o is a
segment with endpoints u,w, and o9 is a segment with endpoints w,v — see
Figure 3.2.

We claim that either o1 n p = {w} or g2 N p = {w}. This is so because
if € 01 npandy e osn p, then d(z,y) = d(z,w) + d(w,y), and either
d(w,y) = d(w,z) + d(z,y) or d(w,z) = d(w,y) + d(z,y), depending on how
x,y are situated in the segment p. It follows that either z = w or y = w,
establishing the claim.

Now, if o1 n p = {w}, then, by assumption, o1 U p is a segment, and by
Lemma 3.4(b) its endpoints are u,w’. Since w € o1 L p, d(u, w’) = d(u,w) +
d(w,w"), so w = w'. Similarly, if o3 N p = {w} then w = w’. O

Lemma 3.6. Consider a geodesically linear metric space (X, d).



3.2 0-hyperbolic spaces 23

Fig. 3.2. Construction in the proof of Lemma 3.5

(i) Given points x,y,z € X, write o for the segment with endpoints x,y.
Then z € o if and only if d(x,y) = d(x, z) + d(z,y).

(i) The intersection of two segments in X is also a segment if it is non-
empty.

(iti) Given x,y € X, there is a unique isometry o : [0,d(z,y)] — X such that
a(0) = z and a(d(z,y)) = y. Write [x,y] for the resulting segment. If
u, v € [z,y], then [u,v] C |x,y].

3.2 0-hyperbolic spaces

Definition 3.7. For x,y,v in a metric space (X,d), set

(0 9)0 = g (d(z,0) +d(y,v) ~ d(z.y)

- see Figure 3.3.

Remark 3.8. For z,y,v,t € X,

0<(z-y) < d(x,v) Ad(y,v)
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?V

Fig. 3.3. (z - y)» = d(w,v) in this tree

and
(@-y)e =d(t,v) + (@ y)o— (@ )y — (Y- ).

Definition 3.9. A metric space (X, d) is 0-hyperbolic with respect to v if for
all z,y,ze X
(Yo = (- 2)0 A(Y-2)w

- see Figure 3.4.
Lemma 3.10. If the metric space (X,d) is 0-hyperbolic with respect to some
point of X, then (X, d) is 0-hyperbolic with respect to all points of X.

Remark 3.11. In light of Lemma 3.10, we will refer to a metric space that is
0-hyperbolic with respect to one, and hence all, of its points as simply being
0-hyperbolic. Note that any subspace of a 0-hyperbolic metric space is also
0-hyperbolic.

Lemma 3.12. The metric space (X,d) is 0-hyperbolic if and only if
d(z,y) + d(z,t) < max{d(z, z) + d(y,t), d(y,z) + d(z,t)}

forall x,y,z,te X,
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-
N,
Z <
<
V *

Fig. 3.4. The 0-hyperbolicity condition holds for this tree. Here (z-y), and (y- 2)
are both given by the length of the dotted segment, and (z - z), is the length of the
dashed segment. Note that (z-y)v = (- 2)v A (Y- 2)v, with similar inequalities when
x,y, z are permuted.

Remark 3.13. The set of inequalities in Lemma 3.12 is usually called the four-
point condition — see Figure 3.5.

Ezample 3.14. Write C(R,) for the space of continuous functions from R
into R. For e € C(R.), put ¢(e) := inf{t > 0: e(t) = 0} and write

e(0) =0, ¢(e) < oo,
U:={eeCR;): e(t)>0for 0<t<((e),
and e(t) = 0 for t = ((e)

for the space of positive excursion paths. Set U’ := {e € U : {(e) = ¢}.
We associate each e € U’ with a compact metric space as follows. Define
an equivalence relation ~. on [0, £] by letting

Uy ~e u2, iff  e(ur) = inf e(u) = e(uz).
u€ur Auz,ur vus]

Consider the following semi-metric on [0, ¢]
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Fig. 3.5. The four-point condition holds on a tree: d(z,z) + d(y,t) < d(z,y) +
d(z,t) = d(z,t) + d(y, 2)

dr, (uy,ug) :=e(uy) — 2 inf e(u) + e(us),
ueluy Aug,ur vus]
that becomes a true metric on the quotient space T, := [O,€]|~ — see Fig-
ure 3.6. ‘

It is straightforward to check that the quotient map from [0, ¢] onto T is
continuous with respect to dr, . Thus, (T, dr,) is path-connected and compact
as the continuous image of a metric space with these properties. In particular,
(Te,dr,) is complete. It is not difficult to check that (T.,dr,) satisfies the
four-point condition, and, hence, is 0-hyperbolic.

3.3 R-trees

3.3.1 Definition, examples, and elementary properties

Definition 3.15. An R-tree is a metric space (X, d) with the following prop-
erties.

Aziom (a) The space (X,d) is geodesic.
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@ @
a b

Fig. 3.6. An excursion path on [0, 1] determines a distance between the points a
and b

Aziom (b) If two segments of (X,d) intersect in a single point, which is an
endpoint of both, then their union is a segment.

Ezample 3.16. Finite trees with edge lengths (sometimes called weighted
trees) are examples of R-trees. To be a little more precise, we don’t think
of such a tree as just being its finite set of vertices with a collection of dis-
tances between them, but regard the edges connecting the vertices as also
being part of the metric space.

Example 3.17. Take X to be the plane R? equipped with the metric

if 1 =Y,

|x2_y2|7
d((z1,22), (Y1,92)) = .
|21 —y1| + |x2] + |y2|, if 21 # y1.

That is, we think of the plane as being something like the skeleton of a
fish, in which the horizontal axis is the spine and vertical lines are the ribs.
In order to compute the distance between two points on different ribs, we use
the length of the path that goes from the first point to the spine, then along
the spine to the rib containing the second point, and then along that second
rib — see Figure 3.7.
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Fig. 3.7. The distance between two points of R? in the metric of Example 3.17 is
the (Euclidean) length of the dashed path

Ezample 3.18. Consider the collection 7 of bounded subsets of R that contain
their supremum. We can think of the elements of 7 as being arrayed in a
tree—like structure in the following way. Using genealogical terminology, write
h(B) := sup B for the real-valued generation to which B € 7 belongs and
Blt := (B n]—o0,t])u{t} € T for t < h(B) for the ancestor of B in generation
t. For A, B € T the generation of the most recent common ancestor of A and
B is 7(A,B) := sup{t < h(A) A h(B) : A|t = B|t}. That is, 7(A, B) is
the generation at which the lineages of A and B diverge. There is a natural
genealogical distance on 7 given by

D(A, B) :=[h(A) —7(A, B)] + [h(B) — (A, B)].

See Figure 3.8.

It is not difficult to show that the metric space (7, D) is a R-tree. For
example, the segment with end-points A and B is the set {A|t : 7(4, B) <
t<h(A)}u{B|t: T(A,B) <t < h(B)}.

The metric space (7, D) is essentially “the” real tree of [47, 137] (the
latter space has as its points the bounded subsets of R that contain their
infimum and the corresponding metric is such that the map from (7, D) into
this latter space given by A — —A is an isometry). With a slight abuse of
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Fig. 3.8. The set C is the most recent common ancestor of the sets A,B < R
thought of as points of “the” real tree of Example 3.18. The distance D(A, B) is
[s —u] + [t —wu].

nomenclature, we will refer here to (7, D) as the real tree. Note that (7, D)
is huge: for example, the removal of any point shatters 7 into uncountably
many connected components.

Ezample 3.19. We will see in Example 3.37 that the compact 0-hyperbolic
metric space (Te,dr,) of Example 3.14 that arises from an excursion path
e € U is a R-tree.

The following result is a consequence of Axioms (a) and (b) and Lemma 3.5.

Lemma 3.20. An R-tree is geodesically linear. Moreover, if (X, d) is a R-tree
and z,y,z € X then [z,y] n [z, z] = [z, w] for some unique w € X.

Remark 3.21. It follows from Lemma 3.4, Lemma 3.6 and Lemma 3.20 that

Axioms (a) and (b) together imply following condition that is stronger than

Axiom (b):

Axiom (b’) If (X,d) is a R-tree, z,y,z € X and [z,y] n [z, 2] = {z}, then
[z,y] U [z, 2] = [y, ]
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Lemma 3.22. Let x,y,z be points of a R-tree (X,d), and write w for the

unique point such that [z,y] n [z, 2] = [z, w].

(i) The points x,y,z,w and the segments connecting them form a Y shape,
with x,y,z at the tips of the Y and w at the center. More precisely,
[y, w] N [w, 2] = {w}, [y,2] = [y, w] v [w, 2] and [z,y] N [w, 2] = {w}.

(i) If ' € [z,y] and 2’ € [z, 2], then

Ay, ') = |d(z,y') — d(x, 2")|, if d(z,y’) A d(z, ') < d(z,w),
vzl = d(z,y') +d(z, 2') — 2d(z,w), otherwise.

(iti) The “centroid” w depends only on the set {x,y,z}, not on the order in
which the elements are written.

Proof. (i) Since y, w € [z,y], we have [y, w] € [z, y]. Similarly, [w, z] € [z, z].
So, if u € [y, w] N [w, 2], then w € [x,y] N [z, z] = [z, w]. Hence u € [z, w] n
[y, w] = {w} (because w € [z,y]). Thus, [y, w] N [w,z] = {w}, and [y, z] =
[y, w] U [w, z] by Axiom (b’).

Now, since w € [z,y], we have [z,y] = [z, w] U [w,y], so [z,y] N [w, 2] =
([z,w] N [w, z]) U ([y,w] N [w, z]), and both intersections are equal to {w}
(w € [z, 2]).

(i) i d(z,y") < d(x,w) theny’, 2’ € [z, 2], and so d(y/, 2') = |d(z,y")—d(z, 2')|.
Similarly, if d(x,z") < d(z,w), then ¥/, 2" € [z,y], and once again d(y’,z’) =
A, ) — d(z, )]

If d(z,y") > d(z,w) and d(z, 2') > d(z,w), then ¢’ € [y, w] and 2’ € [z, w].

Hence, by part (i),

d(y',2") = d(y',w) + d(w, 2)
= (d(z,y') — d(z,w)) + (d(z, 2') — d(z,w)
=d(z,y) + d(x,2) — 2d(x,w).
(iii) We have by part (i) that

Z/
")

[y, 2] n [y, 2] = [y, 2] 0 ([y, w] U [w, 2])
= [y, w] v ([y,z] n [w, 2])
= [y, w] U ([y,w] 0 [w, 2]) U ([w,z] A [w, 2])

vl
alll

Now [y,w] n [w,z] = {w} by part (1) and [w,z] n [w, 2] = {w} since
w € [z, z]. Hence, [y, 2] N [y, 2] = [y, w]. Similarly, [z, z] n [z,y] = [z, w], and
part (iii) follows. |

Definition 3.23. In the notation of Lemma 3.22, write Y (x,y,z) := w for
the centroid of {z,y, z}.

Remark 3.24. Note that we have
[x,y] N [’LU,Z] = [.7;72] N [w7y] = [y,Z] N [w,m] = {w}

Also, d(z,w) = (y+2)a, d(y, w) = (z- 2)y, and d(z,w) = (z-y).. In Figure 3.3,
Y(z,y,v) =w.
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Corollary 3.25. Consider a R-tree (X, d) and points xq,z1,..., 2, € X. The
segment [xo, zy,] is a subset of | Ji[zi—1,24].

Proof. If n =2, then, by Lemma 3.22,
[x0, z2] = [w0, Y (w0, x1,22)] U [Y(z0, 21, 22), 2] S [20, 1] U [T1, 22].

If n > 2, then [x0,2,] € [20, Zn—1] U [Tn—1,2n] by the case n = 2, and the
result follows by induction on n. (m]

Lemma 3.26. Consider a R-tree (X,d). Let « : [a,b] = X be a continuous
map. If x = a(a) and y = a(b), then [x,y] is a subset of the image of .

Proof. Let A denote the image of a. Since A is a closed subset of X (being
compact as the image of a compact interval by a continuous map), it is enough
to show that every point of [z, y] is within distance € of A, for all € > 0.

Given € > 0, the collection {a !(B(x,€¢/2)) : x € A} is an open covering
of the compact metric space [a,b], so there is a number § > 0 such that any
two points of [a, b] that are distance less than § apart belong to some common
set in the cover.

Choose a partition of [a,b],say a =ty < --- <t, =b,sothatfor 1 <i<n
we have t; — t;_1 < d, and, therefore, d(a(t;—1),a(t;)) < e. Then all points
of [a(t;—1),a(t;)] are at distance less than e from {a(t;_1),a(t;)} € A for
1 < i< n. Finally, [z,y] € U}, [a(ti—1), a(t;)], by Corollary 3.25. =

Definition 3.27. For points xg,x1, ..., T, in a R-tree (X, d), write [xg, x,]| =
[T, 1, ..., 2n] to mean that, if a : [0,d(xo,xn)] — X is the unique isom-
etry with a(0) = z9 and a(d(xo,zy,)) = zy, then x; = ala;), for some
ag,a1,a2,...,a, With0=ag < a1 <as <+ < ap = d(xo,Zn)-

Lemma 3.28. Consider a R-tree (X,d). If xg,...,xn, € X, x; # xiy1 for
L<i<n=2and [vig,] 0 [z;eia] = {2} for 1 <i <n—1, then
[l'Oawn] = [1’0,1’1, . ,.’En].

Proof. There is nothing to prove if n < 2. Suppose n = 3. We can assume
xg # x1 and xy # x3, otherwise there is again nothing to prove. Let w =
}/(CC()7 o, $3).

Now w € [zg, z2] and z1 € [zg, z2], 80 [z2, w] N [z2, z1] = [z2, v], where v
is either w or x1, depending on which is closer to zo. But [z2, w] N [x2,21] S
[z2, 23] N [22,21] = {22}, s0 v = 5.

Since x1 # x2, we conclude that w = x5. Hence [zg, 22] N [22, 23] = {x2},
which implies [xg, 23] = [®0, T2, 3] = [0, %1, T2, 3]

Now suppose n > 3. By induction,

[Svo,an] = [xo,l"h e 71'77,72,1'7171] = [ffo,%nfz,an]-
By the n = 3 case,
[an xn] = [330, Tn—2,Tn—1, xn] = [-T07 Tly--3Tn—2,Tn—1, xn]

as required. O
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3.3.2 R-trees are 0-hyperbolic

Lemma 3.29. A R-tree (X, d) is 0-hyperbolic.
Proof. Fix v e X. We have to show

v

(@ Yo = (T 2)0 A (y-2)
)

(T 2)y = (T Yo A (Y- 2)0
(Y-2)o = (@ Yo AT 2)0

for all z,y, z. Note that if this is so, then one of (z - y)y, (z - 2)s, (y - 2), is at
least as great as the other two, which are equal.

Let ¢ = Y(z,v,y), r = Y(y,v, 2), and s = Y(z,v,z). We have (z -y), =
d(v,q), (y-2)y = d(v,s), and (z - x), = d(v,r). We may assume without loss
of generality that

= A
= A

d(v,q) < d(v,r) < d(v,s),

in which case have to show that ¢ = r — see Figure 3.9.

q=r

Fig. 3.9. The configuration demonstrated in the proof of Lemma 3.29

Now r, s € [v, z] by definition, and d(v,r) < d(v, s), so that [v, s] = [v,r, s].
Also, by definition of s, [v,z] = [v, s, 2] = [v, 7, s, 2]. Hence r € [v, z]n[v,y] =
[v,q]. Since d(v,q) < d(v,r), we have ¢ = r, as required. O
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Remark 3.30. Because any subspace of a 0-hyperbolic space is still 0-
hyperbolic, we can’t expect that the converse to Lemma 3.29 holds. However,
we will see in Theorem 3.38 that any O-hyperbolic space is isometric to a
subspace of a R-tree.

3.3.3 Centroids in a 0-hyperbolic space
Definition 3.31. A set {a,b,c} c R is called an isosceles triple if
azbarc,b=chAna, andc>=a Ab.

(This means that at least two of a,b,c are equal, and not greater than the
third.)

Remark 3.32. The metric space (X, d) is 0-hyperbolic if and only if (z-y),, (x-
2)w, (Y + 2)y is an isosceles triple for all z,y, z,v € X.

Lemma 3.33. (i) If {a,b,c} is any triple then
{a AbbAccnal

s an 1sosceles triple.
(i) If {a,b,c} and {d,e, f} are isosceles triples then so is

{and,bnrecn f}.

Lemma 3.34. Consider a 0-hyperbolic metric space (X,d). Let o,7 be seg-
ments in X with endpoints v,x and v,y respectively. Write -y := (z - y),.

(i) If ' € o, then o' € T if and only if d(v,2') < z - y.
(ii) If w is the point of o at distance x -y from v, then o N T is a segment with
endpoints v and w.

Proof. If d(2’,v) > d(y,v) then 2’ ¢ 7, and d(z',v) > x - y, so we can assume
that d(z’,v) < d(y,v). Let ¥’ be the point in 7 such that d(v,z’) = d(v,y").
Define

a=z-y B=a'-y, y=x-2', d =a"-y.

Since 2’ € o and y € 7, we have v = d(v,2’') = d(v,y") = y - y'. Hence,
(o, B,7) and (o, 3,7) are isosceles triples. We have to show that «’ € 7 if and
only if a = v. The two cases a < v and « > « are illustrated in Figure 3.10
and Figure 3.11 respectively.

Now,

B=a y<dv,a)=a-2"=~.

Also,
1 1
d=dwa*§ﬂfwﬁ=v—§ﬂfwﬁ<v

and
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Fig. 3.10. First case of the construction in the proof of Lemma 3.34. Here ~ is
either of the two equal dashed lengths and o = 3 = o/ is the dotted length. As
claimed, a < v and x'¢r.

rerer=yedd,y)=0ed =1.

Moreover, o = « if and only if 8 = ~, because (¢, 3,7) is an isosceles
triple and o/, 3 < ~. Since (a, 3,7) is also an isosceles triple, the equality
B = is equivalent to the inequality « > 7. This proves part (i). Part (ii) of
the lemma follows immediately. m]

Lemma 3.35. Consider a 0-hyperbolic metric space (X,d). Let o,7 be seg-
ments in X with endpoints v,z and v,y respectively. Set x -y = (x - y)y.
Write w for the point of o at distance x -y from v (so that w is an endpoint
of o n1 by Lemma 3.34). Consider two points ' € o, y' € 7, and suppose
d(z',v) = x-y and d(y',v) =z -y. Then

d(a’,y") = d(@’,w) + d(y', w).
Proof. The conclusion is clear if d(z/,v) = -y (when 2’ = w) or d(y',v) = z-y
(when y' = w), so we assume that d(a’,v) > x -y and d(y',v) > z-y. As in

the proof of Lemma 3.34, we put

A / / A A
a=z-y, =2y y=x-2', =2y,
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= = -

Fig. 3.11. Second case of the construction in the proof of Lemma 3.34. Here v =
B = o is the dashed length and « is the dotted length. As claimed, o > 7 and
xer.

and we also put v/ = y -y, so that v = d(v,2’) and 7 = d(v,y’). Thus, a < 7.
Hence, o = § since (o, 8,7) is an isosceles triple. Also, a < v/, so that 8 < ~'.
Hence, a = o = 3 because (o, 3,7) is an isosceles triple.

By definition of o/,

QU
—~
&\
Qd\
Il
QU
—~
<
&
+
S

v, y/) -2/

Since w € o N 7, a = d(v,w) < d(v,z),d(v,y') and 0,7 are segments, it
follows that
d(z',w) = d(v,2') — a

and
d(y/a w) = d(’l}, yl) —Q,

and the lemma follows on adding these equations. O
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3.3.4 An alternative characterization of R-trees

Lemma 3.36. Consider a 0-hyperbolic metric space (X, d). Suppose that there
s a point v € X such that for every x € X there is a segment with endpoints
v,z. Then (X,d) is a R-tree.

Proof. Take x,y € X and let 0,7 be segments with endpoints v,z and v,y
respectively.

By Lemma 3.34, if w is the point of o n 7 at distance (z - y), from v, then
o is the union (¢ N 7) U o1, where

oy1:={ueoc :dv,u) = (x-y)}
is a segment with endpoints w, z. Similarly, 7 is the union (¢ n7) U 71, where
Ti={uer :dv,u) = (x-y)}

is a segment with endpoints w, y.

By Lemma 3.35 and Lemma 3.4, o1 U 71 is a segment with endpoints z, y.
Thus, (X, d) is geodesic.

Note that by Lemma 3.34, 0 n 7 is a segment with endpoints v, w. Also,
by Lemma 3.34, if 0 n 7 = {w} then (z-y), = 0 and 01 = 0, 71 = 7. Hence,
o u T is a segment. Now, by Lemma 3.10, we may replace v in this argument
by any other point of X. Hence, (X, d) satisfies the axioms for a R-tree. o

FEzample 3.37. We noted in Example 3.14 that the compact metric space
(T.,dr,) that arises from an excursion path e € U is 0-hyperbolic. We can
use Lemma 3.36 to show that (7., dr,) is a R-tree. Suppose that e € U*. Take
x € T, and write ¢ for a point in [0, ¢] such that = is the image of ¢ under
the quotient map from [0, £] onto T.. Write v € T, for the image of 0 € [0, ]
under the quotient map from [0, £] onto T.. Note that v is also the image of
L€ [0,£]. For h e [0,e(t)], set Ap, :=sup{s € [0,t] : e(s) = h}. Then the image
of the set {Ay : h € [0,e(t)]} € [0,¢] under the quotient map is a segment in
T, that has endpoints v and x.

3.3.5 Embedding 0-hyperbolic spaces in R-trees

Theorem 3.38. Let (X, d) be a 0-hyperbolic metric space. There exists a R-
tree (X', d") and an isometry ¢ : X — X'.

Proof. Fixve X. Write x -y := (z - y), for x,y € X. Let
Y={(z,m):ze X,;meRand 0 <m <d(v,z)}.
Define, for (z,m), (y,n) €Y,

(z,m) ~ (y,n) if and only if x - y = m = n.
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This is an equivalence relation on Y. Let X’ =Y/ ~, and let {x, m) denote
the equivalence class of (z,m). We define the metric by

d'({z,m),{y,ny) =m+n—2[mAnna (z-y)]

The construction is illustrated in Figure 3.12.

¢ (x,m) ~ (y,m)

Fig. 3.12. The embedding of Theorem 3.38. Solid lines represent points that are in
X, while dashed lines represent points that are added to form X'.

It follows by assumption that d’ is well defined. Note that
d'(Cx,ymy, {x,mp) = |m — n|
and {(z,0) = {v,0) for all x € X, so d'({x,m),{v,0)) = m. Clearly d' is
symmetric, and it is easy to see that d'({z,m),{y,n)) = 0 if and only if
{x,m) =y,ny. Also, in X',
Kz, mp - {ysm))woy =m An A (z-y).
If {z,m),{y,n)y and {z, p)y are three points of X’ then

{m An,nAp,pAm}
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is an isosceles triple by Lemma 3.33(1). Hence, by Lemma 3.33(2), so is {m A
nAa(z-y),nApA(y-z),pAmna(z-x)}. It follows that (X', d’) is a 0-hyperbolic
metric space.

If (z,m) € X', then the mapping a : [0, m] — X’ given by a(n) = {x,n) is
an isometry, so the image of « is a segment with endpoints (v, 0) and {x, m). It
now follows from Lemma 3.36 that (X’,d’) is a R-tree. Further, the mapping
¢ : X — X’ defined by ¢(x) = {(x,d(v,x)) is easily seen to be an isometry. o

3.3.6 Yet another characterization of R-trees

Lemma 3.39. Let (X,d) be a R-tree. Fizve X.

(i) For z,y € X\{v}, [v,z] n [v,y] # {v} if and only if x,y are in the same
path component of X\{v}.

(i) The space X\{v} is locally path connected, the components of X\{v} coin-
cide with its path components, and they are open sets in X.

Proof. (i) Suppose that [v, ] n[v,y] # {v}. It can’t be that v € [z, y], because
that would imply [x,v] N [v,y] = {v}. Thus, [z,y] € X\{v} and z,y are in
the same path component of X\{v}. Conversely, if o : [a,b] = X\{v} is a
continuous map, with z = a(a), y = a(b), then [a,b] is a subset of the image
of @ by Lemma 3.26, so v ¢ [z,y], and [v,z] n [v,y] # {v} by Axiom (b’) for
a R-tree.

(ii) For € X\{v}, the set U := {y € X : d(x,y) < d(z,v)} is an open set
in X, U € X\{v}, 2 € U, and U is path connected. For if y,z € U, then
[z,y]u[z,2] € U, and so [y, z] € U by Corollary 3.25. Thus, X\{v} is locally
path connected. It follows that the path components of X\{v} are both open
and closed, and (ii) follows easily. O

Theorem 3.40. A metric space (X, d) is a R-tree if and only if it is connected
and 0-hyperbolic.

Proof. An R-tree is geodesic, so it is path connected. Hence, it is connected.
Therefore, it is 0-hyperbolic by Lemma 3.29.

Conversely, assume that a metric space (X,d) is connected and O0-
hyperbolic. By Theorem 3.38 there is an embedding of (X,d) in a R-tree
(X',d"). Let x,y € X, suppose v € X"\ X and v € [z,y]. Then [v,z] n [v,y] =
{v} and so by Lemma 3.39, xz,y are in different components of X\{v}.

Let C be the component of X\{v} containing z. By Lemma 3.39, C is open
and closed, so X nC is open and closed in X. Since x € X nC, y ¢ X nC, this
contradicts the connectedness of X. Thus, [z,y] € X and (X, d) is geodesic.
It follows that (X, d) is a R-tree by Lemma 3.36. |

Ezample 3.41. Let P denote the collection of partitions of the positive integers
N. There is a natural partial order < on P defined by P < @ if every block
of @ is a subset of some block of P (that is, the blocks of P are unions of
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blocks of Q). Thus, the partition {{1},{2},...} consisting of singletons is the
unique largest element of P, while the partition {{1,2,...}} consisting of a
single block is the unique smallest element. Consider a function IT : R, +— P
that is non-increasing in this partial order. Suppose that I7(0) = {{1}, {2}, ...}
and I1(t) = {{1,2,...}} for all ¢ sufficiently large. Suppose also that if IT is
right-continuous in the sense that if ¢ and j don’t belong to the same block of
I1(t) for some t € R, then they don’t belong to the same block of IT(u) for
u > t sufficiently close to t.

Let T denote the set consisting of points of the form (¢, B), where t € R
and B € I1(t). Given two point (s, A), (t,B) € T, set

m((s, A), (t, B))
;= inf{u > s At: A and B subsets of a common block of IT(u)},

and put
d((sv A)v (t7B)) = [m((sa A)v (th)) - 5] + [m(('S?A)v (tv B)) - t]'

It is not difficult to check that d is a metric that satisfies the four point
condition and that the space T is connected. Hence, (T,d) is a R-tree by
Theorem 3.40. The analogue of this construction with N replaced by {1, 2, 3,4}
is shown in Figure 3.13.

Moreover, if we let T denote the completion of T with respect to the metric
d, then T is also a R-tree. It is straightforward to check that T is compact if
and only if IT(¢) has finitely many blocks for all ¢ > 0.

Write § for the restriction of d to the positive integers N, so that

0(3,7) = 2inf{t > 0 : ¢ and j belong to the same block of II(t)}.

The completion S of N with respect to ¢ is isometric to the closure of N in T,
and S is compact if and only if I7(¢) has finitely many blocks for all ¢ > 0. Note
that 0 is an ultrametric , that is, é(x,y) < d(z, z) v §(z,y) for x,y, z € S. This
implies that at least two of the distances are equal and are no smaller than
the third. Hence, all triangles are isosceles. When S is compact, the open balls
for the metric § coincide with the closed balls and are obtained by taking the
closure of the blocks of II(t) for t > 0. In particular, S is totally disconnected

The correspondence between coalescing partitions, tree structures and ul-
trametrics is a familiar idea in the physics literature — see, for example, [109].

3.4 R—trees without leaves

3.4.1 Ends

Definition 3.42. An R-tree without leaves is a R-trees (T,d) that satisfies
the following extra axioms.
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{112131{4  {1.2}.{3}1{4}} {{1.21.{3.4} {{1.2,3.4}}

Fig. 3.13. The construction of a R-tree from a non-increasing function taking values
in the partitions of {1,2,3,4}.

Aziom (c) The metric space (T,d) is complete.
Aziom (d) For each x € T there is at least one isometric embedding 0 : R — T
with x € (R).

Ezample 3.43. “The” real tree (7, D) of Example 3.18 satisfies Axioms (c)
and (d).

We will suppose in this section that we are always working with a R-tree
(T, d) that is without leaves.

Definition 3.44. Anend of T is an equivalence class of isometric embeddings
from Ry into T, where we regard two such embeddings ¢ and Y as being
equivalent if there exist « € R and 5 € Ry such that o+ 5 = 0 and ¢(t) =
Y(t + «) for allt = 3. Write E for the set of ends of T.

By Axiom (d), E has at least 2 points. Fix a distinguished element { of E.
For each x € T there is a unique isometric embedding k, : R; — T such that
kz(0) = z and kK, is a representative of the equivalence class of f. Similarly,
for each £ € E := E\{f} there is at least one isometric embedding § : R — T'
such that ¢ — 6(t), t = 0, is a representative of the equivalence class of &
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and ¢t — 0(—t), t = 0, is a representative of the equivalence class of . Denote
the collection of all such embeddings by O¢. If 6,6’ € O, then there exists
v € R such that §(t) = '(t + ~) for all ¢t € R. Thus, it is possible to select an
embedding 0¢ € O¢ for each £ € £, in such a way that for any pair {,{ € E,
there exists to (depending on &,() such that 0¢(t) = 0¢(¢) for all t <t (and
Oe(Jto, o) N 6:(Jto, ©[) = &). Extend 0 to R* := R u {+oo} by setting
O¢(—0) := T and ¢ (+o) := &.

Ezample 3.45. The ends of the real tree (7,D) of Example 3.18 can be
identified with the collection consisting of the empty set and the elements
of £, where £, consists of subsets B — R such that —o0 < inf B and
sup B = +o0. If we choose T to be the empty set so that £, plays the
role of £, then we can define the isometric embedding 84 for A € £, by
04(t) := (An] — 0, t]) U {t} = Alt, in the notation of Example 3.18.

The map (¢,£) — 6¢(t) from R x E (resp. R* x E, ) into T (resp. T U E)
is surjective. Moreover, if n € T' U E is in 0¢(R*) n 6.(R*) for {,{ € Ey,
then 95_1(77) = 951(77). Denote this common value by h(7), the height of 7.
In genealogical terminology, we think of h(n) as the generation to which 7
belongs. In particular, h(t) := —oo and h(€) = +oo for £ € E,. For the real
tree (7, D) of Example 3.18 with corresponding isometric embeddings defined
as above, h(B) is just sup B, with the usual convention that sup ¢ := —o0 (in
accord with the notation of Example 3.18).

Define a partial order < on T u E by declaring that n < p if there exists
—o0 £ s £t < +w and £ € E; such that = 0¢(s) and p = 6¢(¢). In
genealogical terminology, n < p corresponds to 7 being an ancestor of p (note
that individuals are their own ancestors). In particular, t is the unique point
that is an ancestor of everybody, while points of E, are characterized by being
only ancestors of themselves. For the real tree (7, D) of Example 3.18, A < B
if and only if A = (Bn] — oo,sup A]) u {sup A}. In particular, this partial
order is not the usual inclusion partial order (for example, the singleton {0}
is an ancestor of the singleton {1}).

Each pair n,p € T u E has a well-defined greatest common lower bound
1 A p in this partial order, with n A pe T unlessn=pe E,, n=Tor p=1.
In genealogical terminology, 7 A p is the most recent common ancestor of n
and p. For x,y € T we have

d(z,y) = h(z) + h(y) — 2h(z A y)
= [h(x) = h(z A y)] + [A(y) — h(z A y)].
<

Therefore, h(z) = d(z,y) — h(y) + 2h(z A y)
h(y) < d(z,y) + h(z), so that

|h(z) = h(y)| < d(z,y), (3.2)

(3.1)

d(z,y) + h(y) and, similarly,

with equality if ,y € T are comparable in the partial order (that is, if z <y
ory < x).
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If x,2" € T are such that h(z A y) = h(z' Ay) for all y € T, then, by (3.1),
d(z,2") = [h(z) —h(x Ax")]+[h(z") —h(x Ax")] = [h(x) — h(z A 2)] +[h(z") —
h(z" A2')] =0, so that x = 2. Slight elaborations of this argument show that
if n,n € T U E are such that h(n A y) = h(n’ A y) for all y in some dense
subset of T, then n = 7'

For z,2’, 2 € T we have that if h(x A 2) < h(z' A 2),then z A2’ =z A 2
and a similar conclusion holds with the roles of z and z’ reversed; whereas if
hx Az)=h(x' Az),thenz A z=2a" Az<z Az Using (3.1) and (3.2) and
checking the various cases we find that

|h(z A 2) —h(z" A 2)| <d(x A z,2" A 2) <d(z,2). (3.3)

For n € Tu E and t € R* with ¢t < h(n), let n|t denote the unique
peT v E with p <nand h(p) = t. Equivalently, if = 6¢(u) for some u € R*
and ¢ € B, then n|t = 0¢(¢) for t < u. For the real tree of Example 3.18, this
definition coincides with the one given in Example 3.18.

The metric space (E,d), where

§(8,¢) i=271En0),

is complete. Moreover, the metric 4 is actually an ultrametric ; that is, §(¢, () <
5(5777) Vv 5(777 <) for all 57 Ca ne E+.

3.4.2 The ends compactification

Suppose in this subsection that the metric space (E, d) is separable. For t € R
consider the set

Ti:={xeT:h(x)=t}={&t:{€ Ey} (3.4)

of points in T that have height ¢. For each x € T; the set {( € E; : (|t = =}
is a ball in F of diameter at most 27¢ and two such balls are disjoint. Thus,
the separability of E. is equivalent to each of the sets T} being countable. In
particular, separability of E/, implies that T is also separable, with countable
dense set {¢|t: € By, t € Q}, say.

We can, via a standard Stone-Cech-like procedure, embed T U FE in a
compact metric space in such a way that for each y € T U F the map x —
h(z A y) has a continuous extension to the compactification (as an extended
real-valued function).

More specifically, let S be a countable dense subset of T'. Let 7 be a strictly
increasing, continuous function that maps R onto ]0,1[. Define an injective
map I7 from T into the compact, metrizable space [0, 1]° by II(z) := (7(h(x A
Y)))yes. Identify T with IT(T) and write T for the closure of T(= II(T))
in [0,1]7. In other words, a sequence {Z,}n,en < T converges to a point
in T if h(z, A y) converges (possibly to —oo) for all y € S, and two such
sequences {Z,}neny and {2} }nen converge to the same point if and only if
lim,, h(z, Ay) =lim, h(z], Ay) for all y € S.
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We can identify distinct points in T'u E with distinct points in 7. If
{Zp}neny € T and € € E. are such that for all ¢ € R we have £|t < z,, for all
sufficiently large n, then lim, h(z, Ay) = h({ A y) for all y € S. We leave the
identification of { to the reader.

In fact, we have T = T U E. To see this, suppose that {x,},eny < T
converges to &, € T. Put hy, := sup,eg limy, h(x, Ay). Assume for the moment
that h.. € R. We will show that . € T with h(z,) = h,.. For all k € N we
can find yi € S such that

1 1
he — = <limh(x, Ayr) < h(yg) < he + —.
k n k

Observe that
d(yk, ye) < limsup (d(yk,xn AYk) + d(Tn A Yr, Tn A Ye)
+d(zn Ay, ye))
— limsup([h(ye) = h(@n Ayl + a@a A gi) = B A ye)l
+ [(ye) = hlan A 0)])
k7 A
Therefore, (yx)ken is a d-Cauchy sequence and, by Axiom (c), this sequence
converges to y,, € T. Moreover, by (3.2) and (3.3), lim,, h(zp Ays) = h(ys) =
he .

We claim that yo. = z; that is, lim, h(z, A 2) = h(y, A 2) for all z € S.
To see this, fix z € T and € > 0. If n is sufficiently large, then

2
<7
k

hxn A 2) < h(ye) +€ (3.5)

and
h(yee) — € < h(@n A Yor) < R(Yor ) (3.6)

If h(y. A 2z) < h(y+) — €, then (3.6) implies that y. A z = x, A z. On the
other hand, if h(y. A 2) = h(ys) — €, then (3.6) implies that

h(x, A 2) = h(ye) — €, (3.7)
and so, by (3.5) and (3.6),

|h(yor A 2) = h(@n, 2)]
< [2(ye) = (M(yz) — )] v [(R(y=) + €) = (h(y=) — €)] (3.8)
= 2e.

We leave the analogous arguments for h.,. = +00 (in which case z., € E)
and hy, = —oo (in which case z.. = 1) to the reader.
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We have just seen that the construction of T does not depend on T' (more
precisely, any two such compactifications are homeomorphic). Moreover, a
sequence {Tplney € T U E converges to a limit in 7' v E if and only if
lim,, h(x, Ay) exists for all y € T', and two convergent sequences {z,, }nen and
{a! }nen converge to the same limit if and only if lim,, h(z, Ay) = lim, h(z!, A
y) for all y € T.

3.4.3 Examples of R-trees without leaves

Fix a prime number p and constants r_,r; > 1. Let Q denote the rational
numbers. Define an equivalence relation ~ on Q x R as follows. Given a,b € Q
with a # b write a — b = p*(*?) (m/n) for some v(a,b), m,n € Z with m and n
not divisible by p. For v(a,b) = 0 put w(a,b) = Z:i%’b) %, and for v(a,b) <0
put w(a,b) :==1— Z;’éa’b) rt . Set w(a,a) := +00. Given (a, s), (b,t) € Q x R
declare that (a,s) ~ (b,t) if and only if s =t < w(a,b). Note that

v(a,c) = v(a,b) A v(b,c) (3.9)

so that
w(a, c) = w(a,b) A w(b,c) (3.10)

and ~ is certainly transitive (reflexivity and symmetry are obvious).

Let T denote the collection of equivalence classes for this equivalence re-
lation. Define a partial order < on T as follows. Suppose that x,y € T are
equivalence classes with representatives (a, s) and (b, t). Say that x < y if and
only if s < w(a,b) A t. It follows from (3.10) that < is indeed a partial order.
A pair z,y € T with representatives (a,s) and (b,t) has a unique greatest
common lower bound = A y in this order given by the equivalence class of
(a,s At Aw(a,b)), which is also the equivalence class of (b, s A t A w(a,b)).

For x € T with representative (a, s), put h(z) := s. Define a metric d on T
by setting d(z,y) := h(z) +h(y)—2h(z Ay). We leave it to the reader to check
that (7, d) is a R—tree satisfying Axioms (a)—(d), and that the definitions of
x <y, x Ay and h(x) fit into the general framework of Section 3.4, with
the set F, corresponding to Q x R-valued paths s — (a(s),s) such that
s < w(a(s),alt)) A t.

Note that there is a natural Abelian group structure on F,: if £ and (
correspond to paths s — (a(s),s) and s — (b(s),s), then define £ + ¢ to
correspond to the path s — (a(s) +b(s), s). We mention in passing that there
is a bi—continuous group isomorphism between F, and the additive group
of the p-adic integers Q,. (This map is, however, not an isometry if E is
equipped with the § metric and Q, is equipped with the usual p-adic metric.)
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Hausdorff and Gromov—Hausdorff distance

4.1 Hausdorff distance

We follow the presentation in [37] in this section and omit some of the more
elementary proofs.

Definition 4.1. Denote by U,.(S) the r-neighborhood of a set S in a metric
space (X, d). That is, U.(S) := {x € X : d(z,S) < r}, where d(z,S) :=
inf{d(x,y) : y € S}. Equivalently, U,.(S) := |J,cq Br(x), where B,.(x) is the

open ball of radius r centered at x.

Definition 4.2. Let A and B be subsets of a metric space (X, d). The Haus-
dorff distance between A and B, denoted by dg(A, B), is defined by

dp(A,B) :=inf{r >0: Ac U,.(B) and B c U.(A)}.

See Figure 4.1

Proposition 4.3. Let (X,d) be a metric space. Then

(i) dpy is a semi-metric on the set of all subsets of X.
(ii) dg(A, A) =0 for any A S X, where A denotes the closure of A.
(iii) If A and B are closed subsets of X and dg(A,B) =0, then A= B.

Let 9(X) denote the set of non-empty closed subsets of X equipped with
Hausdorff distance. Proposition 4.3 says that (X)) is a metric space (pro-
vided we allow the metric to take the value +c0).

Proposition 4.4. If the metric space (X, d) is complete, then the metric space
(M(X),dy) is also complete.

Proof. Consider a Cauchy sequence {S, }nen in M(X). Let S denote the set of
points x € X such that any neighborhood of z intersects with infinitely many

of the S,,. That is, S := ﬂ:;zl U;f:m Sp- By definition of the Hausdorff metric,
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Fig. 4.1. The Hausdorff distance between the sets A and B is d

we can find a sequence {yy, }nen such that y,, € S, and d(ym, yn) < dg(Sm, Sn)
for all m,n € N. Since X is complete, lim,_, y, = y exists. Note that y € S
and so S is non-empty. By definition, S is closed, and so S € IM(X).
We will show that
S, — S.

Fix € > 0 and let ng be such that dg(S,, Sm) < € for all m,n = ng. It suffices
to show that dg (S, S,) < 2¢ for any n > ng, and this is equivalent to showing
that:

For z € S and n = ng, d(z, S,) < 2e. (4.1)

For x € S, and n = nog, d(z,S) < 2e. (4.2)

To establish (4.1), note first that there exists an m > ng such that B.(z) n
Sm # . In other words, there is a point y € Sy, such that d(z,y) < e. Since
di(Sn, Sm) < €, we also have d(y, Sp) < ¢, and, therefore, d(z, S,) < 2e.

Turning to (4.2), let ny = n and for every integer k > 1 choose an index
ni, such that ny > ngy1 and dg(S,, S,) < €/2% for all p,q > ny. Define a
sequence of points {zy}ren, where zy € Sy, , as follows: let 21 = z, and x4
be a point of Sy, ., such that d(zg,zr41) < ¢/2" for all k. Such a point can
be found because dg (Sn,, Sny,,) < €/2F.
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Since Yoy d(Tr, Tre1) < 2€ < 00, the sequence {xj}ren is a Cauchy se-
quence. Hence, it converges to a point y € X by the assumed completeness of
X. Then,

d(z,y) = lim d(z,z,) < Z d(zg, Tr1) < 2€.
nee keN

Because y € S by construction, it follows that d(z,S) < 2e. O

Theorem 4.5. If the metric space (X,d) is compact, then the metric space
(M(X),dy) is also compact.

Proof. By Proposition 4.4, M(X) is complete. Therefore, it suffices to prove
that 9(X) is totally bounded. Let S be a finite e-net in X. We will show that
the set of all non-empty subsets of S is an e-net in MM(X).

Let A € M(X). Consider

Sa={xeS:dz,A) <e}.

Since S is an e-net in X, for every y € A there exists an x € S such that
d(x,y) < e. Because d(z, A) < d(z,y) < €, this point = belongs to S4. There-
fore, d(y,Sa) < eforall y € A.

Since d(z, A) < € for any x € S4, it follows that dg (A, Sa) < €. Since A is
arbitrary, this proves that the set of subsets of S is an e-net in 9(X). =

4.2 Gromov—Hausdorff distance

In this section we follow the development in [37]. Similar treatments may be
found in [80, 34].

4.2.1 Definition and elementary properties

Definition 4.6. Let X and Y be metric spaces. The Gromov—Hausdorff dis-
tance between them, denoted by dgu(X,Y), is the infimum of the Hausdorff
distances dg (X', Y") over all metric spaces Z and subspaces X' and Y’ of Z
that are isometric to X andY, respectively — see Figure 4.2.

Remark 4.7. It is not necessary to consider all possible embedding spaces
Z. The Gromov-Hausdorff distance between two metric spaces (X, dx) and
(Y,dy) is the infimum of those r > 0 such that there exists a metric d on the
disjoint union X | |Y such that the restrictions of d to X and Y coincide with
dx and dy and dg(X,Y) < r in the space (X | |Y,d).

Proposition 4.8. The distance dgy satisfies the triangle inequality.

Proof. Given dxy on X | |Y and dyz on Y | | Z, define dxz on X | | Z by

dxz(v,2) = ;gf/{dXY(Ivy) +dyz(y,2)}.
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Fig. 4.2. Computation of the Gromov—Hausdorff distance between metric spaces
X and Y by embedding isometric copies X’ and Y’ into Z

4.2.2 Correspondences and e-isometries

The definition of the Gromov—Hausdorff distance dgu(X,Y') is somewhat un-
wieldy, as it involves an infimum over metric spaces Z and isometric embed-
dings of X and Y in Z. Remark 4.7 shows that it is enough to take Z to be the
disjoint union of X and Y, but this still leaves the problem of finding optimal
metrics on the disjoint union that extend the metrics on X and Y. In this
subsection we will give a more effective formulation of the Gromov—Hausdorff
distance, as well as convenient upper and lower bounds on the distance.

Definition 4.9. Let X and Y be two sets. A correspondence between X and
Y is a set R X xY such that for every x € X there exists at least oney €Y
for which (z,y) € R, and similarly for every y € Y there exists an x € X for
which (x,y) € R — see Figure 4.3.

Definition 4.10. Let R be a correspondence between metric spaces X and 'Y .
The distortion of R is defined to be

dis?R := sup{|dx (z,2") — dy (v,¥')] : (z,¥), (2", y') € R},

where dx and dy are the metrics of X and Y respectively.
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Fig. 4.3. A correspondence between two spaces

F'heorem 4.11. For any two metric spaces X and Y 5
d m 1S
GH ) 2

where the infimum is taken over all correspondences R between X and Y .

Proof. We first show for any r > dgu(X,Y") that there exists a correspondence
R with dis?R < 2r. Indeed, since dgu(X,Y) < r, we may assume that X and
Y are subspaces of some metric space Z and dy(X,Y) < r in Z. Define

R={(z,y):re X,yeY,d(z,y) <r}

where d is the metric of Z.

That R is a correspondence follows from the fact that diy(X,Y) < r. The
estimate disR < 2r follows from the triangle inequality: if (z,y) € R and
(', y") € R, then

|ld(z,2") — d(y,y")| < d(z,y) + d(a',y") < 2r.

Conversely, we show that dgu(X,Y) < %disi)‘i for any correspondence ‘R.
Let disR = 2r. To avoid confusion, we use the notation dx and dy for the
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metrics of X, Y, respectively. It suffices to show that there is a metric d on the
disjoint union X | |Y such that d|xxx = dx, dlyxy =dy, and dg(X,Y) <r
in (X|]Y,d).

Given z € X and y € Y, define

d(z,y) = inf{dx(z,2") +r +dy (v, y) : (2/,y) € R}

(the distances within X and Y are already defined by dx and dy). Verifying
the triangle inequality for d and the fact that dg (X, Y") < r is straightforward.
]

Definition 4.12. Consider two metric spaces X and Y. For € > 0, a map
f:X =Y is called an e-isometry if disf < € and f(X) is an e-net in Y.
(Here disf := sup, yex |dx (z,y) —dy (f(z), f(y))|.)

Corollary 4.13. Consider two metric spaces X and Y. Fiz € > 0.

(i) If deu(X,Y) < €, then there exists a 2e-isometry from X to Y.
(1) If there exists an e-isometry from X to Y, then dan(X,Y) < 2e.

Proof. (i) Let ;& be a correspondence between X and Y with dis?® < 2e. For
every x € X, choose f(x) € Y such that (z, f(z)) € . This defines a map
f: X - Y. Obviously disf < dis?R < 2e. We will show that f(X) is an e-net
inY.

For ay € Y, consider an z € X such that (z,y) € R. Since both y and f(z)
are in correspondence with x, it follows that d(y, f(z)) < d(z,z) + disR < 2e.
Hence, d(y, f(X)) < 2e.

(ii) Let f be an e-isometry. Define R < X x Y by

R ={(z,y) e X xY :dy, f(x)) < €}.

Then R is a correspondence because f(X) is an e-net in Y. If (z,y) € R and
(z',y") € R, then

|d(y, ") — d(z, 2")| < |d(f(x), f(«")) = d(z, 2")| + d(y, f(2)) + d(/, f(2))

<
<disf +€e+e < 3e

Hence, disfR < 3¢, and Theorem 4.11 implies

3
den(X,Y) < 7€ < 2€.

4.2.3 Gromov—Hausdorff distance for compact spaces

Theorem 4.14. The Gromov—Hausdorff distance is a metric on the space of
isometry classes of compact metric spaces.
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Proof. We already know that dgm is a semi-metric, so only that show
deu(X,Y) = 0 implies that X and Y are isometric.

Let X and Y be two compact spaces such that dgu(X,Y) = 0. By Corol-
lary 4.13, there exists a sequence of maps f,, : X — Y such that disf,, — 0.

Fix a countable dense set S — X. Using Cantor’s diagonal procedure,
choose a subsequence {f,,} of {f,} such that for every x € S the sequence
{fn,(x)} converges in Y. By renumbering, we may assume that this holds
for {f,} itself. Define a map f : S — Y as the limit of the f,, namely, set
f(z) =lim f,,(x) for every z € S.

Because

|d(fn(2), fn(y)) — d(z,y)| < disfn, =0,

we have

d(f(x), f(y)) = limd(fu(2), fn(y)) = d(z,y) forallz,yeS.

In other words, f is a distance-preserving map from S to Y. Then f can be
extended to a distance-preserving map from X to Y. Now interchange the
roles of X and Y. (m]

Proposition 4.15. Consider compact metric spaces X and {X,, }nen. The se-
quence { X, }nen converges to X in the Gromov—Hausdorff distance if and only
if for every € > 0 there exists a finite e-net S in X and an e-net S, in each
X, such that Sy, converges to S in the Gromov—Hausdorff distance.

Moreover these e-nets can be chosen so that, for all sufficiently large n, Sy,
has the same cardinality as S.

Definition 4.16. A collection X of compact metric spaces is uniformly totally
bounded if for every e > 0 there exists a natural number N = N (e) such that
every X € X contains an e-net consisting of no more than N points.

Remark 4.17. Note that if the collection X of compact metric spaces is uni-
formly totally bounded, then there is a constant D such that diam(X) < D
for all X € X.

Theorem 4.18. A uniformly totally bounded class X of compact metric spaces
is pre-compact in the Gromov—Hausdorff topology.

Proof. Let N(e) be as in Definition 4.16 and D be as in Remark 4.17. Define
Ny = N(1) and Ny, = N1+ N(1/k) for all k = 2. Let {X,, }nen be a sequence
of metric spaces from X.

In every space X,, consider a union of (1/k)-nets for all k& € N. This is
a countable dense collection S,, = {z;n}ien < X,, such that for every k the
first Ny points of S,, form a (1/k)-net in X,,. The distances dx, (zin,Z;n)
do not exceed D, i.e. belong to a compact interval. Therefore, using the
Cantor diagonal procedure, we can extract a subsequence of {X,,} in which
{dx, (%in,Tjn)}nen converge for all ¢, j. To simplify the notation, we assume
that these sequences converge without passing to a subsequence.
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We will construct the limit space X for {X,,}nen as follows. First, pick an
abstract countable set X = {z;};en and define a semi-metric d on X by

d(l‘i, J)j) = nll_I)I; an (Z‘n,i, xn,j)-
A quotient construction gives us a metric space X /d. We will denote by Z;
the point of X/d obtained from ;. Let X be the completion of X /d.

For k € N, consider the set S*) = {z; : 1 <i < N,,} c X. Note that S*)
is a (1/k)-net in X. Indeed, every set S = {Zin:1<i< Ni}isa (1/k)net
in the respective space X,,. Hence, for every z; ,, € S, there is a j < Ny such
that dx, (2in, z;n) < 1/k for infinitely many indices n. Passing to the limit,
we see that d(Z;, ;) < 1/k for this j. Thus, S is a (1/k)-net in X /d. Hence,
S is also a (1/k)-net in in X. Since X is complete and has a (1/k)-net for
any k € N, X is compact.

Furthermore, the set S (%) is a Gromov—Hausdorff limit of the sets S,(Lk) as
n — o0, because these are finite sets consisting of Ny points (some of which

may coincide) and there is a way of matching up the points of Sﬁlk) with those
in S(k) 50 that distances converge. Thus, for every k € N we have a (1/k)-net in
X that is a Gromov—Hausdorff limit of some (1/k)-nets in the spaces X,,. By

Proposition 4.15, it follows that X,, converges to X in the Gromov—Hausdorff
distance. O

4.2.4 Gromov—Hausdorff distance for geodesic spaces

Theorem 4.19. Let {X,,}nen be a sequence of geodesic spaces and X a com-
plete metric space such that X, converges to X in the Gromov-Hausdorff
distance. Then X s a geodesic space.

Proof. Because X is complete, it suffices to prove that for any two points x,y €
X there is a point z € X such that d(z,2) = 3d(z,y) and d(y,z) = 3d(z,y).
Again by completeness, it further suffices to show that for any € > 0 there is
a point z € X such that |d(z,z) — 3d(z,y)| < € and |d(y, 2) — 2d(z,y)| <.

Let n be such that dgu(X, X,,) < €/4. Then, by Theorem 4.11, there is a
correspondence R between X and X,, whose distortion is less than ¢/2. Take
points Z, 7 € X, corresponding to « and y. Since X, is a geodesic space, there
is a Z € X, such that d(z,%) = d(z,9) = 3d(Z,7). Let z € X be a point
corresponding to zZ. Then

1 1
d(zx,z) — §d(m, y)‘ < ‘d(a?, Z) — id(j’ 7)| + 2disR < e.

Similarly, |d(y, z) — 3d(z,y)| <e. o

Proposition 4.20. Fvery compact geodesic space can be obtained as a
Gromov—Hausdorff limit of a sequence of finite graphs with edge lengths.
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4.3 Compact R-trees and the Gromov—-Hausdorff metric

4.3.1 Unrooted R-trees

Definition 4.21. Let (T, dgn) be the metric space of isometry classes of com-
pact real trees equipped with the Gromov-Hausdorff metric.

Lemma 4.22. The set T of compact R-trees is a closed subset of the space of
compact metric spaces equipped with the Gromov-Hausdorff distance.

Proof. Tt suffices to note that the limit of a sequence in T is a geodesic space
and satisfies the four point condition. O

Theorem 4.23. The metric space (T,dgn) is complete and separable.

Proof. We start by showing separability. Given a compact R-tree, T', and
e > 0, let S be a finite e-net in T'. Write T for the subtree of T spanned by
Se, that is,

T. = Uw,yESE [z,y] and dr :=d (4.3)

Obviously, T is still an e-net for T. Hence, dgu(T:,T) < dg(T:,T) < .

Now each T, is just a “finite tree with edge lengths” and can clearly be
approximated arbitrarily closely in the dag-metric by trees with the same tree
topology (that is, “shape”), and rational edge lengths. The set of isometry
types of finite trees with rational edge lengths is countable, and so (T, dgn)
is separable.

It remains to establish completeness. It suffices by Lemma 4.22 to show
that any Cauchy sequence in T converges to some compact metric space, or,
equivalently, any Cauchy sequence in T has a subsequence that converges to
some metric space.

Let (T),)nen be a Cauchy sequence in T. By Theorem 4.18, a sufficient
condition for this sequence to have a subsequential limit is that for every
e > 0 there exists a positive number N = N(e) such that every T, contains
an e-net of cardinality N.

Fix € > 0 and ng = no(e) such that dgu(Tm,Tn) < €/2 for m,n = ny.
Let S,, be a finite (¢/2)-net for T,,, of cardinality N. Then by (4.11) for
each n = ng there exists a correspondence R, between T),, and T, such that
dis(R,) < e.

For each x € T, choose f,(x) € T, such that (z, f,(z)) € R,. Since for
any y € T,, with (x,y) € Ry, dr, (y, fn(x)) < dis(Ry,), for all n = ng, the set
fn(Shy) is an e-net of cardinality N for T, n = ng. O

T:®

4.3.2 Trees with four leaves

The following result is elementary, but we include the proof because it includes
some formulae that will be useful later.
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Lemma 4.24. The isometry class of a compact R-tree tree (T,d) with four
leaves is uniquely determined by the distances between the leaves of T.

Proof. Let {a,b,c,d} be the set of leaves of T. The tree T has one of four
possible shapes shown in Figure 4.4.

(1) (I1) (i)

(V)

Fig. 4.4. The four leaf-labeled trees with four leaves

Consider case (I), and let e be the uniquely determined branch point on
the tree that lies on the segments [a,b] and [a,c], and f be the uniquely
determined branch point on the tree that lies on the segments [c, d] and [a, c].
That is,

e:=Y(a,b,c) =Y(a,b,d)

and
f:=Y(c,d,a) =Y(c,d,b).

Observe that
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1
d(a,e) = 5(d(a,b) +d(a, ) —d(b,c)) = (b c)a = (b- d)a

d(b,e) = %(d(a, b) + d(b,c) —d(a,c)) = (a-c)p = (a-d)p

de, f) = %(d(c, d) +d(a,c) —d(a,d)) = (d-a). = (d-b). (4.4)
(d, £) = 5(dle,d) + d(a,d) = d(a,)) = (¢ a)a = (¢ bl

de, f) = %(d(a,d) +d(b,c) — d(a,b) — d(c,d)) = (a-b); = (c-d)e.

Similar observations for the other cases show that if we know the shape of
the tree, then we can determine its edge lengths from leaf-to-leaf distances.
Note also that

5 (d(a,) +d(b,d) — d(a,b) — d(e,)
>0 for shape (I), (4.5)
=< <0 for shape (II),

=0 for shapes (III) and (IV)

This and analogous inequalities for the quantities that reconstruct the
length of the “internal” edge in shapes (I1) and (1), respectively, show that
the shape of the tree can also be reconstructed from leaf-to-leaf distances. o

4.3.3 Rooted R-trees

Definition 4.25. A rooted R-tree , (X,d,p), is a R-tree (X,d) with a dis-
tinguished point p € X that we call the root . It is helpful to use genealogical
terminology and think of p as a common ancestor and h(zx) := d(p,z) as the
real-valued generation to which x € X belongs (h(x) is also called the height
of x).

We define a partial order < on X by declaring that

o x<yifxe|py], sothat x is an ancestor of y.

Each pair x,y € X has a well-defined greatest common lower bound , z Ay,
in this partial order that we think of as the most recent common ancestor of
x and y — see Figure 4.5.

Definition 4.26. Let T*°°' denote the collection of all root-invariant isometry
classes of rooted compact R-trees, where we define a root-invariant isometry
to be an isometry

£:(X1,dx,, p1) = (X2,dx,, p2) with £(p1) = p2.

Define the rooted Gromov-Hausdorff distance ,
damroot (X1, p1), (X2, p2)), between two rooted R-trees (X1, p1) and (Xa, p2)
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Fig. 4.5. A tree rooted at p. Here w < x and w < y and also z < z and z < y. The
greatest common lower bound of z and y is z.

as the infimum of dg(X7], X4) v dz(p}, p5) over all rooted R-trees (X1, p}) and
(X%, py) that are root-invariant isomorphic to (X1, p1) and (Xa, p2), respec-

tively, and that are (as unrooted trees) subspaces of a common metric space
(Z7 dZ) .

Lemma 4.27. For two rooted trees (X1,dx,,p1), and (Xo,dx,, p2),
1. . onr
dgpreot ((Xlﬂ Xm ) pl)v (X27 dX2 ) pZ)) = 5 g%ggt dls(% OOt)’ (4'6)
where now the infimum is taken over all correspondences R™°% between X,

and Xo with (p1, p2) € RFOOL.

Definition 4.28. Let (X1, p1) and (X2, p2) be two rooted compact R-trees,
and take € > 0. A map [ is called a root-invariant e-isometry from (Xy, p1)
to (Xa, p2) if f(p1) = p2, dis(f) < e and f(Xy) is an e-net for X,.

Lemma 4.29. Let (X1, p1) and (X2, p2) be two rooted compact R-trees, and
take € > 0. Then the following hold.

(1) If dgproot (X1, 1), (X2,p2)) < €, then there exists a root-invariant 2e-
isometry from (X1, p1) to (Xa, p2).
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(i1) If there exists a root-invariant e-isometry from (X1, p1) to (Xa, p2), then

oo (X1, 1), (Xa,p2)) < e
Proof. (i) Let dggroot (X1, p1), (X2, p2)) < €. By Lemma 4.27 there exists
a correspondence R°°% between X; and X5 such that (pi,p2) € R*°° and
dis(Rr°") < 2e.

Define f : X1 — X5 by setting f(p1) = p2, and choosing f(z) such that
(z, f(z)) € R for all z € X1\{p1}.

Clearly, dis(f) < dis(R™°") < 2e.

To see that f(X7) is a 2e-net for X, let x5 € X5, and choose x1 € X7 such
that (z1,22) € R™°". Then dx, (f(x1),72) < dx, (z1,21) + dis(R™°) < 2e.

(ii) Let f be a root-invariant e-isometry from (X, p1) to (Xz, p2). Define
a correspondence %}(’Ot c X1 x X5 by

RO = {(w1,22) : dx, (22, f(21)) < e} (4.7)

Then (p1,p2) € RP° and R is indeed a correspondence since f(X1) is a
e-net for Xo. If (x1,32), (y1,92) € R;?Ot, then

ldx, (z1,y1) — dx, (72, y2)| < |dx, (f(21), f(y1)) — dx, (21, 91)]
+dx, (w2, f(21)) + dx, (f(z1),y2)  (4.8)
< 3e.

Hence, dis(R?°") < 3¢ and, by (4.6),

dGHroot((X17p1);(X2?p2)) < €

N w

O

We need the following compactness criterion, that is the analogue of The-
orem 4.18 and can be proved the same way, noting that the analogue of
Lemma 4.22 holds for T °°t.

Lemma 4.30. A subset T < T™° is relatively compact if and only if for
every € > 0 there exists a positive integer N(g) such that each T € T has an
e-net with at most N(g) points.

Theorem 4.31. The metric space (T*°, dgyroot) is complete and separable.

Proof. The proof follows very much the same lines as that of Theorem 4.23.
The proof of separability is almost identical. The key step in establishing com-
pleteness is again to show that a Cauchy sequence in T*°°" has a subsequential
limit. This can be shown in the same manner as in the proof of Theorem 4.23,
with an appeal to Lemma 4.30 replacing one to Theorem 4.18. O



58 4 Hausdorff and Gromov-Hausdorff distance

4.3.4 Rooted subtrees and trimming

A rooted subtree of a rooted R-tree (T, d, p) € T™°" is an element (T*,d*, p*) €
T that has a class representative that is a subspace of a class representative
of (T,d, p), with the two roots coincident. Equivalently, any class representa-
tive of (T*,d*, p*) can be isometrically embedded into any class representative
of (T,d,p) via an isometry that maps roots to roots. We write T* <*°t T
and note that <™°' is a partial order on T*°°t,

For n > 0 define R, : T™°" — T™°" to be the map that assigns to
(T, p) € T™°" the rooted subtree (R,(T),p) that consists of p and points
a € T for which the subtree

ST .={zxeT: acp ]}

(that is, the subtree above a) has height greater than or equal to 7. Equiva-
lently,

R, (T) :={xeT: Jye T such that x € [p,y], dr(z,y) = n} U {p}.

In particular, if 7" has height at most 7, then R, (7T') is just the trivial tree
consisting of the root p. See Figure 4.6 for an example of this construction.

Lemma 4.32. (i) The range of R, consists of finite rooted trees (that is,
rooted compact R-trees with finitely many leaves).

(i) The map R, is continuous.

(iii) The family of maps (Ry)y>0 is a semigroup; that is,

Ry o Ryr = Ry for ', n" > 0.
In particular,
Ry(T) <™ Ry(T) forn' =n" > 0.
(iv) For any (T, p) € T*°°,

dgroor (T, p), (By(T), p)) < du(T, By(T)) <1,

where dy is the Hausdorff metric on compact subsets of T induced by the
metric p.

Lemma 4.33. Consider a sequence {T,}nen of representatives of isometry
classes of rooted compact trees in (T, dgiroot) with the following properties.

FEach set T, is a subset of some common set U.

Each tree T, has the same root pe U.

The sequence {T),}nen is nondecreasing, that is, Ty CTo € --- S U.
Writing d,, for the metric on Ty, for m < n the restriction of d, to Tp,
coincides with dy,, so that there is a well-defined metric on T := |, ey Tn
given by

d(a,b) = dy(a,b), a,beT,.
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Fig. 4.6. Trimming a tree. The tree T consists of both the solid and dashed edges.
The n-trimming R, (T") consists of the solid edges and is composed of the points of
T that are distance at least n from some leaf of T.

o The sequence of subsets (Ty,)nen s Cauchy in the Hausdorff distance with
respect to d.

Then the metric completion T of T is a compact R-tree, and dg (T, T) — 0 as
n — o0, where the Hausdorff distance is computed with respect to the extension
of d to T. In particular,

lim dggroor (T, p), (T, p)) = 0.

n—

4.3.5 Length measure on R-trees

Fix (T,d, p) € T™°, and denote the Borel-o-field on T' by B(T). Write

7°:= | [p,0] (4.9)

beT

for the skeleton of T.

Observe that if 7" < T is a dense countable set, then (4.9) holds with T
replaced by T". In particular, 7° € B(T') and B(T)|,, = o({]a,b[; a,b e T"}),
where
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B(T)

o i={ANT?; Ae B(T)}

Hence, there exists a unique o-finite measure g = p? on T, called length
measure , such that pu(T\7T°) = 0 and

w(la,b[) = d(a,b), Va,beT. (4.10)

In particular, u is the restriction to 7° of one-dimensional Hausdorff mea-
sure on 7.

Ezxample 4.34. Recall from Examples 3.14 and 3.37 the construction of a
rooted R-tree (T,,dr,) from an excursion path e € U. We can identify the
length measure as follows. Given e € U* and a > 0, let

e(t) = a and, for some ¢ > 0,
Go:=131t€[0,4] : e(u) > afor all uelt,t+el, (4.11)
e(t+¢e) =a.

denote the countable set of starting points of excursions of the function e above
the level a. Then ple, the length measure on Ty, is just the push-forward of the
measure SOI ‘da Y, g, 0t by the quotient map. Alternatively — see Figure 4.7 —
write

I, :={(s,a) : s€]0,{[, a€[0,e(s)[} (4.12)

for the region between the time axis and the graph of e, and for (s,a) € I
denote by s(e, s,a) :=sup{r < s:e(r) = a} and 3(e, s,a) := inf{t > s:e(t) =
a} the start and finish of the excursion of e above level a that straddles time s.
Then p”* is the push-forward of the measure § r. ds®da méﬁ(“’“)

by the quotient map. We note that the measure pu’c appears in [1].

There is a simple recipe for the total length of a finite tree (that is, a tree
with finitely many leaves).

Lemma 4.35. Let (T,d, p) € T and suppose that {zxo,...,z,} < T spans
T, so that the root p and the leaves of T' form a subset of {xq,...,xn}. Then
the total length of T (that is, the total mass of its length measure) is given by

d(zg,x1) + Z /\

k=2 0<i<j<k—1

(d(zy, 2i) + d(ag, 75) — d(xi, 7))

N |

n
= d(xg,z1) + Z (@i - T5) ey
k=2 0<i

- see Figure 4.8.
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Fig. 4.7. Various objects associated with an excursion e € U'. The set of starting
points of excursions of e above level a is G, = {r, u}. The region between the graph
of e and the time axis is I'.. The start and finish of the excursion of e above level a
that straddles time s are s(e, s,a) = r and 5(e, s,a) = t.

Proof. This follows from the observation that the distance from the point xy
to the segment [x;,x;] is

5 (i) +d(ey, 25) = (e 27)) = (@1 25

in the notation of Definition 3.7, and so the length of the segment connecting
T, 2 < k < n, to the subtree spanned by xq,...,Tr_1 is

YA\ % (d(r, x;) + d(x, ;) — d(x:, ;) -

0<i<j<k—1
|
The formula of Lemma 4.35 can be used to establish the following result,
which implies that the function that sends a tree to its total length is lower

semi-continuous (and, therefore, Borel). We refer the reader to Lemma 7.3 of
[63] for the proof.

Lemma 4.36. For n > 0, the map T — p* (R,) (that is, the map that takes
a tree to the total length of its n-trimming) is continuous.
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X5
X, °
@ ® X
y z °
®
Xo

Fig. 4.8. The construction of Lemma 4.35. The total length of the tree is d(xo, 1)+
d(z2,y) + d(zs, 2).

The following result, when combined with the compactness criterion
Lemma 4.30, gives an alternative necessary and sufficient condition for a sub-
set of T**°" to be relatively compact (Corollary 4.38 below).

Lemma 4.37. Let T € T*°" be such that u” (T) < co. For each € > 0 there
is an e-net for T of cardinality at most

G) ]| (G) v+,

Proof. Note that an §-net for R< (T') will be an e-net for T'. The set T\ R< (T')°
is the union of a collection disjoint subtrees. Each leaf of R<(T) belongs to
a unique such subtree, and the diameter of each such subtree is at least 5.
(There may also be other subtrees in the collection that don’t contain leaves

of R¢(T).) Thus, the number of leaves of Re(T) is at most (%)71 uT(T).
Enumerate the leaves of R (T) as xg,x1,...,x,. Each segment [zg,z;], 1 <

i < n, of Re(T) has an §-net of cardinality at most (%)71 dp(zo, ;) + 1 <
(%)71 p"(T) + 1. Therefore, by taking the union of these nets, R (T') has an
£-net of cardinality at most [(%)71 ,uT(T)] [(%)71 pI(T) + 1]. D
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Corollary 4.38. A subset T of (T ™° dgproot) is relatively compact if and
only if for all e > 0,

sup{u’ (R(T)): Te T} < 0.

Proof. The “only if” direction follows from continuity of T+ u®(R.(T))
obtained in Lemma 4.36.

Conversely, suppose that the condition of the corollary holds. Given T € 7T,
an e-net for R.(T) is a 2e-net for T. By Lemma 4.37, R.(T) has an e-net of
cardinality at most

[(;)_1 “T(Rs(T))] [(;>_1 uT(R(T)) +1] .

By assumption, the last quantity is uniformly bounded in 7' € 7. Hence, the
set 7 is relatively compact by Lemma 4.30. O

4.4 Weighted R-trees

A weighted R-tree is a R-tree (T, d) equipped with a probability measure v on
the Borel o-field B(T). Write T"* for the space of weight-preserving isometry
classes of weighted compact R-trees, where we say that two weighted, compact
R-trees (X,d,v) and (X', d’, V') are weight-preserving isometric if there exists
an isometry ¢ between X and X’ such that the push-forward of v by ¢ is v’

V= ¢guvi=vopt (4.13)

It is clear that the property of being weight-preserving isometric is an equiv-
alence relation.

Example 4.39. Recall from Examples 3.14 and 3.37 the construction of a com-
pact R-tree from an excursion path e € U’. Such a R-tree has a canonical
weight, namely, the push-forward of normalized Lebesgue measure on [0, ]
by the quotient map that appears in the construction.

We want to equip T with a Gromov-Hausdorff type of distance that
incorporates the weights on the trees.

Lemma 4.40. Let (X,dx) and (Y,dy) be two compact real trees such that
den((X,dx),(Y,dy)) < e for some ¢ > 0. Then there exists a measurable
3e-isometry from X to Y.

Proof. If deu((X,dx),(Y,dy)) < ¢, then by Theorem 4.11 there exists a
correspondence i between X and Y such that dis(R) < 2e. Since (X, dx) is
compact there exists a finite e-net in X. We claim that for each such finite
e-net SX€ = {z1,...,2n-} € X, any set S¥¢ = {y1,...,yn:} S Y such that
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(zi,y;) € R for all i € {1,2,..., N°} is a 3e-net in Y. To see this, fix y € Y. We
have to show the existence of i € {1,2,..., N°} with dy (y;,y) < 3e. For that
choose = € X such that (z,y) € R. Since SX is an e-net in X there exists an
i€ {1,2,...,N¢} such that dx(x;,z) < e. (2;,¥;) € R implies, therefore, that
|[dx (2, 2) — dy (i, y)| < dis(R) < 2e. Hence, dy (y;,y) < 3e.

Furthermore, we may decompose X into N¢ possibly empty measurable
disjoint subsets of X by letting X1 := B(z1,¢), X?¢ := B(xg,¢)\X ¢, and
so on, where B(z,r) is the open ball {z' € X : dx(z,z') < r}. Then f defined
by f(z) = y; for x € X»¢ is obviously a measurable 3e-isometry from X to
Y. (m]

We also need to recall the definition of the Prohorov distance between two
probability measures — see, for example, [57]. Given two probability measures
p and v on a metric space (X, d) with the corresponding collection of closed
sets denoted by C, the Prohorov distance between them is

dp(p,v) :=1inf{e > 0: u(C) < v(C®) + ¢ for all C € C},

where C° := {zr € X : infyec d(z,y) < €}. The Prohorov distance is a metric
on the collection of probability measures on X. The following result shows
that if we push measures forward with a map having a small distortion, then
Prohorov distances can’t increase too much.

Lemma 4.41. Suppose that (X,dx) and (Y,dy) are two metric spaces, f :
X — Y is a measurable map with dis(f) < e, and p and v are two probability
measures on. X. Then

dp(faps, f+v) < dp(p,v) +e.

Proof. Suppose that dp(u,v) < 6. By definition, u(C) < v(C?%) + 6 for all
closed sets C € C. If D is a closed subset of Y, then

fen(D) = p(f~1(D))

u(f~H(D))
v(f~H (D)) +4

FHD)%) + 6.

Now 2/ € f~'(D)® means there is 2” € X such that dx(z/,2") < § and
f(z") € D. By the assumption that dis(f) < e, we have dy (f(z'), f(z")) <
§ + . Hence, f(z') € D¢, Thus,

ffl(D)é c ffl(DSJrs)

<
<

(
(

14

and we have
Fep(D) < v(f~HD°Y)) 4 6 = fov(D°F) + 6,

so that dp(fsp, f+v) < 0 + €, as required. |
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We are now in a position to define the weighted Gromov-Hausdorff distance
between the two compact, weighted R-trees (X,dx,vx) and (Y, dy,vy). For
e >0, set

F% y := {measurable e-isometries from X to Y}. (4.14)

Put
Agpw(X,Y)

—infle>0: there exist f € F§ y, g € Fy  such that (4.15)
' Cdp(favx,vy) <& dp(ux, gavy) <e [

Note that the set on the right hand side is non-empty because X and Y are
compact, and, therefore, bounded. It will turn out that Agyw+ satisfies all the
properties of a metric except the triangle inequality. To rectify this, let

=1

n—1
dew (X,Y) := inf { > Acre(Z;, Z,»H)i} , (4.16)

where the infimum is taken over all finite sequences of compact, weighted
R-trees Z1,...Z, with Z; = X and Z, =Y.

Lemma 4.42. The map dgpw: : TV x TV — R. is a metric on TV, More-
over,

1
5 Acm (X, V)i < dape (X, Y) < Agpee (X, Y)7
for all X, Y € TV,

Proof. Tt is immediate from (4.15) that the map Agpwe is symmetric.
We next claim that

Agrwe (X, dx,vx), (Y,dy,vy)) = 0, (4.17)

if and only if (X,dx,vx) and (Y,dy,vy) are weight-preserving isometric.
The “if” direction is immediate. Note first for the converse that (4.17) implies
that for all € > 0 there exists an e-isometry from X to Y, and, therefore, by
Corollary 4.13, dGH((X, dx), (K dy)) < 2e. Thus, dGH ((X, dx), (}/, dy)) = 0,
and it follows from Theorem 4.14 that (X,dx) and (Y,dy) are isometric.
Checking the proof of that result, we see that we can construct an isometry
f + X — Y by taking any dense countable set S — X, any sequence of
functions (f,,) such that f, is an e,-isometry with ¢, — 0 as n — o0, and
letting f be limy, f,, along any subsequence such that the limit exists for all
x € S (such a subsequence exists by the compactness of Y'). Therefore, fix
some dense subset S < X and suppose without loss of generality that we
have an isometry f : X — Y given by f(z) = lim,_, fn(x), x € S, where
fn € F)Egjy, dp(frnsVx,Vy) < €p, and lim,_,4 &, = 0. We will be done if we
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can show that f.vx = vy. If ux is a discrete measure with atoms belonging
to S, then

dp(frvx,vy) < limsup [dP(fn*VX7VY) + dp (frsxx, frsvx)

+dp(fapx, frxpx) +dp(f*yx,f*ux)] (4.18)

< 2dp(px,vx),

where we have used Lemma 4.41 and the fact that lim,,—.. dp(fapix, fosiix) =
0 because of the pointwise convergence of f,, to f on S. Because we can choose
wx so that dp(ux,vx) is arbitrarily small, we see that f.vx = vy, as required.
Now consider three spaces (X, dx,vx), (Y,dy,vy),and (Z,dz,vz) in TV
and constants €,0 > 0, such that Agpws ((X, dx,vx), (Y, dy,l/y)) < ¢ and
Agw ((Y, dy,vy),(Z,dz, Vz)) < 0. Then there exist f € F§y and g € F)‘Z’Z
such that dp(fsvx,vy) < € and dp(gsVy,vz) < 6. Note that go f € F)E(Jrg.
Moreover, by Lemma 4.41 ’

dp((go f)svx,vz) <dp(g9+vy,vz) + dp(gsfsVx,9:Vy) <0 +e+0. (4.19)

This, and a similar argument with the roles of X and Z interchanged, shows
that
Acuwt (X, Z) < 2[Aguw (X, Y) + Aguw (Y, Z)]. (4.20)

The second inequality in the statement of the lemma is clear. In order to
see the first inequality, it suffices to show that for any Z1,... Z, we have

n—1
Agrwi (Z1, 2,)% <2 Z Agr (Ziy Zig1) 1. (4.21)

=1

We will establish (4.21) by induction. The inequality certainly holds when
n = 2. Suppose it holds for 2,...,n — 1. Write S for the value of the sum on
the right hand side of (4.21). Put

m—1
k= max{l <Km<n-— 1: 2 AGHWt(Zi,ZiJrl)% < 5/2} . (422)

i=1

By the inductive hypothesis and the definition of k,

k—1
Aciet (21, Z1) % <2 Agu (Zi, Zig1)T < 2(8)2) = S. (4.23)
=1

Of course, .
Agawi (Zy, Zrp1)® < S (4.24)

By definition of k&,
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k
Z Aci (Ziy Zis1)T > S/2,
i-1

so that once more by the inductive hypothesis,

n—1
Acuvi (Zyi1, Zn)T <2 Z Acuw (Ziy Zig1) T
i=k+1
=25-2 Zk: Acpw (Zi, Zis1) 7 2
< S. -
From (4.23), (4.24), (4.25) and two applications of (4.20) we have
Acit (21, Z) T < {4[Acu (21, Z1) + Acis (Zi, Zisr)
+ Aci (Zigr, Zo)1} (4.26)

<(4x3x8Yi
<28,

as required.

It is obvious by construction that dgpwt satisfies the triangle inequality.
The other properties of a metric follow from the corresponding properties we
have already established for Agywt and the bounds in the statement of the
lemma that we have already established. |

The procedure we used to construct the weighted Gromov-Hausdorff met-
ric dggwe from the semi-metric Aggwt was adapted from a proof in [88] of the
celebrated result of Alexandroff and Urysohn on the metrizability of uniform
spaces. That proof was, in turn, adapted from earlier work of Frink and Bour-
baki. The choice of the power i is not particularly special, any sufficiently
small power would have worked.

Proposition 4.43. A subset D of (T%', dgu~t) is relatively compact if and
only if the subset E := {(T,d) : (T,d,v) € D} in (T,dgn) is relatively com-
pact.

Proof. The “only if” direction is clear. Assume for the converse that E is rel-
atively compact. Suppose that ((15,,dr,,vT,)),cy i @ sequence in D. By as-
sumption, ((T,,dr,)),en has a subsequence converging to some point (T, dr)
of (T,dgu). For ease of notation, we will renumber and also denote this sub-
sequence by ((Th,dr,)),en- For brevity, we will also omit specific mention of
the metric on a real tree when it is clear from the context.

By Proposition 4.15, for each ¢ > 0 there is a finite e-net T° in T

and for each n € N a finite e-net T := {a:flvl,...wf;#Ti} in T,, such that
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deu(T:,T¢) — 0 as n — oo. Without loss of generality, we may assume
that #17° = #71° for all n € N. We may begin with the balls of radius ¢
around each point of #7177 and decompose T), into #7T; possibly empty, dis-
joint, measurable sets {75!, ..., T5#7"} of radius no greater than e. Define
a measurable map f, : T, — T¢ by fi(x) = 25% if z € TS and let g5 be
the inclusion map from T, to T,,. By construction, fZ and ¢; are e-isometries.
Moreover, dp ((¢5)«(f5)«Vn, vn) < € and, of course, dp ((f5)wVn, (f5)xvn) = 0.
Thus, Aguwe (TF, (fS)xn), (Th,vn)) < €. By similar reasoning, if we define

he : TS — T¢ by 25— 25, then
AGH""t ((Treu (ffb)*l/n)a (Tav (hi,)*yn)) -0

as n — o0. Since T°¢ is finite, by passing to a subsequence (and relabeling as
before) we have lim,, o dp ((hS,)sVn, ) = 0 for some probability measure v°
on T*¢. Hence,

lim Agpwe (T%, (R5,)xvn), (T¢,v°)) = 0.

n—x

Therefore, by Lemma 4.42,

limsup dappee (T, vn ), (T, (hE) wiry)) < €7

n—o0

Now, since (T,dr) is compact, the family of measures {v* : ¢ > 0}
is relatively compact, and so there is a probability measure v on T such
that v converges to v in the Prohorov distance along a subsequence ¢ | 0.
Hence, by arguments similar to the above, along the same subsequence
Aguw ((T¢,v°), (T, v)) converges to 0. Again applying Lemma 4.42, we have
that dgpwe ((T¢,v°), (T,v)) converges to 0 along this subsequence.

Combining the foregoing, we see that by passing to a suitable subsequence
and relabeling, dagwe (T, vn), (T, v)) converges to 0, as required. O

Theorem 4.44. The metric space (T™, dguws) is complete and separable.

Proof. Separability follows readily from the separability of (T, dgn) and the
separability with respect to the Prohorov distance of the probability measures
on a fixed complete, separable metric space — see, for example, [57]) — and
Lemma 4.42.

It remains to establish completeness. By a standard argument, it suffices
to show that any Cauchy sequence in T"* has a convergent subsequence. Let
(T, dr, , Vn)nen be a Cauchy sequence in TV, Then (T}, dr, )nen is a Cauchy
sequence in T by Lemma 4.42. By Theorem 1 in [63] there is a T € T such
that deu(T,,T) — 0, as n — 0. In particular, the sequence (75, dr, Jnen is
relatively compact in T, and, therefore, by Proposition 4.43, (T},, dr, , Vpn)neN
is relatively compact in T%*. Thus, (T}, dT, )nen has a convergent subsequence,
as required. O
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Root growth with re-grafting

5.1 Background and motivation

Recall the special case of the tree-valued Markov chain that was used in the
proof of the Markov chain tree theorem, Theorem 2.1, when the underlying
Markov chain is the process on {1,2,...,n} that picks a new state uniformly
at each stage.

Algorithm 5.1.

Start with a rooted (combinatorial) tree on n labeled vertices {1,2,...,n}.
Pick a vertex v uniformly from

{1,2,...,n}\{current root}.

Erase the edge leading from v towards the current root.

Insert an edge from the current root to v and make v the new root.
Repeat.

We know that this chain converges in distribution to the uniform distrib-
ution on rooted trees with n labeled vertices.
Imagine that we do the following.

e Start with a rooted subtree (that is, one with the same root as the “big”
tree).

e At each step of the chain, update the subtree by removing and adding
edges as they are removed and added in the big tree and adjoining the
new root of the big tree to the subtree if it isn’t in the current subtree.

The subtree will evolve via two mechanisms that we might call root growth and
re-grafting . Root growth occurs when the new root isn’t in the current subtree,
and so the new tree has an extra vertex, the new root, that is connected to
the old root by a new edge. Re-grafting occurs when the new root is in the
current subtree: it has the effect of severing the edge leading to a subtree of
the current subtree and re-attaching it to the current root by a new edge. See
Figure 5.1.
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root growth re-graft

Fig. 5.1. Root growth and re-graft moves. The big tree with n = 11 vertices consists
of the solid and dashed edges in all three diagrams. In the top diagram, the current
subtree has the solid edges and the vertices marked a, b, *. The vertices marked ¢
and # are in the big tree but not the current subtree. The big tree and the current
subtree are rooted at a. The bottom left diagram shows the result of a root growth
move: the vertex ¢ now belongs to the new subtree, it is the root of the new big tree
and the new subtree, and is connected to the old root a by an edge. The vertices
marked # are not in the new subtree. The bottom right diagram shows the result
of a re-graft move: the vertex b is the root of the new big tree and the new subtree,
and it is connected to the old root a by an edge. The vertices marked ¢ and # are
not in the new subtree.

Now consider what happens as n becomes large and we follow a rooted
subtree that originally has ~ /n vertices. Replace edges of length 1 with
edges of length ﬁ and speed up time by \/n.

In the limit as n — o0, it seems reasonable that we have a R-tree-valued
process with the following root growth with re-grafting dynamics.

The edge leading to the root of the evolving tree grows at unit speed.
Cuts rain down on the tree at unit rate per length xtime, and the subtree
above each cut is pruned off and re-attached at the root.

We will establish a closely related result in Section 5.4. Namely, we will
show that if we have a sequence of chains following the dynamics of Algo-
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rithm 5.1 such that the initial combinatorial tree of the n'" chain re-scaled by
y/n converges in the Gromov—Hausdorff distance to some compact R-tree, then
if we re-scale space and time by /7 in the n'" chain we get weak convergence
to a process with the root growth with re-grafting dynamics.

This latter result might seem counter-intuitive, because now we are work-
ing with the whole tree with n vertices rather than a subtree with ~ \/n
vertices. However, the assumption that the initial condition scaled by +/n
converges to some compact R-tree means that asymptotically most vertices
are close to the leaves and re-arranging the subtrees above such vertices has
a negligible effect in the limit.

Before we can establish such a convergence result, we need to show that
the root growth with re-grafting dynamics make sense even for compact trees
with infinite total length. Such trees are the sort that will typically arise in the
limit when we re-scale trees with n vertices by y/n. This is not a trivial matter,
as the set of times at which cuts appear will be dense and so the intuitive
description of the dynamics does not make rigorous sense. See Theorem 5.5
for the details.

Given that the chain of Algorithm 5.1 converges at large times to the uni-
form rooted tree on n labeled vertices and that the uniform tree on n labeled
vertices converges after suitable re-scaling to the Brownian continuum ran-
dom tree as n — 00, it seems reasonable that the root growth with re-grafting
process should converge at large times to the Brownian continuum random
tree and that the Brownian continuum random tree should be the unique sta-
tionary distribution. We establish that this is indeed the case in Section 5.3.
An important ingredient in the proofs of these facts will be Proposition 5.7,
which says that the root growth with re-grafting process started from the
trivial tree consisting of a single point is related to the Poisson line-breaking
construction of the Brownian continuum random tree in Section 2.5 in the
same manner that the chain of Algorithm 5.1 is related to Algorithm 2.4 for
generating uniform rooted labeled trees. This is, of course, what we should
expect, because the Poisson line-breaking construction arises as a limit of
Algorithm 2.4 when the number of vertices goes to infinity.

5.2 Construction of the root growth with re-grafting
process

5.2.1 Outline of the construction

e  We want to construct a T**°*-valued process X with the root growth and
re-grafting dynamics.
Fix (T,d, p) € T™°". This will be Xj.
We will construct simultaneously for each finite rooted subtree T* <r°°t T
a process X T* with xr * = T* that evolves according to the root growth
with re-grafting dynamics.
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e  We will carry out this construction in such a way ,Ehat if T* a&i T** are
two finite subtrees with 7% <™°' T** then X[ <™° X" and the

cut points for XT* are those for XT** that happen to fall on ij for a

corresponding cut time 7 of X T**  Cut times 7 for X7** for which the
corresponding cut point does not fall on X}.C* are not cut times for X7
e The tree (T, p) is a rooted Gromov—Hausdorff limit of finite R-trees with
root p (indeed, any subtree of (T, p) that is spanned by the union of a
finite e-net and {p} is a finite R-tree that has rooted Gromov—Hausdorff
distance less than € from (T}, p)).
In particular, (T, p) is the “smallest” rooted compact R-tree that contains
all of the finite rooted subtrees of (T, p).
e Because of the consistent projective nature of the construction, we can
define X; := X[ for t > 0 as the “smallest” element of T™°! that contains
XT* | for all finite trees T* <™t T,

5.2.2 A deterministic construction

It will be convenient to work initially in a setting where the cut times and cut
points are fixed.

There are two types of cut points: those that occur at points that were
present in the initial tree T and those that occur at points that were added
due to subsequent root growth.

Accordingly, we consider two countable subsets mp € RT™ x T° and 7 <
{(t,z) e R*T x RT* : z < t}. See Figure 5.2.

Assumption 5.2. Suppose that the sets o and w have the following proper-
ties.

(a) For all tg > 0, each of the sets mo N ({to} x T°) and ™ n ({to} x]0,to]) has
at most one point and at least one of these sets is empty.

(b) For all to > 0 and all finite subtrees T' € T, the set my n (]0,t0] x T") is
finite.

(c) For all ty > 0, the set T n {(t,z) € RTT x RTT : & <t < #p} is finite.

Remark 5.3. Conditions (a)—(c) of Assumption 5.2 will hold almost surely if
mo and 7 are realizations of Poisson point processes with respective intensities
A®p and A®A (where A is Lebesgue measure), and it is this random mechanism
that we will introduce later to produce a stochastic process having the root
growth with re-grafting dynamics.

Consider a finite rooted subtree T* <™°¢ T. It will avoid annoying cir-
cumlocutions about equivalence via root-invariant isometries if we work with
particular class representatives for T* and 7', and, moreover, suppose that T*
is embedded in T

Put 7 := 0, and let 0 < 7 < 75 < ... (the cut times for XT*) be the
points of {t > 0: m({t} x T*) >0} v {t > 0: n({t} x RTT) > 0}.
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Fig. 5.2. The sets of points mp and 7w

Step 1 (Root growth). At any time ¢ > 0, X as a set is given by the disjoint
union T*1]0,¢]. For ¢ > 0, the root of XI" is the point p; := ¢ €]0,]. The
metric dtT* on X[ * is defined inductively as follows.

Set dg* to be the metric on XOT* = T*; that is, dg* is the restriction of
d to T*. Suppose that d?* has been defined for 0 < t < 7,*. Define dtT* for
T <t<Tr by

d_x(a,b), if a,be X7,
d"* (a,b) == { |b—al, if a,b €]}, 1], (5.1)

la — 75| +d x(px,b), ifac]rk t],be XTT**.

Step 2 (Re-Grafting). Note that the left-limit Xf** exists in the rooted

n+1
Gromov—Hausdorff metric. As a set this left-limit is the disjoint union
*
X}—:f H]T:7 7_:-&-1] = T*]_[]O, 7_:-&-1]7

and the corresponding metric dT*+17 is given by a prescription similar to (5.1).

Define the (n + 1)* cut point for X7™ by
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P aeT*, if WO({(T:+1aa)}) >0,
Pt =00 e10,75,,0, it w({(7F, 1,00} > 0.

Let S}, be the subtree above p};,, in XTT*>l< = that is,
n+

*
Spi1i=1{be XTTjﬂ_ Ppi1 € [PTjH_vb[}- (5.2)

Define the metric d_» by
n+1

dT* 1(a7b)
dT:+17(a,b), ifa,be Sy, ,,
. *
= d,r:+17(a, b), ifa,be XZ;T+\ISZ+1’
d77?+17(a, pT:+1) + drjﬂf(p:Jrlv b)a ifae X:i:;\lss+17 be S:Jrl'

In other words X7, is obtained from X7, _ by pruning off the subtree S}
n+1

n+1
and re-attaching it to the root. See Figure 5.3.

Fig. 5.3. Pruning off the subtree S and regrafting it at the root p
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Now consider two other finite, rooted subtrees (T**, p) and (T***, p) of T
such that 7% v T** € T*** (with induced metrics).

Build X7** and X7*** from mo and 7 in the same manner as X7~ (but
starting at T** and T***). It is clear from the construction that:

o XTI and XT** are rooted subtrees of XT*** for all ¢ > 0,

o the Hausdorff distance between XtT* and XtTM= as subsets of X;T*** does
not depend on T#*#*

e the Hausdorff distance is constant between jumps of X T* and XT** (when
only root growth is occurring in both processes).

The following lemma shows that the Hausdorff distance between X[ * and
Xt ** as subsets of xr *** does not increase at jump times.

Lemma 5.4. Let T be a finite rooted tree with root p and metric d, and let
T and T" be two rooted subtrees of T (both with the induced metrics and root
p). Fixpe T, and let S be the subtree in T above p (recall (5.2)). Define a

new metric d on T by putting

d(a,b), ifa,b€e S,
d(a,b) := d(a,b), if a,beT\S,
d(a,p) +d(p,b), ifae S, beT\S.

Then the sets T' and T" are also subtrees of T equipped with the induced
metric d, and the Hausdorff distance between T’ and T" with respect to d is
not greater than that with respect to d.

Proof. Suppose that the Hausdorfl distance between T’ and T” under d is
less than some given € > 0. Given a € T’, there then exists b € T” such that
d(a,b) < e. Because d(a,a A b) < d(a,b) and a A be T”, we may suppose (by
replacing b by a A b if necessary) that b < a.

We claim that d(a,c) < ¢ for some ¢ € T”. This and the analogous result
with the roles of 77 and T” interchanged will establish the result.

If a,b € S or a,b € T\S, then ci(a7 b) = d(a,b) < e. The only other
possibility is that a € S and b € T\S, in which case p € [b,a] (for T equipped
with d). Then d(a, p) = d(a,p) < d(a,b) < e, as required (because p € T").

O

Now let T3 € 15 € --- be an increasing sequence of finite subtrees of T
such that | J,, .y T is dense in 7. Thus, lim,,—, du(Ty,T) = 0.
Let X', X2, ... be constructed from 7y and 7 starting with 77,75, . ...
Applying Lemma 5.4 yields
lim sup dgproot (X[, X{') = 0.

Hence, by completeness of T*°°, there exists a cadlag T*°°t-valued process X
such that Xy =T and
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lim sup dGHroot (XZn,Xt) = 0.

m—0 t=0

A priori, the process X could depend on the choice of the approximating
sequence of trees {7, }nen. To see that this is not so, consider two approxi-
mating sequences T} €T} S - and TE €T3 S -

For k € N, write 77 for the smallest rooted subtree of T' that contains both
T and T2. As a set, Ts =T v T72. Now let {(X{""}10)nen for i =1,2,3 be
the corresponding sequences of finite tree-value processes and let (X,”")¢>¢
for ¢ = 1,2,3 be the corresponding limit processes. By Lemma 5.4,

dGHroot (th’l7 X{;n72) dGHroot (th,l, th,g) + dGHroot (th’27 th,3)
(X0 X 4 dn (X7, X0

(T'r%’T) + dH(TEL?T) -0

(5.3)

N CINCIN N
QU QL
T =

as n — o0.

Thus, for each t > 0 the sequences {X;"'}nen and {X7"*}nen do indeed
have the same rooted Gromov—Hausdorff limit and the process X does not
depend on the choice of approximating sequence for the initial tree T

5.2.3 Putting randomness into the construction

We constructed a T™°t-valued function ¢ — X; starting with a fixed triple
(T, 7, ), where T' € T*°°* and 7, 7 satisfy the conditions of Assumption 5.2.
We now want to think of X as a function of time and such triples.

Let £2* be the set of triples (7, 7y, 7), where T is a rooted compact R-
tree (that is, a class representative of an element of T*™°%) and my, 7 satisfy
Assumption 5.2.

The root invariant isometry equivalence relation on rooted compact R-
trees extends naturally to an equivalence relation on 2* by declaring that
two triples (T7,x,n") and (T",n(,n"), where ©y = {(o},2%) : i € N} and
7y = {(of,2) : i € N}, are equivalent if there is a root invariant isometry f
mapping 7" to T” and a permutation v of N such that o = Ufy(i) and zf =

f (zi/ (i)) for all 4 € N. Write {2 for the resulting quotient space of equivalence

classes. There is a natural measurable structure on {2: we refer to [63] for the
details.

Given T € T*°!, let P be the probability measure on {2 defined by the
following requirements.

e The measure PT assigns all of its mass to the set {(T',7), ') € 2 : T' =
T}.

e Under P7 the random variable (17, 7}, 7') + m, is a Poisson point process
on the set R** x T° with intensity A ® p, where p is the length measure
onT.
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e Under P7, the random variable (7", 7, ') + 7’ is a Poisson point process
on the set {(t,z) € R™" x R** : x < ¢} with intensity A ® A restricted to
this set.

e The random variables (T", n(), 7') +— m(, and (T", 7, ') — =’ are indepen-
dent under P7.

Of course, the random variable (7", 7y, ') — 7(, takes values in a space
of equivalence classes of countable sets rather than a space of sets per se, so,
more formally, this random variable has the law of the image of a Poisson
process on an arbitrary class representative under the appropriate quotient
map.

For t > 0, g a bounded Borel function on T*°°t, and T' € T*™°!, set

Pg(T) := PTg(X0)]- (5.4)

With a slight abuse of notation, let ]:277 for n > 0 also denote the map from
2 into 2 that sends (T, mo, ) to (R, (T), m0 n (R** x (R,(T))°), 7).

Theorem 5.5. (i) If T € T is finite, then (X;)i=0 under PT is a Markov
process that evolves via the root growth with re-grafting dynamics on finite
trees.

(ii) For alln > 0 and T € T™, the law of (X; o Ry)i=0 under PT coincides
with the law of (X¢)i=0 under PE(T),

(iii) For all T € T, the law of (X;)i=0 under P™(T) converges as n | 0
to that of (X;)i=o0 under PT (in the sense of convergence of laws on the
space of cadlag T ° -valued paths equipped with the Skorohod topology).

(iv) For g € bB(T™°), the map (t,T) — Pig(T) is B(R") x B(T™°")-
measurable.

(v) The process (X, PT) is strong Markov and has transition semigroup
(P)t=0-

Proof. (i) This is clear from the definition of the root growth and re-grafting
dynamics.

(ii) It is enough to check that the push-forward of the probability measure
P7 under the map R, : 2 — §2 is the measure Pin(T),

This, however, follows from the observation that the restriction of length
measure on a tree to a subtree is just length measure on the subtree.

(iii) This is immediate from part (ii) and part (iv) of Lemma 4.32. Indeed,
we have that

sup dgproot (X, Xy © Rn) <du(T,R,(T)) <.

t=0

(iv) By a monotone class argument, it is enough to consider the case where
the test function g¢ is continuous. It follows from part (iii) that P,g(R,(T))
converges pointwise to P,g(T) as i | 0, and it is not difficult to show using
Lemma 4.32 and part (i) that (¢,7) — Pig(R,(T)) is B(RT) x B(T*°")-
measurable, but we omit the details.
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(v) By construction and Lemma 4.33, we have for ¢t > 0 and (T, mo, ) € 2
that, as a set, X2 (T, m, ) is the disjoint union 710, ¢].
Put

et(TaTrO77r)
= (Xt(T, 70, 7), {(5,2) € RYT x T : (t + 5,2) € ™0},

{(s,2) eRTT xRt : (t+s,t+a)€ 7T}>
= (Xt T7 71—0)77)’ {(va) eR*" x XE(T, 7T077T) : (t + 8,.13) € 7T0},
((s,7) e RT+ x R*™ (t+s,t+x)67r}).

Thus, 6; maps (2 into {2. Note that X, 0 6; = X,y; and that 05 0 6; = 054,
that is, the family (6;):>0 is a semigroup.

Fix t > 0 and (T, m, m) € 2. Write p for the measure on 7°11]0,¢] that
restricts to length measure on T° and to Lebesgue measure on |0, t]. Write p”
for the length measure on X2 (T, mo, 7).

The strong Markov property will follow from a standard strong Markov
property for Poisson processes if we can show that u' = p”.

This equality is clear from the construction if T is finite: the tree
X (T, mp,m) is produced from the tree T' and the set ]0,¢] by a finite number
of dissections and rearrangements.

The equality for general T follows from the construction and Lemma 4.33.

O

5.2.4 Feller property

The proof of Theorem 5.5 depended on an argument that showed that if
we have two finite subtrees of a given tree that are close in the Gromov—
Hausdorff distance, then the resulting root growth with re-grafting processes
can be coupled together on the same probability space so that they stay close
together. It is believable that if we start the root growth with re-grafting
process with any two trees that are close together (whether or not they are
finite or subtrees of of a common tree), then the resulting processes will be
close in some sense. The following result, which implies that the measure
induced by the root growth with re-grafting process on path space is weakly
continuous in the starting state with respect to the Skorohod topology on path
space can be established by a considerably more intricate coupling argument:
we refer to [63] for the details.

Proposition 5.6. If the function f : T™° — R is continuous and bounded,
then the function P.f is also continuous and bounded for each t = 0.
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5.3 Ergodicity, recurrence, and uniqueness

5.3.1 Brownian CRT and root growth with re-grafting

Recall that Algorithm 2.4 for generating uniform rooted tree on n labeled
vertices was derived from Algorithm 5.1, the tree-valued Markov chain ap-
pearing in the proof of the Markov chain tree theorem that has the uniform
rooted tree on n labeled vertices as its stationary distribution. Recall also
that the Poisson line-breaking construction of the Brownian continuum ran-
dom tree in Section 2.5 is an asymptotic version of Algorithm 2.4, whilst the
root growth with re-grafting process was motivated as an asymptotic version
of Algorithm 5.1. Therefore, it seems reasonable that there should be a con-
nection between the Poisson line-breaking construction and the root growth
with re-grafting process. We establish the connection in this subsection.

Let us first present the Poisson line-breaking construction in a more “dy-
namic” way that will make the comparison with the root growth with re-
grafting process a little more transparent.

e Write 7y, 79, ... for the successive arrival times of an inhomogeneous Pois-
son process with arrival rate ¢ at time ¢ > 0. Call 7, the n'" cut time

e Start at time 0 with the 1-tree (that is a line segment with two ends), Ry,
of length zero (Rg is “really” the trivial tree that consists of one point
only, but thinking this way helps visualize the dynamics more clearly for
this semi-formal description). Identify one end of Rq as the root.

Let this line segment grow at unit speed until the first cut time 7.
At time 7 pick a point uniformly on the segment that has been grown so
far. Call this point the first cut point .

e Between time 71 and time 7, evolve a tree with 3 ends by letting a new
branch growing away from the first cut point at unit speed.

e Proceed inductively: Given the n-tree (that is, a tree with n + 1 ends),
R, —, pick the n-th cut point uniformly on R, _ to give an n + 1-tree,
R, , with one edge of length zero, and for t € [7,,, T, +1[, let R+ be the tree
obtained from R, by letting a branch grow away from the n*® cut point
with unit speed.

The tree R, _ is n'® step of the Poisson line-breaking construction, and
the Brownian CRT is the limit of the increasing family of rooted finite trees
(Rt)t=o0-

We will now use the ingredients appearing in the construction of R to
construct a version of the root growth with re-grafting process started at the
trivial tree.

e Let 7y, 72,... be as in the construction of the R.
e Start with the 1-tree (with one end identified as the root and the other as
a leaf), Ty, of length zero.
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e Let this segment grow at unit speed on the time interval [0, 7 [, and for
t € [0, 71 let T; be the rooted 1-tree that has its points labeled by the
interval [0, ¢] in such a way that the root is ¢ and the leaf is 0.

e At time 7 sample the first cut point uniformly along the tree 7, _, prune
off the piece of 7, that is above the cut point (that is, prune off the
interval of points that are further away from the root ¢ than the first cut
point).

e Re-graft the pruned segment such that its cut end and the root are glued
together. Just as we thought of 7; as a tree with two points, (a leaf and
a root) connected by an edge of length zero, we take 7., to be the the
rooted 2-tree obtained by “ramifying” the root 7,,_ into two points (one
of which we keep as the root) that are joined by an edge of length zero.

o Proceed inductively: Given the labeled and rooted n-tree, 7, _,, for ¢t €
[Tn—1, Tn[, let 7; be obtained by letting the edge containing the root grow
at unit speed so that the points in 7; correspond to the points in the
interval [0,¢] with ¢ as the root. At time 7, the n' cut point is sampled
randomly along the edges of the n-tree, 7., _, and the subtree above the
cut point (that is the subtree of points further away from the root than
the cut point) is pruned off and re-grafted so that its cut end and the root
are glued together. The root is then “ramified” as above to give an edge
of length zero leading from the root to the rest of the tree.

Let (Ri)iz0, (71)t=0, and {7, }nen be as above. Note that (7;);>0 has the
same law as (X;);>0 under P70, where T} is the trivial tree.

Proposition 5.7. The two random finite rooted trees R, _ and 7., _ have
the same distribution for all n € N.

Proof. Let R,, denote the object obtained by taking the rooted finite tree with
edge lengths R, _ and labeling the leaves with 1,...,n, in the order that
they are added in Aldous’s construction. Let T}, be derived similarly from the
rooted finite tree with edge lengths 7, _, by labeling the leaves with 1,...,n
in the order that they appear in the root growth with re-grafting construction.
It will suffice to show that R,, and T;, have the same distribution. Note that
both R, and T,, are rooted bifurcating trees with n labeled leaves and edge
lengths. Such a tree S, is uniquely specified by its shape , denoted shape(S,,),
that is a rooted, bifurcating, leaf-labeled combinatorial tree, and by the list
of its (2n — 1) edge lengths in a canonical order determined by its shape, say

lengths(Sy,) := (length(S,, 1), ..., length(S,,2n — 1)),

where the edge lengths are listed in order of traversal of edges by first working
along the path from the root to leaf 1, then along the path joining that path
to leaf 2, and so on.

Recall that 7, is the nth point of a Poisson process on R*+ with rate
tdt. We construct R, and T, on the same probability space using cuts at
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points U;r;, 1 < i@ < n — 1, where Uy, Us,, ... is a sequence of independent
random variables uniformly distributed on the interval 0, 1] and independent
of the sequence {7, }nen. Then, by construction, the common collection of edge
lengths of R,, and of T}, is the collection of lengths of the 2n — 1 subintervals
of 10, 7,,] obtained by cutting this interval at the 2n — 2 points

n—1
(x" 1<i<2m—2} = U Uimi, 7}
=1

where the X" are indexed to increase in i for cach fixed n. Let X" := 0
and X2(Z)71 :=7,. Then

length(R,,i) = X = X™  1<i<2n—1, (5.5)

length(T),,7) = length(R,,04,,), 1<i<2n-1, (5.6)

for some almost surely unique random indices oy, ; € {1,...2n — 1} such that
i — oy is almost surely a permutation of {1,...2n — 1}. According to [10,
Lemma 21], the distribution of R,, may be characterized as follows:

(i) the sequence lengths(R,) is exchangeable, with the same distribution
as the sequence of lengths of subintervals obtained by cutting ]0,7,] at
2n — 2 uniformly chosen points {U;r, : 1 <1i < 2n — 2};

(ii) shape(R,) is uniformly distributed on the set of all 1x3x5x---x (2n—3)
possible shapes;

(iii) lengths(R,) and shape(R,) are independent.

In view of this characterization and (5.6), to show that 7, has the same
distribution as R,, it is enough to show that

(a) the random permutation {i — o0,,; : 1 < i < 2n — 1} is a function of
shape (T );

(b) shape(T},) = ¥, (shape(R,,)) for some bijective map ¥, from the set of all
possible shapes to itself.

This is trivial for n = 1, so we assume below that n > 2. Before proving (a)
and (b), we recall that (ii) above involves a natural bijection

(I1,...,1,—1) & shape(R,) (5.7)
where I,,_1 € {1,...,2n — 3} is the unique ¢ such that

Unfl’rnfl € (Xz(fl_l)v X(n_l))

K3

Hence, I,,_; is the index in the canonical ordering of edges of R,_1 of the
edge that is cut in the transformation from R, 1 to R, by attachment of
an additional edge, of length 7,, — 7,1, connecting the cut-point to leaf n.
Thus, (ii) and (iii) above correspond via (5.7) to the facts that Ir,...,I,—1
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are independent and uniformly distributed over their ranges, and independent
of lengths(R,,). These facts can be checked directly from the construction of
{Ry }nen from {7, }nen and {U, }nen using standard facts about uniform order
statistics.

Now (a) and (b) follow from (5.7) and another bijection

(I1,...,1,—1) < shape(T},,) (5.8)

where each possible value i of I,,, is identified with edge o,; in the canon-
ical ordering of edges of T,,. This is the edge of T,, whose length equals
length(R,,,%). The bijection (5.8), and the fact that o, ; depends only on
shape(T},), will now be established by induction on n > 2. For n = 2 the
claim is obvious. Suppose for some n > 3 that the correspondence between
(I1,...,In—2) and shape(T;,,_1) has been established, and that the length of
edge 0y,—1,; in the canonical ordering of edges of T},_; is equals the length of
the ith edge in the canonical ordering of edges of R,,_1, for some o,,_1,; that
is a function of 7 and shape(T),_1). According to the construction of T, if
I, 1 =i then T, is derived from T, by splitting 7,,_1 into two branches at
some point along edge 0,—1,; in the canonical ordering of the edges of T;,_1,
and forming a new tree from the two branches and an extra segment of length
Tn — Tn—1. Clearly, shape(T,,) is determined by shape(T,,—1) and I,,_1, and in
the canonical ordering of the edge lengths of T;, the length of the ith edge
equals the length of the edge 0,,; of R,, for some o, ; that is a function of
shape(T,,—1) and I,_1, and, therefore, a function of shape(T,). To complete
the proof, it is enough by the inductive hypothesis to show that the map

(shape(Ty,_1),In_1) — shape(T},)

just described is invertible. But shape(7},,—1) and I,,_; can be recovered from
shape(T;,) by the following sequence of moves:

delete the edge attached to the root of shape(T;,)
split the remaining tree into its two branches leading away from the inter-
nal node to which the deleted edge was attached;

e re-attach the bottom end of the branch not containing leaf n to leaf n on
the other branch, joining the two incident edges to form a single edge;

e the resulting shape is shape(7T,_1), and I,,_1 is the index such that the
joined edge in shape(T},—1) is the edge 0,,—1.1,_, in the canonical ordering
of edges on shape(T;,—1).

n—1

5.3.2 Coupling

Lemma 5.8. For any (T,d, p) € T™° we can build on the same probability
space two T -valued processes X' and X" such that:
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o X' has the law of X under PT0, where Ty is the trivial tree consisting of
just the root,
X" has the law of X under PT,
for allt =0,

dGHroot (Xt/’ Xt”) $ dGHroot (TO, T) == Sup{d(p, 1‘) X E T} (5.9)

tlim dgproos (X, X7') =0, almost surely. (5.10)
— 0

Proof. The proof follows almost immediately from construction of X and
Lemma 5.4. The only point requiring some comment is (5.10).

For that it will be enough to show for any ¢ > 0 that for PT-a.e. (T, 7, ) €
{2 there exists t > 0 such that the projection of my n (]0,¢] x T°) onto T' is an
e-net for T.

Note that the projection of 7o n (]0,¢] x T°) onto T is a Poisson process
under PT with intensity tu, where y is the length measure on 7. Moreover, T'
can be covered by a finite collection of e-balls, each with positive p-measure.

Therefore, the PT-probability of the set of (T, 7, 7) € 2 such that the
projection of myp N (]0,¢] x T°) onto T is an e-net for T increases as t — o0 to
1. O

5.3.3 Convergence to equilibrium

Proposition 5.9. For any T € T™°, the law of X; under PT converges
weakly to that of the Brownian CRT as t — c0.

Proof. Tt suffices by Lemma 5.8 to consider the case where T is the trivial
tree.

We saw in the Proposition 5.7 that, in the notation of that result, 7, _
has the same distribution as R, _.

Moreover, R; converges in distribution to the continuum random tree as
t — oo if we use Aldous’s metric on trees that comes from thinking of them
as closed subsets of ¢! with the root at the origin and equipped with the
Hausdorff distance.

By construction, (7;)¢=¢ has the root growth with re-grafting dynamics
started at the trivial tree. Clearly, the rooted Gromov-Hausdorff distance
between 7; and 7 is at most 7,41 — 7, for 7, <t < Tpa1.

n+1—
It remains to observe that 7,,.1 — 7, — 0 in probability as n — oo. O

5.3.4 Recurrence

Proposition 5.10. Consider a non-empty open set U € T™°. For each T €
Troot’

P {for all s > 0, there exists t > s such that X; € U} = 1. (5.11)
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Proof. 1t is straightforward, but notationally rather tedious, to show that if
B’ € T™°! is any ball and Ty is the trivial tree, then

P {X, e B'} >0 (5.12)

for all ¢ sufficiently large.
Thus, for any ball B’ € T*°°t there is, by Lemma 5.8, a ball B” < Tvo°t
containing the trivial tree such that

: T !
Tléllg”P {X:eB'}>0 (5.13)

for each t sufficiently large.
By a standard application of the Markov property, it therefore suffices to
show for each T' € T*°°* and each ball B” around the trivial tree that

P” {there exists t > 0 such that X; € B"} = 1. (5.14)

By another standard application of the Markov property, equation (5.14)
will follow if we can show that there is a constant p > 0 depending on B”
such that for any 7' € Tro°

lim inf PY{X,e B"} > p.
— L

This, however, follows from Proposition 5.9 and the observation that for
any € > 0 the law of the Brownian CRT assigns positive mass to the set of
trees with height less than e: this is just the observation that the law of the
Brownian excursion assigns positive mass to the set of excursion paths with
maximum less that /2. O

5.3.5 Uniqueness of the stationary distribution

Proposition 5.11. The law of the Brownian CRT is the unique stationary
distribution for X. That is, if £ is the law of the CRT, then

j E(dT)PA(T) = j £(dT) £(T)

for allt = 0 and f € bB(T™), and £ is the unique probability measure on
T with this property.

Proof. This is a standard argument given Proposition 5.9 and the Feller prop-
erty for the semigroup (P;):>o established in Proposition 5.6, but we include
the details for completeness.

Consider a test function f : T™°' — R that is continuous and bounded.
By Proposition 5.6, the function P, f is also continuous and bounded for each
t=0.

Therefore, by Proposition 5.9,
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[ etanyser) = tim [eanypsr) = i [ea@npasm)

(5.15)
~ lin [€@n)PAPAD) = [ e@n)pis(@)
for each t > 0. Hence, £ is stationary.
Moreover, if  is a stationary measure, then

| caniza - [canps)

(5.16)

- [[ctan) ([eansm) = [ean s,
and ¢ = &, as claimed. O

5.4 Convergence of the Markov chain tree algorithm

We would like to show that Algorithm 5.1 converges to a process having the
root growth with re-grafting dynamics after suitable re-scaling of time and
edge lengths of the evolving tree. It will be more convenient for us to work
with the continuous time version of the algorithm in which the transitions are
made at the arrival times of an independent Poisson process with rate 1.

The continuous time version of Algorithm 5.1 involves a labeled combina-
torial tree, but, by symmetry, if we don’t record the labeling and associate
rooted labeled combinatorial trees with rooted compact real trees having edges
that are line segments with length 1, then the resulting process will still be
Markovian.

It will be convenient to use the following notation for re-scaling the dis-
tances in a R-tree: T' = (T, d, p) is a rooted compact real tree and ¢ > 0, we
write ¢TI for the tree (T, cd, p) (that is, ¢I' = T as sets and the roots are the
same, but the metric is re-scaled by c).

Proposition 5.12. Let Y = (Y")i=0 be a sequence of Markov processes
that take values in the space of rooted compact real trees with integer edge
lengths and evolve according to the dynamics associated with the continuous-
time version of Algorithm 5.1. Suppose that each tree Yi* is non-random with
total branch length N,, that N, converges to infinity as n — o0, and that
NJI/QYO” converges in the rooted Gromov—Hausdorff metric to some rooted
compact real tree T as n — 0. Then, in the sense of weak convergence of
processes on the space of cadlag paths equipped with the Skorohod topology,
(Nn_l/zY"(erlpt))t)o converges as n — o0 to the root growth with re-grafting
process X under PT.

Proof. Define Z"™ = (Z}*)i=0 by
Zr = N Y2y (N2,

For n > 0, let Z™™ be the T °"-valued process constructed as follows.
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o Set ZJ" = R, (Z§), where 1, := N{l/leg/zr]J.

e The value of Z™" is unchanged between jump times of (Z");»0.

e At a jump time 7 for (Z}")¢>0, the tree Z?™ is the subtree of Z” spanned
by Z"™ and the root of Z™.

An argument similar to that in the proof of Lemma 5.4 shows that

sup dH(Zinv Zp,n) < M,
t=0

and so it suffices to show that Z7" converges weakly as n — o to X under
PRW(T).

Note that Z]" converges to R, (T) as n — 00. Moreover, if A is the map
that sends a tree to its total length (that is, the total mass of its length
measure), then lim,, ., A(Z]"") = Ao R, (T) < o0 by Lemma 4.36 below.

The pure jump process Z"™ is clearly Markovian. If it is in a state (T, p’),
then it jumps with the following rates.

e With rate No/2(NY2A(T"))/N,, = A(T"), one of the N,/>A(T") points in
T’ that are at distance a positive integer multiple of N, 12 from the root o
is chosen uniformly at random and the subtree above this point is joined to

P’ by an edge of length N{l/z

. The chosen point becomes the new root and
a segment of length N, 12 that previously led from the new root toward
p' is erased. Such a transition results in a tree with the same total length
as T'.

e With rate Ni/Z —A(T"), anew root not present in 7" is attached to p’ by an
edge of length N7 /2. This results in a tree with total length A(T") +N; 2

It is clear that these dynamics converge to those of the root growth with re-

grafting process, with the first class of transitions leading to re-graftings in

the limit and the second class leading to root growth. O
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The wild chain and other bipartite chains

6.1 Background

The wild chain was introduced informally in Chapter 1. We will now describe
it more precisely.

The state space of the wild chain is the set T* consisting of rooted R-trees
such that each edge has length 1, each vertex has finite degree, and if the tree
is infinite there is a single infinite length path from the root. Let p denote the
PGW(1) measure (that is, the distribution of the Galton—Watson tree with
mean 1 Poisson offspring distribution) on the set T . of finite trees in T*, and
let v denote the distribution of a PGW(1) tree “conditioned to be infinite”.
It is well-known that v is concentrated on the set T, := T*\T.,, consisting
of infinite trees with a single infinite path from the root. A realization of v
may be constructed by taking a semi-infinite path, thought of as infinitely
many vertices connected by edges of length 1 and appending independent
realizations of p at each vertex. When started in a finite tree from T, at
rate one for each vertex the wild chain attaches that vertex by an edge to
the root of a realization of v. Conversely (and somewhat heuristically), when
started in an infinite tree from T , at rate one for each vertex the wild chain
prunes off and discards the infinite subtree above that vertex, leaving a finite
tree.

The set of times when the state of the wild chain is an infinite tree has
Lebesgue measure zero, but it is the uncountable set of points of increase of a
continuous additive functional (so that it looks qualitatively like the zero set
of a Brownian motion).

The aim of this chapter is to use Dirichlet form methods to construct
and study a general class of symmetric Markov processes on a generic totally
disconnected state space. Specializing this construction leads to a class of
processes that we call bipartite chains . This class contains the wild chain as
a special case.

In general, we take the state space of the processes we construct to be a
Lusin space E such that there exists a countable algebra R of simultaneously
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closed and open subsets of F that is a base for the topology of E. Note that £
is indeed totally disconnected — see Theorem 33.B of [129]. Conversely, if E is
any totally disconnected compact metric space, then there exists a collection
R with the required properties — see Theorem 2.94 of [85].

The following are two instances of such spaces. More examples, includ-
ing an arbitrary local field and the compactification of an infinite tree, are
described in Section 6.2.

Example 6.1. Let E be N := N U {00}, the usual one-point compactification of
the positive integers N := {1,2,...}. Equip F with the usual total order and
let R be the algebra generated by sets of the form {y : z < y}, € N. That
is, R consists of finite subsets of N and sets that contain a subset of the form
{2,224+ 1,2+ 2,...,0} for ze N.

Ezxample 6.2. Let E be the collection T, of rooted trees with every vertex
having finite degree. Write T¢,, for the subset of T, consisting of trees
with height at most n. For m > n, there is a natural projection map from
Pmn : T<m — T«, that throws away vertices of height greater than n and
the edges leading to them. We can identify T<,, with the projective limit of
this projective system and give it the corresponding projective limit topology
(each Ty, is given the discrete topology), so that T« is Polish. Equip T4,
with the inclusion partial order (that is, z < y if z is a sub-tree of y). Let R be
the algebra generated by sets of the form {y : z < y}, x € T, := J,, T<n-
Equivalently, if p, : T<,, — Tg, is the projection map that throws away
vertices of height greater than n and the edges leading to them, then R is
the collection of sets of the form p; (B) for finite or co-finite B € T,, as n
ranges over N.

Our main existence result is the following. We prove it in Section 6.3.
Appendix A contains a summary of the relevant Dirichlet form theory.

Notation 6.3. Denote by C the subalgebra of bC(E) (:= continuous bounded
functions on E) generated by the indicator functions of sets in R.

Theorem 6.4. Consider two probability measures p and v on E and a non-
negative Borel function k on E x E. Define a o-finite measure A on E x E
by A(dz,dy) := k(x,y)u(dx)v(dy). Suppose that the following hold:

(a) the closed support of the measure u is E;

(b) A([(E\R) x R] U [R x (E\R)]) < o0 for all Re R;

(¢c) S k(z,y) p(dx) = 0 for ve-a.e. y, where v is the singular component in
the Lebesgque decomposition of v with respect to p;

(d) there exists a sequence (Ry)nen of sets in R such that()._, Ry is compact
for alln, 3, . (E\Ry) < o0, and

DT A((E\Ry) x Ry] U [Ry x (E\Ry)]) < 0.

neN
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Then there is a recurrent p-symmetric Hunt process X = (X, P*) on E whose
Dirichlet form is the closure of the form £ on C defined by

E(f.9) = Hmy) — F(@)(9(y) - 9(x)) Alde, dy), f.g€C.

Our standing assumption throughout this chapter is that the conditions
of Theorem 6.4 hold.

In order to produce processes that are reminiscent of the wild chain, we
need to assume a little more structure on E. Say that E is bipartite if there
is a countable, dense subset E° € F such that each point of E° is isolated.
In particular, E° is open. In Example 6.1 we can take E° = N. In Example
6.2 we can take E° = T.,. We will see more examples in Section 6.2. Put
E* = E\E°. Note that E* is the boundary of the open set E°.

Definition 6.5. We will call the process X described in Theorem 6.4 a bi-
partite Markov chain if the space E is bipartite and, in the notation of Theo-
rem 6.4:

e 1 is concentrated on E°,
e v is concentrated on E*.

Remark 6.6. For bipartite chains, the measures p and v are mutually singu-
lar and vy = v in the notation of Theorem 6.4. The reference measure p is
invariant for X, that is, P#{X; € -} = p for each ¢ > 0. Thus, for any z € E°
we have P*{X; € E°} = 1 for each ¢t > 0, and so X is Markov chain on the
countable set E° in the same sense that the Feller-McKean chain is a Markov
chain on the rationals (the Feller-McKean chain is one-dimensional Brownian
motion time-changed by a continuous additive functional that has as its Re-
vuz measure a purely atomic probability measure that assigns positive mass
to each rational).

We establish in Proposition 6.14 that the sample—paths of X bounce back-
wards and forwards between E° and E* in the same manner that the sample
paths of the wild chain bounce backwards and forwards between the finite and
infinite trees. Also, we show in Proposition 6.16 that under suitable conditions
1 is the unique invariant distribution for X that assigns all of its mass to E°,
and, moreover, for any probability measure v concentrated on E° the law of
X under P? converges in total variation to p as t — o0.

In Section 6.6 we prove that, in the general setting of Theorem 6.4, the
measure v is the Revuz measure of a positive continuous additive functional
(PCAF). We can, therefore, time—change X using the inverse of this PCAF.
When this procedure is applied to a bipartite chain, it produces a Markov
process with state space that is a subset of E*. In particular, we observe in
Example 6.24 that instances of this time-change construction lead to “spher-
ically symmetric” Lévy processes on local fields.

A useful tool for proving the last fact is a result from Section 6.5. There
we consider a certain type of equivalence relation on E with associated map
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7 onto the corresponding quotient space. We give conditions on the Dirichlet
form (€, D(E)) that are sufficient for the process moX to be a symmetric Hunt
process.

Notation 6.7. Write (-,-), for the L*(E, u) inner product and (T})i=o for
the semigroup on L*(E, u) associated with the form (€,D(E)).

6.2 More examples of state spaces

Ezxzample 6.8. Let E be the usual path—space of a discrete—time Markov chain
with countable state—space S augmented by a distinguished cemetery state
0 to form S” = S U {d}. That is, E is the subset of the space of sequences
(S))No (where Ny := {0,1,2,...}) consisting of sequences {Z,, }nen, such that
if z,, = 0 for some n, then z,, = 0 for all m > n. Give E the subspace
topology inherited from the product topology on (S%)No (where each factor
has the discrete topology), so that E is Polish. Given = € E, write ((x) :=
inf{n : z, = 0} € Ny u {0} for the death-time of z. Define a partial order on
E by declaring that < y if ((z) < {(y) and z,, = y, for 0 < n < ((z). (In
particular, if  and y are such that {(z) = {(y) = oo, then = < y if and only
if z = y.) Let R be the algebra generated by sets of the form {y : x < y},
¢(x) < 00. When #S = k < o0, we can think of E as the regular k-ary rooted
tree along with its set of ends. In particular, when k = 1 we recover Example
6.1. This example is bipartite with E° = {z : {(z) < w0},

Ezxample 6.9. A local field K is a locally compact, non-discrete, totally dis-
connected, topological field. We refer the reader to [135] or [123] for a full
discusion of these objects and for proofs of the facts outlined below. More
extensive summaries and references to the literature on probability in a local
field setting can be found in [58] and [62].

There is a real-valued mapping on K that we denote by = +— |z|. This
map, called the valuation takes the values {¢* : k € Z} U {0}, where ¢ = p°
for some prime p and positive integer ¢ and has the properties

zr] =02 =0
lzyl = |=llyl
[z +yl < 2] v [yl
The mapping (x,y) — |r—y| on Kx K is a metric on K that gives the topology
of K.

Put D = {z : |z] < 1}. The set D is a ring (the so-called ring of integers
of K). If we choose p € K so that |p| = ¢~!, then

PPD = {a: 2] <q F} = {w:]a] <q D).

Every ball is of the form z + p¥D for some x € K and k € Z, and, in particular,
all balls are both closed and open. For ¢ < k the additive quotient group
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p'D/p*D has order ¢*~¢. Consequently, D is the union of ¢ disjoint translates
of pD. Each of these components is, in turn, the union of ¢ disjoint translates
of p?D, and so on. Thus, we can think of the collection of balls contained
in D as being arranged in an infinite rooted g-ary tree: the root is D itself,
the nodes at level k are the balls of radius ¢—* (= cosets of p"'ID))7 and the ¢
“children” of such a ball are the ¢ cosets of p*+1D that it contains. We can
uniquely associate each point in D with the sequence of balls that contain it,
and so we can think of the points in D as the ends this tree — see Figure 6.1.

Fig. 6.1. Schematic drawing of the ring of integers D when ¢ =p =7

This tree picture alone does not capture all the algebraic structure of D;
the rings of integers for the p-adic numbers and the p-series field (that is,
the field of formal Laurent series with coefficients drawn from the finite field
with p elements) are both represented by a p-ary tree, even though the p-adic
field has characteristic 0 whereas the p-series field has characteristic p. (As
an aside, a locally compact, non-discrete, topological field that is not totally
disconnected is necessarily either the real or the complex numbers. Every local
field is either a finite algebraic extension of the p-adic number field for some
prime p or a finite algebraic extension of the p-series field.)
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We can take either £ = K or £ = D, with R the algebra generated by the
balls. The same comment applies to Banach spaces over local fields defined as
n [123], and we leave the details to the reader.

Ezample 6.10. In the notation of Example 6.2, let T% be the subset of T«
consisting of infinite trees through which there is a unique infinite path start-
ing at the root, that is, trees with only one end. Put T* = T, v T#* . It is
not hard to see that F = T* satisfies our hypothesis, with R the trace on T*
of the algebra of subsets of T« described in Example 6.2.

Ezample 6.11. Suppose that the pairs (E1, R1),. .., (EN, Ry) each satisfy our
hypotheses. Put E := [, E;, equip E with the product topology, and set R
to be the algebra generated by subsets of E of the form [ [; R; with R; € R;. If
each of the factors E; is bipartite with corresponding countable dense sets of
isolated point EY, then E is also bipartite with countable dense set of isolated
points | [, EY. Similar observations holds for sums rather than products, and
we leave the details to the reader.

6.3 Proof of Theorem 6.4

We first check that £ is well-defined on C. Any f € C can be written f =
Zf\;l a;1p, for suitable R; € R and constants a;, and condition (b) is just the
condition that £(1r,1r) < o for all R € R. It is clear that £ is a symmetric,
non-negative, bilinear form on C.

We next check that £ defined on C is closable (as a form on L?(E, u)). Let
(fn)nen be a sequence in C such that

T (f fu)y = (6.1)
and
mlyilgxg(fm_fnafm_fn) = 0. (62)
‘We need to show that

Put Ay(dx,dy) = rk(x,y)u(dx)vs(dy). For M > 0 put AM(dz,dy) =
Eg(1)7 y)A y M] p(de) v(dy) and AY (dz,dy) = [k(2,y) A M] p(dz) vs(dy). From

lim H (fm(2) = ful2))? AM(dz, dy) = 0, YM >0,

m,n—x

and from (6.2) we have

i [ (Un®) = £a0)) = (@) = Fu@))® 4¥ (dodg) = 0, YD >0,
(6.4)
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So, by Minkowski’s inequality,

lim J'J' Fn(y) = fa(y)® AM(dz,dy) = 0, VM > 0. (6.5)
Thus, by (6.1), (6.5) and (c), there exists a Borel function f and a sequence
(nk)gen such that limg_,q. frn, =0, p-a.e. (and, therefore, v,-a.e., where v, =
v — vy is the absolutely continuous component in the Lebesgue decomposition
of v with respect to p), and limy_,o fn, = f, vs-a.e.

Now, by Fatou, (6.2) and Minkowski’s inequality,

] @ Actaotn) = [ [ im () = o0 Aulao, )
shggfj (e 0) — e @) As(dr, dy)

and so, by (¢), f = 0, vy-a.e. Finally, by Fatou and (6.2),
Jim ([ () = (o) A, )
- Jim [ f ltn ((n(9) ~ Fo ()}~ {on(@) = Fo (2)))° Alda, dy)
< lim liminf f U @) = Fn @)} = (@) = fu (@)} Alda, dy)

m—0 kw0

=0,

as required.

Write (€,D(E)) for the closure of the form (€,C). To complete the proof
that (£,D(£)) is a Dirichlet form, it only remains to show that this form is
Markov. By Theorem A.7, this will be accomplished if we can show that the
unit contraction acts on (£,D(£)). That is, we have to show for any f € C
that

(fvOo)aleC (6.6)
and
E(fVvOAL(fvO) ALl EWSS) (6.7)
Considering claim (6.6), first observe that f € C if and only if there exist
pairwise disjoint R1, ..., Ry and constants a1, ...,ay such that f = > a;1g,.
Thus,

(f A0) v 1=>(aiv0)Al)lg eC.
7
The claim (6.7) is immediate from the definition of £ on C.

We will appeal to Theorem A.8 to establish that (£, D(£)) is the Dirichlet
form of a p-symmetric Hunt process, X. It is immediate that conditions (a)—
(c) of that result hold for C, so it remains to check the tightness condition (d).
Take K,, = ﬂ;;;:n R,,. Then
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Cap(E\K,) < 2 Cap(E\R,)

m=n

Epr, > 1e\r,) + AE\R, LE\R, 1)

([(E\Ry) x Rip] U [Ri x (E\Ry)]) + p(E\Ry)) -

HM?‘ HM

The rightmost sum is finite by (d), and so we certainly have
lir% Cap(E\K,,) = 0.

Finally, because constants belong to D(€), it follows from Theorem 1.6.3
of [72] that X is recurrent.

Remark 6.12. (i) Note that Example A.2 doesn’t apply to give the closability
of £ unless v, = 0.
(ii) Suppose that & € R generates R, then it suffices to check condition
(b) just for R € S, as the following argument shows. We remarked in
the proof that condition (b) was just the statement that £(1r,1g) < o
for all R € R. Note that 1r for R € R is a finite linear combination of
functions of the form f = Hf\il 1g, for Sy,..., Sy €S, and so it suffices
to show that E(f, f) < o for such f. Observe that if aj,...,any € R and
b1,...,bn € Rsatisfy |a;| < 1 and [b;] <1 for 1 <i< N, then

N N N
=1 i=1 k=i+1 i=1

Therefore,

and applying the assumption that (b) holds for all R € S gives the result.

(iii) We emphasize that the elements of D(€) are elements of L?(E, ) and
are thus equivalence classes of functions. It is clear from the above proof
that if f, g € D(E), then there are representatives f and § of the L?(E, p)
equivalence classes of f and g such that

9 = [[ () = S 6w - 3(e) Ald.dy)

Some care must be exercised here: it is clear that if v; # 0, then we cannot
substitute an arbitrary choice of representatives into the right—hand side
to compute E(f,g).
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(iv) The above proof appealed to Theorem A.8, which is Theorem 7.3.1 of
[72]. Although our state—space E is, in general, not locally compact, much
of the theory developed in [72] for the locally compact setting still applies
— see Remark A.9.

We present several examples of set-ups satisfying the conditions of the
Theorem 6.4 at the end of Section 6.4.

6.4 Bipartite chains

Assume for this section that X is a bipartite chain.

Notation 6.13. For a Borel set B € E, put op = inf{t > 0: X; € B} and
Tp = inf{t > 0: X, ¢ B}.

Proposition 6.14.
(i) Consider x € E°. If {k(x,z)v(dz) = 0, then P*{r(,y < oo} = 0. Other-

wise,

k(x,y)v(d
]P’w{T{w} >t, X, € dy} = exp (—tf/ﬁ:(.’t, 2) l/(dz)) S‘li((:E,yZ))IE(gl/Z));

and, in particular, P*{ X, € E*} = 1.
(ii) For q.e. x € E*, P*{X; € E°} = 1 for Lebesgue almost all t = 0. In
particular, P*{og. = 0} =1 for q.e. x € E*.

Proof. (i) Because each = € E° is isolated, it follows from standard consider-
ations that P{r(,, >t} = exp(—at), where

uuwm=—hm<kﬂ—nhﬂgﬂ

tl0
=aan=mmnjm%@ww)

Observe for f,g € C that E(f,g9) = {{(f(y) — f(2))(9(y) — g(x)) J(dz, dy),
where J(dz,dy) = (1/2)[A(dz,dy) + A(dy, dz)] is the symmetrization of A.
Note that J is a symmetric measure that assigns no mass to the diagonal of
FE x E. This representation of £ is the one familiar from the Beurling—Deny
formula. The result now follows from Lemma 4.5.5 of [72].

(ii) This is immediate from the Markov property, Fubini and the observation
Pr{X; ¢ E°} = pn(E*) =0 for all t = 0. |

Definition 6.15. Define a subprobability kernel & on E by £(z,B) = p ®
v({(z',y) : k(z,y) > 0, k(z',y) > 0, 2’ € B}). Note that &(x,-) < p. Say that
X is graphically irreducible if there exists xo € E° such that for all x € E°
there exists n € N for which £"™(xg,{z}) > 0.
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Recall that a measure 7 is invariant for X if P7{X; € -} = for all t > 0.

Proposition 6.16. Suppose that X is graphically irreducible. Then p is the
unique invariant probability measure for X such that u(E°) = 1. If v is any
other probability measure such that v(E°) = 1, then

lim sup [P"{X; € B} — u(B)| =0.
t—x g

Proof. By standard coupling arguments, both claims will hold if we can show
P*{og,y <o} =1, for all z,y € E°. (6.8)

For (6.8) it suffices by Theorem 4.6.6 of [72] to check that the recurrent form
€ is irreducible in the sense of Section 1.6 of [72]. Furthermore, applying
Theorem 1.6.1 of [72] (and the fact that 1 € D(E) with £(1,1) = 0), it is
certainly enough to establish that if B is any Borel set with 15 € D(£) and

0=E(1p,18) +E(1p\p, 1mp) = 26(1,15), (6.9)

then p(B) is either 0 or 1.
Suppose that (6.9) holds. By Remark 6.12(iii), there is a Borel function f
with f = 1p, p-a.e., such that

0=E&(1p,15B)
JJ x 2 A(dz, dy) (6.10)

JJ —15( ))2 A(dz, dy).

Suppose first that x¢ € B, where x¢ is as in Definition 6.15. From (6.10),

[ (7w = 1)" w0,y vias) =0,

andsov({y : f # 1, k(zo,y) > 0}) = 0. Therefore, again from (6.10), &(zo, {z :
1p(x) # 1}) = 0. That is, if £(xo, {z}) > 0, then x € B. Continuing in this
way, we get that if z € E° is such that "(x, {z}) > 0 for some n, then x € B.
Thus, E° € B and u(B) = 1. A similar argument shows that if zg ¢ B, then

w(B) = 0. |

Ezample 6.17. Suppose that we are in the setting of Example 6.1 with £° = N.
Let p be an arbitrary fully supported probability measure on N and put
v = . In order that the conditions of Theorem 6.4 hold we only need & to
satisfy > .y #(z,0)u({z}) = . The conditions of Proposition 6.16 will hold
if and only if k(z,00) > 0 for all z € N.
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Ezxample 6.18. We recall the Dirichlet form for the wild chain. Here £ = T*
from Example 6.10, p is the PGW(1) distribution and v is the distribution of
a PGW(1) tree “conditioned to be infinite”. A more concrete description of
v is the following. Each y € T# has a unique path (ug, u1, us,...) starting at
the root. There is a bijection between T% and T, x T« x ... that is given
by identifying y € T with the sequence of finite trees (yo,y1,y2,...), where
y; is the tree rooted at u; in the forest obtained by deleting the edges of the
path (ug,u1,us,...) — see Figure 6.2.

Fig. 6.2. The bijection betweenT¥ and T<,, X T<op X ...

The probability measure v on TZ is the push—forward by this bijection of
the probability measure p x g x ... on Teo X Tegy X ...

Rather than describe k(x,y) explicitly, it is more convenient (and equally
satisfactory for our purposes) to describe the measures

q'(x, dy) := k(z,y) v(dy)
for each x and
¢*(y, dx) := k(z,y) p(dz)

for each y. Given z € T, y € T%, and a vertex u of z, let (z/ufy) € T%
denote the tree rooted at the root of x that is obtained by inserting a new
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edge from u to the root of y. Then

0 @ f)i= 3, [ afufn) vidy) (6.11)
uceT
for f a non-negative Borel function on T*.

For y € T% with infinite path from the root (ug,u1,usz,...) and ¢ € Ny,
removing the edge (u;,u;+1) produces two trees, one finite rooted at ug and
one infinite rooted at u; 1. Let k;(y) € T <, denote the finite tree. Then (6.11)
is equivalent to

7y, f) =D f(kilw)) (6.12)
ieNg
for f a non-negative Borel function on T*.

Let us now check the conditions of Theorem 6.4. Condition (a) is obvious.
Turning to condition (b), recall that any R € R is of the form {z : p,(x) € B}
for some n € N and finite or co-finite B € Tg,, where p, is defined in
Example 6.2. Note that [(T*\R) x R] u [R x (T*\R)] € {(z,y) : pn(z) #
on(y)}. Moreover, if y € T% is of the form (z/u/y’) for some v € z and
y' € T%  then p,(x) # pn(y) if and only if u has height less than n. Therefore,
by (6.11),

A((T*\R) x Rl u [R x (T*\R)]) < f#(pnfl(ff))u(dx) =n,

where we recall that the expected size of the k'" generation in a critical
Galton-Watson branching process is 1.
It is immediate from (6.12) that

f k() ul(dr) = ¢y, 1) = 0

for v = v, almost every y, and so condition (c) holds.

Finally, consider condition (d). Put S, . = {z : #(pn(z)) < c}. We
will take R, = Sp., for some sequence of constants (c,)neny. Note that
ﬂ;:n Sm.c,, 18 compact for all n, whatever the choice of (¢;)nen. By choos-
ing ¢, large enough, we can certainly make pu(T*\S,.,) < 27". From the
argument for part (b) we know that [(T*\Sy,¢) X Sn.c] U [Sn,e X (T*\Sn.,c)] =
Sn.c X (T*\S,,,c) is contained in the set {(z,y) : pn(z) # pn(y)} that has finite
A measure. Of course, lim._,,, T*\S,, . = . Therefore, by dominated conver-
gence, lime_,. A([(T*\Sn.c) X Sn,c] U [Sn,c X (T*\Sn.c)]) =0, and by choosing
¢, large enough we can make A([(T*\Sy.c,.) X Sn.c, ] U [Sn.c,, X (T¥\Sp.c,)]) <
27",

It is obvious that the extra bipartite chain conditions hold with E° = T ...
The condition of Proposition 6.16 also holds. More specifically, we can take
xo in Definition 6.15 to be the trivial tree consisting of only a root. By (6.11)
and (6.12), the measure £™(xo, -) assigns positive mass to every tree z € T,
with at most n children in the first generation (that is, x € T, such that
#(p1(x)) <n+1), and so X is indeed graphically irreducible.
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Ezample 6.19. Suppose that we are in the setting of Example 6.8 with #S < o
(so that E is compact) and E° the set {x : {(x) < o0}, as above. Note that
E* = SN Fix a probability measure P on S with full support, an S x S
stochastic matrix ) with positive entries and a probability measure R on Ny.
Define a probability measure p on E° by pu({x : {(z) =n, 20 = S0, ., Tn_1 =
Sn—1}) = R(n)P(s0)Q(s0,81) .- Q(Sn—2,Sn—1). In other words, p is the law
of a Markov chain with initial distribution P and transition matrix @ killed
at an independent time with distribution R. Define v on E* by v({sg} x --- x
{sn} xS xS x...) = P(so)Q(s0,51)-.-Q(Sn—1,5,). Thus, v is the law of
the unkilled chain with initial distribution P and transition matrix @. Define
k(z,y) for z € E° and y € E* by k(z,y) = K({(x))1,<, for some sequence of
non-negative constants K(n), n € Ny.

In order that the conditions of Theorem 6.4 hold, we only need K
to satisfy >, ., K(((z))u({z}) = oo for v-a.e. y € E*. For example, if
¢x = ming ¢ Q(s,s'), then it suffices that >, .y K(n)R(n)gy = oo. In
particular, if v is the law of a sequence of i.i.d. uniform draws from S
(so that P(s) = S(s,s') = (#S)7! for all 5,58’ € S), then we require
Sen, K(m)R(n)(#8) " = oo.

In general, X will be graphically irreducible with 2o = (0,0,...) (and,
therefore, the condition of Proposition 6.16 holds) if K(n) > 0 for all n € Ny.

6.5 Quotient processes

Return to the general set-up of Theorem 6.4. Suppose that R’ is a subalgebra
of R and write C’ for the subalgebra of C generated by the indicator functions
of sets in R’. We can define an equivalence relation on F by declaring that
x and y are equivalent if f(z) = f(y) for all f € C’. Let E denote the corre-
sponding quotient space equipped with the quotient topology and denote by
7 : E — E the quotient map. It is not hard to check that E is a Lusin space
and that the algebra R := {rR : R € R’} consists of simultaneously closed and
open sets and is a base for the topology of E. Write C for the algebra generated
by the indicator functions of sets in R. Note that ' = {for: f € C}.

Proposition 6.20. Suppose that the following hold:

(a) p=v;

(b) there exists a Borel function & : Ex E — R, such that r(z,y) = R(mx, TY)
for mx # wy;

(c) E is compact;

(d) pr:[f] := plflo(R")] = plflo(r)] has a version in C' for all f € C.

Then the hypotheses of Theorem 6.4 hold with E, R, C, u, v, k replaced by
E,R,C, i, , R, where i = U is the push-forward of p = v by w. Moreover,
if (,D(€)) denotes the resulting Dirichlet form, then mo X is a fi-symmetric
Hunt process with Dirichlet form (€, D(E)).
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Proof. 1t is clear that the hypotheses of Theorem 6.4 hold with E, R,C, u, v, k
replaced by E,R,C, [i, 7, k.

Let (T})¢>o denote the semigroup on L2(FE, 1) corresponding to &. The
proof o X is a fi-symmetric Hunt process with Dirichlet form (&, D(£)) will
be fairly straightforward once we establish that T;(f o ) = (T;f) o 7 for all
t > 0and f e L2(E, i) (see Theorem 13.5 of [128] for a proof that this suffices
for m o X to be a Hunt process — the proof that 7o X is -symmetric and the
identification of the associated Dirichlet form are then easy). Equivalently,
writing (G )as0 and (G4 )a=o for the resolvents corresponding to (T});=0 and
(Tt)1=0, we need to establish that Go(f o) = (Gof) o for all @ > 0 and
f € L?(E, ). This is further equivalent to establishing that (Go f) o € D(E)
and E(Gof)om, g)+a((Gaf)om, g), = (fom,g), for all g € C - see Equation
(1.3.7) of [72].

Fix f € L?(E, i) and g € C. By assumption, pr[g] = gom for some g € C.
Also, it is fairly immediate from the definition of E that h € D(€) if and only
if hom € D(E), and that £(h,h) = E(hon, hor). Hence, by Remark 6.12(iii),

E(hom,g) ” hom(y om(x)) (9(y) — g(x)) Aldz, dy)

= [ Gerw -Forw) (o) - gt Atdr.ay
{(z.y)ra#my}

~ [[ (o m0) ~ o w(@)) (906) - 9(@) Rl my) o) oty
~ [[ (o m0) = o 7)) (i l910) — 910 R, ) i) )
~ [[ (o mt0) = Row@) (g0 1) — g m(@) R, ) i) i)

j j )) (@(w) - g(0)) Ao, w) A do) Adw)
=&(h, g).

Of course,

Therefore,
E(Gaf)om )+ a((Gaf) om 9)u = E(Gaf,5) + a(Gaf, 9)
= (fag)ﬁ = (fO’]T’gO’]T)M = (foﬂ-7g)ﬂa
as required. O

We will see an application of Proposition 6.20 at the end of Section 6.7.

6.6 Additive functionals

We are still in the general setting of Theorem 6.4.
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Proposition 6.21. The probability measure v assigns no mass to sets of zero
capacity, and there is a positive continuous additive functional (Ay)i=o with
Revuz measure v.

Proof. The reference measure p assigns no mass to sets of zero capacity, so it

suffices to show that v, assigns no mass to sets of zero capacity. For M > 0

put Gar = {y : {[r(z,y) A M] p(dz) = 1} and define a subprobability measure

vM by vM := vy(- n Gr). By (c) of Theorem 6.4, vs(E\|J,; Gum) = 0, and so

it sufﬁces to show for each M that vM assigns no mass to sets of zero capacity.
Observe for f € C that

<j|f<y Mdy> Jf i) < [[ £2) 4 )
(H )2 AM (dz, dy) + J 2(z) AM (da, dy))

20 M) (ECf, f) + (fs Fu) -

The development leading to Lemma 2.2.3 of [72] can now be followed to show
that for all Borel sets B we have v (B) < Cp;Cap(B)Y? for a suitable
constant Cp; (the argument in [72] is in a locally compact setting, but it
carries over without difficulty to our context).

The existence and uniqueness of (A;):»¢ follows from Theorem 5.1.4 of
[72]. o

Remark 6.22. In the bipartite chain case, the distribution under P* of X,
where ¢ := T{x,}, is mutually absolutely continuous with respect to v, and
Proposition 6.21 is obvious.

6.7 Bipartite chains on the boundary

Return to the bipartite chain setting. Following the construction in Section
6.2 of [72], let 'Y denote the process X time-changed according to the positive
continuous additive functional A. That is, Y; = X%5 where v = inf{s > 0 :
A > t}. Write E for the support of A. We have E € E = suppv € E* and
v(E\E) = 0.
Let R={RnE:ReR}andput C = {f|E f € C}. Note that C is also

the algebra generated by R.

Theorem 6.23. The process Y is a recurrent v-symmetric Hunt process wit@
state—space E and Dirichlet form given by the closure of the form £ on C
defined by

9 = f f (FW) = £() (9@) — 9(=)) £y, 2) v(dy) w(d2), f.g€C,
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where

w(0.2) = [ o) D s )

(z,w) v(dw)
(with the convention 0/0 = 0).

Proof. By Theorem A.2.6 and Theorem 4.1.3 of [72],
PY{oz =0} =1for qe. ye E.

Hence, for q.e. y € E we have limejoinf{t > €: X; € E} = 0, PY-a.s. More-
over, it follows from parts (i) and (ii) of Proposition 6.14 and the observation
v(E\E) = 0 that for q.e. y € E/ we have inf{t > e: X, € E} = inf{t > ¢: X, €
E’} for all € > 0, P¥-a.s. Combining this with Proposition 6.21 gives

PY{o; =0} = 1for g.e. and v-a.e. y € E.

Define H f(x) := P*[f(X,,)] for f a bounded Borel function on E. It
follows from part (i) of Proposition 6.14 and what we have just observed that

Hif(x) = RAOLICGE) y(dy)’ for p-a.e. x

§w(z,y) v(dy)

and
Hgf(x) = f(x), for v-a.e. x.

The result now follows by applying Theorem 6.2.1 of [72]. (]

Ezample 6.24. Suppose that we are in the setting of Example 6.19. For
y,2 € B* = SNo_ ¢ # 2 define §(y,2) = inf{n : y, # 2,}. Note that
Sa(@,w)v(dw) = K((@@)v({w : o < w}) = K(C(z)u({z})/R(((z)) for

x € F° and so
Ky, z) = Z K(n)R(n). (6.13)

n<o(y,z)

We will now apply the results of Section 6.5 with E, X, u, € replaced by
E =F*= 5% Y y £ Fix N € Ny and let R’ be the algebra of subsets of SN
of the form Byx---x By xSxSx. ... We can identify the quotient space E with
SN+1 and the quotient map 7 with the map (yo,y1,...) = (yo,-..yn). Then
we can identify fi, which we emphasise is now the push—forward v by m, with
the measure that assigns mass P(s9)Q(s0,51) ... Q(sn_1,5n) to (s0,.-.5N)-
Note that 7y # 7z for y,z € SY° is equivalent to d(y,z) < N, and it is
immediate from (6.13) that Proposition 6.20 applies and oY is a fi-symmetric
Markov chain on the finite state-space S™V*1. In terms of jump rates, 7 o Y
jumps from § to z # § at rate (X, <555 K(n)R(n))a({z}), where §(y, 2) is
defined in the obvious way.

As a particular example of this construction, consider the case when
#S = p°¢ for some prime p and integer ¢ = 1. We can identify SN (as
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a set) with the ring of integers D of a local field K as in Example 6.9.
If we take P(s) = Q(s,s’) = p~¢ for all s, € S, then we can identify
v with the normalised Haar measure on . It is clear that Y is a Lévy
process on D with “spherically symmetric” Lévy measure ¢(|y|) v(dy), where
d(p~") = Xy_o K(£)R(¢). The condition Y .\ K(n)R(n)p~" = o of Ex-
ample 6.19 is equivalent to {, ¢(|y|) v(dy) = 0. Conversely, any Lévy process
on D with Lévy measure of the form v (|y|) v(dy) with ¢ non-increasing and
§p ¥ (Jy|) v(dy) = © can be produced by this construction (Lévy processes on
D are completely characterised by their Lévy measures — there is no analogue
of the drift or Gaussian components of the Euclidean case, see [59]). The lat-
ter condition is equivalent to the paths of the process almost surely not being
step—functions, that is, to the times at which jumps occur being almost surely
dense. When (|y|) = aly|~(**Y for some a > 0 and 0 < a < oo, the resultant
process is analogous to a symmetric stable process. Lévy processes on local
fields and totally disconnected Abelian groups in general are considered in [59]
and the special case of the p-adic numbers has been considered by a number
of authors — see Chapter 1 for a discussion.






7

Diffusions on a R-tree without leaves: snakes
and spiders

7.1 Background

Let (T,d) be a R-tree without ends as in Section 3.4. Suppose that that there
is a o-finite Borel measure p on the set on E, of ends at 400 such that
0 < u(B) < oo for every ball B in the metric §. In particular, the support of
wisall of Ey.

The existence of such a measure p is a more restrictive assumption on 7'
than it might first appear. Let i be a finite measure on F, that is equivalent
to p. Recall from (3.4) that T}, t € R, is the set of points in T with height
t. As we remarked in Section 3.4.2, the set {( € E, : (|t = x} is a ball in
FE, for each x € T; and two such balls are disjoint. Because the pi measure
of each such ball is non—zero, the set T} is necessarily countable. Hence, by
observations made in Section 3.4.2, both the complete metric spaces 1" and
E, are separable, and, therefore, Lusin.

We will be interested in the T—valued process X that evolves in the fol-
lowing manner. The real-valued process H, where H; = h(X;), evolves as a
standard Brownian motion. For small € > 0 the conditional probability of the
event {X;.. € C} given X; and H is approximately

ply :ylHipe € C, y|Hy = Xy}
ply ylHy = X4}

In particular, if Hy1. < Hy, then X, is approximately X;|H;, .. An intuitive
description of these dynamics is given in Figure 7.1.

This evolution is reminiscent of Le Gall’s Brownian snake process — see,
for example, [97, 98, 99, 100] — with the difference that the “height” process
H is a Brownian motion here rather than a reflected Brownian motion and
the role of Wiener measure on C'(R,,R?) in the snake construction is played
here by pu.
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Fig. 7.1. A heuristic description of the dynamics of X. When X is at position z
it makes an infinitesimal move up or down with equal probability. Conditional on
X moving down, it takes the branch leading to the set of ends A with probability
w(A)/(n(A) + p(B)) and the branch leading to the set of ends B with probability

w(B)/(1(A) + u(B)).

7.2 Construction of the diffusion process

For x € T and real numbers b < ¢ with b < h(x), define a probability measure
p(z,b,c;) on T by

b A) = uw{e Ey : E|ce A, £]b = x|b}
H“(Ia s G5 ) u{£EE+ £|b:m|b}

— see Figure 7.2.
Let (Bt, P*) be a standard (real-valued) Brownian motion. Write m; :=
info<s<t Bs. Recall that the pair (my, B;) has joint density

_ [2c¢—=2b+a (c—2b+ a)?
¢at(b,c) = \/;tg/2 exp <_2t ,b<anc,

under P — see, for example, Corollary 30 in Chapter 1 of [70].

Theorem 7.1. There is a Markov semigroup (Pt)¢=o on T defined by
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X
/ 7 ———~ c
’ A N N
~ s > A
PAARN - N N M
Vs N < AS s .
, e S 7 A ———

Fig. 7.2. The measure u(z,b,c;-) is supported on the set {y € T : h(y) = ¢, y|b =
z|b}, and the mass it assigns to the set A is the normalized p mass of the shaded
subset of F.

Py f(x) := P"®) [z, my, By; f)].

Furthermore, there is a strong Markov process (X, P*) on T with continuous
sample paths and semigroup (Py)i=0-

Proof. The proof of the semigroup property of (P;)¢>o is immediate from the
Markov property of Brownian motion and the readily checked observation
that for z,2' € T, b < ¢, b < h(z), and V' < ¢ A ¢ we have

Ju(x’,b’, s A) p(w, b, da’) = p(x,b A b, 5 A).

By Kolmogorov’s extension theorem, there is a Markov process (X, P*)
on T with semigroup (P;)¢=0. In order to show that a version of X can be
chosen with continuous sample paths, it suffices because (T, d) is complete and
separable to check Kolmogorov’s continuity criterion. Because of the Markov
property of X, it further suffices to observe for @ > 0 that, by definition of
(Pt)t=o0,
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P* [d(z, X¢)?]
_ phia) [S[h(g;) + h(&|Br) — 2h(z A (§]B1))]*1{E|my = xlmt}u(dé)]
IE € By : Elmy = almi}
< ph) [S[h(x) + By — 2my]*1{{|m; = wlmt}u(df)]
w{€ € By : &lmy = x|my}
CPM@) [|h(x) — mg|® + |me — Be|*]

<
<

for some constants C, C’ that depend on « but not on z € T

The claim that X is strong Markov will follow if we can show that P;
maps bC(T) into itself — see, for example, Sections II1.8, 111.9 of [120]. Tt is
assumed there that the underlying space is locally compact and the semigroup
maps the space of continuous functions that vanish at infinity into itself, but
this stronger assumption is only needed to establish the existence of a process
with cadlag sample paths and plays no role in the proof of the strong Markov
property). By definition, for f € bB(T) and ¢t > 0

(M@ % § f(E]e)L{E]b = x|} pu(de)
Ptf(w)‘f_% by €€ By &b =x[b}

— _ 2
X\FC 2b + h(z) exp C(e=2b+h@)*N o
™ 3/2 2t

for t > 0. The right-hand side can be written as Sf% S:{v Fy (b, c)dedb for
a certain function Fy ;. Recall from (3.2) that |h(z) — h(z’)| < d(z,2). Also,
if b < h(z), then 2'|b = z|b for 2’ such that d(z,z’) < h(z) — b. There-
fore, limgr_,5 Fr 2(b,¢) = Fy (b, c) except possibly at b = h(x). Moreover, if
sup, |f(z)] < C, then |Fy (b, c)| < CF z(b, c). Because

L L L
lim J J Fip(b,c)dcdb=lim 1 =1= J J Fy »(b,c)dcdb,
-0 J-—wx -0 J-—w

' >x x>z

a standard generalization of the dominated convergence theorem — see, for
example, Proposition 18 in Chapter 11 of [121] — shows that if f € bB(T),
then P, f € bC(T) for t > 0. |

7.3 Symmetry and the Dirichlet form

Write A for Lebesgue measure on R. Consider the measure v that is obtained

by pushing forward the measure p® A on E; x R with the map (£,a) — £|a

— see Figure 7.3. Note that for z € T with h(xz) = h* and € > 0 we have
viye T :d(x,y) < €}

viye T :y|(h* —e) = z|(h* —¢), h* —e < h(y) < h* +¢}

depl € By €|(h* — €) = 3l (h* — o)},

NN
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v(dx) = u(A) dx R

@
:

Fig. 7.3. The definition of the measure v on T in terms of the measure y on E..

That is, v assigns finite mass to balls in 7" and, in particular, is Radon.

We begin by showing that each operator P, ¢ > 0, can be continuously
extended from bB(T) n L?(T,v) to L?(T,v) and that the resulting semigroup
is a strongly continuous, self-adjoint, Markovian semigroup on L?(T,v).

Observe that if f € bB(T'), then

h(z)nc 1{5|b—1’|b}
L+ J ,[ u{f € EJr £fo = x|b}¢ ),¢(b, ¢) dbde p(dE)

B (D2 1{alb = y|b)
B JTf(y) J—x pi§ e By E|b = x|b}

T — T —2b)?
SNERLGES ORI () h) =20 4y

h(z Ay) 1
N JT 1) fo pié € By b = x|b}
2 h(z) + h(y) — 2b h(z) + h(y) — 2b)?
) \/; D=2, (_( () + ) =20 ) dho(dy)

for t > 0. Consequently, P, f(x) = §,.p:(x,y)f(y) v(dy) for the jointly contin-
uous, everywhere positive transltlon density
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pt(m>y) = J‘_I N{f IS E+ : §|b = I|b}

o[ THD L 22 e

13/2 2t

h(zry) 1

(7.1)

Moreover, because p{€ € E; : &b = z|b} = p{€ € E; : £|b = y|b} when
b < h(xz A y) (equivalently, when z|b = y|b), we have pi(x,y) = p(y, ).
Therefore, there exists a self-adjoint, Markovian semigroup on L?(T,v) that
coincides with (P);=0 on bB(T) n L*(T,v) (cf. Sectionl.4 of [72]). With the
usual abuse of notation, we also denote this semigroup by (P;):=0.

Because v is Radon, bC(T) n LY (T, v) is dense in L*(T,v). It is immediate
from the definition of (P;)¢=o that lim, o Py f(z) = f(z) for all f € bC(T') and
x € T. Therefore, by Lemma 1.4.3 of [72], the semigroup (P;):>0 is strongly
continuous on L?(T,v).

We now proceed to identify the Dirichlet form corresponding to (P;):=o.

Definition 7.2. Let A denote the class of functions f € bC(T') such that there
exists g € B(T') with the property that

b

F(ED) - f(€la) = j g(Elu)du, €€ Er, —0<a<b<oo.  (72)

a

Note for £ € EL that if A € B(T) with A € [a,b], where —0 < a < b < 00,
then

p{C e Byt Clb = €b} MA) < viélu: ue A}
piC e By : Cla = €la} A(A).
Therefore, the function g in (7.2) is unique up to v-null sets, and (with the
usual convention of using function notation to denote equivalence classes of
functions) we denote g by Vf.

<
<

Definition 7.3. Write D for the class of functions f € An L*(T,v) such that
VfeL*T,v).

Remark 7.4. By the observations made in Definition 7.2, the integral

| " el du

is well-defined for any ¢ € Ey and g e L*(T,v).

Theorem 7.5. The Dirichlet form &£ corresponding to the strongly continu-
ous, self-adjoint, Markovian semigroup (Pi)i=o on L*(T,v) has domain D
and is given by

£(f.9) = 5 | VI@)Vala) (o). fge. (73)
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Proof. A virtual reprise of the argument in Example A.1 shows that the form
&’ given by the right-hand side of (7.3) is a Dirichlet form.

Let (G&)a>0 denote the resolvent corresponding to (P;)s=o: that is, G f =
§o e tPfdt for f € L*(T,v). In order to show that £ = &, it suffices
to show that Go(L*(T,v)) € D and &£.(Guf,g) := E'(Guaf,9) + a(f,g9) =
(f,g) for f € L*(T,v) and g € D, where we write (-,-) for the L*(T,v) inner
product. By a simple approximation argument, it further suffices to check that
Guo(bB(T) n L3 (T,v)) € D and &.(Gaf,g) = (f,g) for f € bB(T) n L*(T,v)
and g€ D

Observe that

f v e pat(byc)dt = 2exp (—\/Qa(c —2b+ a)) ,b<anc,
0

—see Equations 3.71.13 and 6.23.15 of [143]. Therefore, for f € bB(T)nL*(T, v)
we have

hiz) pro
Gof(z) = 2J, f w(z, b, ¢; f)ef‘/ﬁ(cfzﬂh(z)) dcdb. (7.4)
—a Jb

Thus, G, f € A with

V(Gaf)(x) =2 j( b NI e

—V2aG, f(x).
In order to show that G, f € D is remains to show that the first term on

the righ-hand side of (7.5) is in L?(T,v). By the Cauchy-Schwarz inequality
and recalling the definition of T} from (3.4),
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[ [ [ wten),epemvese h<f>>dc] V()

T h(x)
sl g, FEla = hud) e T
D 2eT, M{f §|a - .’L‘} ) C
x p{€ : €la = JL‘}d@

J Je., SEleLiele = wju(ae)* o
. i€ Ea = 2} ‘ ‘

sl z]

Xu{£'£|a=x}d
Sp, FPEle)1la = zhu(dd) _ o
,[ i€ = Ela = o} ‘ e

- x€T,

QM J;f x€Ty,
x € : €la = v} da

s | [ [E+f (Eon <df)1 e e da
f ), P denas - ffz

as required.
From (7.5) we have for g € D that

&'(Gaf,9)

[ [ el ne v de] voeo nagraa g o
5VEa [ [ Gur@ Vst uae

Consider the first term on the right-hand side of (7.6). Note that it can
be written as

f J S, F(€ (1€l = 2}ld) _ ooy
A i€ €la =1}

x Vg(x)p{€ : €la = x} da (7.7)

_ j_ [ [ f " fafe)evERte-o dc] Vg(€la) p(de) da

Substitute (7.7) into (7.6), integrate by parts, and use (7.5) to get that
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£Gut.o) = [ [ scosteloydapia
e | jf Il " flaleyemvaste=a) dc] 9(€la) da pu(de)
wa [ J U el 0. £)em ) de g(elo) da )
~a fE+ " Guf(€l)g(€la) da u(da).

Argue as in (7.7) to see that the second and third terms on the right-hand
side cancel and so

(‘:/(Gaf)g) = (f’ g) - a(Gaf,g),

as required. O

Remark 7.6. We wish to apply to X the theory of symmetric processes and
their associated Dirichlet forms developed in [72]. Because T is not generally
locally compact, we need to to check that the conditions of Theorem A.8 hold
— see Remark A.9.

We first show that conditions (a)—(c) of Theorem A.8 hold. That is, that
there is a countably generated subalgebra C € bC(T') n D such that C is &;—
dense in D, C separates points of T', and for each x € T there exists f € C with
f(x) > 0. Let Cy be a countable subset of bC(T) n L?(T,v) that separates
points of T" and is such that for every x € T there exists f € Co with f(z) > 0.
Let C be the algebra generated by the countable collection [ J, GoCo, where
the union is over the positive rationals. It is clear that C is & -dense in D. We
observed in the proof of Theorem 7.1 that P, : bC(T) — bC(T) for all t = 0
and limy g P, f(x) = f(x) for all f € bC(T). Thus, G, : bC(T') — bC(T) for all
a >0 and limy—yo oGy f(x) = f(z) for all f e bC(T). Therefore, C separates
points of T" and for every x € T there exists f € C with f(z) > 0.

It remains to check that the tightness condition (d) of Theorem A.8 holds.
That is, for all € > 0 there exists a compact set K such that Cap(T\K) < €
where Cap denotes the capacity associated with £;. However, it follows from
the sample path continuity of X and Theorem IV.1.15 of [106] that, in the
terminology of that result, the process X is v-tight. Conditions IV.3.1 (i) — (iii)
of [106] then hold by Theorem IV.5.1 of [106], and this suffices by Theorem
II1.2.11 of [106] to establish condition that (d) of Theorem A.8 holds.

7.4 Recurrence, transience, and regularity of points

The Green operator G associated with the semigroup (F;);>0 is defined by
Gf(z) = So P, f(z)dt = supy.oGaf(x) for f € pB(T). In the terminology
of [72] we say that X is transient is Gf < oo, v-a.e., for any f € L' (T,v),
whereas X is recurrent if Gf € {0, 0}, v-a.e., for any f € L} (T,v).
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As we observed in Section 7.3, X has symmetric transition densities
pe(x,y) with respect to v such that pi(x,y) > 0 for all z,y € T. Conse-
quently, in the terminology of [72], X is irreducible . Therefore, by Lemma
1.6.4 of [72], X is either transient or recurrent, and if X is recurrent, then
Gf = o for any f e L. (T,v) that is not v-a.e. 0.

Taking limits as o | 0 in (7.4), we see that

Gf@)=fsmmwﬂmvww,

T
where
h(z Ay) 1
sz e -
h{zay) 1
ZQLm W€ e = yy
Note that the integrals
Ja ;db, aeR, (e Fy, (7.9)
o 1{E < €]b = ([b}

are either simultaneously finite or infinite. The following is now obvious.

Theorem 7.7. If the integrals in (7.9) are finite (resp. infinite), then g(z,y) <
oo (resp. g(x,y) = ) for all x,y € T and X is transient (resp. recurrent).

Remark 7.8. For B € B(T') write op := inf{t > 0 : X; € B}. We note from
Theorem 4.6.6 and Problem 4.6.3 of [72] that if P*{op < o0} > 0 for some
x € T, then P*{op < o0} > 0 for all z € T. Moreover, if X is recurrent, then
P*{op < o} > 0 for some x € T implies that PP"{VN e N, 3t > N : X; € B} =
lforallzeT.

Given y € T', write o, for o¢,,. Set C = {z € T : y < z}. Pick < y with
x # y. By definition of (P;);>0, P*{X; € C} > 0 for all ¢ > 0. In particular,
P*{occ < oo} > 0. It follows from Axioms I and II that if v : Ry +— T is
any continuous map with {z,z} < y(R,) for some z € C, then y € y(R,)
also. Therefore, by the sample path continuity of X, P*{o, < oo} > 0 for this
particular choice of x. However, Remark 7.8 then gives that P*{o, < cc} >0
for all x € T. By Theorem 4.1.3 of [72] we have that points are regular for
themselves. That is, P*{o, =0} =1forallz e T.

7.5 Examples

Recall the the family of R-tree without ends (7, d) construction in Subsec-
tion 3.4.3 for a prime number p and constants r_,r. > 1.



7.6 Triviality of the tail o—field 115

In the notation of Subsection 3.4.3, define a Borel measure p on E as
follows. Write ... < w_; S wg =1 < w; < wy < ... for the possible values of
w(-,-). That is, wg, = Zf:o ri if k > 0, whereas wy, = 1 — Zi;ko rt if k< 0.
By construction, closed balls in E, all have diameters of the form 27" for
some k € Z and such a ball is the disjoint union of p balls of diameter 27"k+1.
We can, therefore, uniquely define p by requiring that each closed ball of
diameter 2~%* has mass p—*. The measure x is nothing but the (unique up
to constants) Haar measure on the locally compact Abelian group F, .

Applying Theorem 7.7, we see that X will be transient if and only if

ZkeNo p~Fr¥ < oo, that is, if and only if r_ < p. As we might have expected,

transience and recurrence are unaffected by the value of ry: Theorem 7.7
shows that transience and recurrence are features of the structure of T' “near”

T, whereas r; only dictates the structure of the T “near” points of F .

7.6 Triviality of the tail o—field

Theorem 7.9. For all x € T the tail o—field [),5q0{X; : t = s} is P*~trivial
(that is, consists of sets with P*—measure 0 or 1).

Proof. Fix x € T. By the continuity of the sample paths of X, 0, = inf{t >
0 : h(X:) = a}. Because h(X) is a Brownian motion, this stopping time is
P?-a.s. finite. Put Ty := 0 and T := 04|(n(z)-k) for k =1,2,... By the strong
Markov property we get that P*{T} < Tp < --- < w0} = 1. Set Xg(t) :=
X (T +1t) ATi+q1) for k =0,1,... Note that the tail o-field in the statement
of the result can also be written as [,5, o {(T¢, X¢) : £ > k}.

By the strong Markov property, the pairs ((Tx+1 — Tk, Xk))ken, are in-
dependent. Moreover, by the spatial homogeneity of Brownian motion, the
random variables (Ti+1 — Tk )ken, are identically distributed. The result now
follows from Lemma 7.10 below. m]

Lemma 7.10. Let {(Y,, Zn) nen be a sequence of independent R x U-valued
random variables, where (U,U) is a measurable space. Suppose further that

that the random variables Y, , n € N, have a common distribution. Put W, :=
Y1 4 ...+ Y,. Then the tail o—field (), e 0{(Whn, Zy) : 0 = m} is trivial.

Proof. Consider a real-valued random variable V' that is measurable with
respect to the tail o—field in the statement. For each m € N we have by
conditioning on o{W,, : n = m} and using Kolmogorov’s zero—one law that
there is a o{W,, : n = m}-measurable random variable V,;, such that V,, =V
almost surely. Consequently, there is a random variable V'’ measurable with
respect to (),,eny 0{Wsn : n = m} such that V' = V almost surely, and the
proof is completed by an application of the Hewitt—Savage zero—one law. o

Definition 7.11. A function f € B(T x Ry) (resp. f € B(T)) is said to be
space—time harmonic (resp. harmonic ) if 0 < f < 00 and Psf(-,t) = f(-, s+t)
(resp. Psf = f) for all s,t = 0.



116 7 Diffusions on a R-tree without leaves: snakes and spiders

Remark 7.12. There does not seem to be a generally agreed upon convention
for the use of the term “harmonic”. It is often used for the analogous definition
without the requirement that the function is non-negative, and P, f(x) =
P*[f(X})] is sometimes replaced by P*[f(X,)] for suitable stopping times 7.
Also, the terms invariant and regular are sometimes used.

The following is a standard consequence of the triviality of the tail o—field
and irreducibility of the process, but we include a proof for completeness.

Corollary 7.13. There are no non—constant bounded space—time harmonic
functions (and, a fortiori, no non—constant bounded harmonic functions).

Proof. Suppose that f is a bounded space-time harmonic function. For each
x € T and s = 0 the process (f(Xt, s + t))t=0 is a bounded P*—martingale.
Therefore lim;—,o, f(X¢, s+t) exists P*-a.s. and f(x, s) = P*[limy o f( X, s+
t)] = imy— o, f(Xe, s +t), P*-a.s., by the triviality of the tail. By the Markov
property and the fact that X has everywhere positive transition densities with
respect to v we get that f(s,z) = f(t,y) for v-a.e. y for each ¢t > s, and it is
clear from this that f is a constant. m]

Remark 7.14. The conclusion of Corollary 7.13 for harmonic functions has
the following alternative probabilistic proof. By the arguments in the proof
of Theorem 7.9 we have that if n € Z is such that n < h(z), then P*{o,, <
Ol(n=1) < Oa|(n—2) < *+* < o0} = 1. Suppose that f is a bounded harmonic
function. Then f(x) = P*[limso f(X¢)] = limg—o f(z]|(—k)). Now note for
each pair z,y € T that z|(—k) = y|(—k) for k € N sufficiently large.

7.7 Martin compactification and excessive functions

Suppose in this section that X is transient. Recall that f € B(T) is excessive
for (Py)i=0 if 0 < f <00, P,f < f, and lim; o P, f = f pointwise. Recall the
definition of harmonic function from Section 7.6. In this section we will obtain
an integral representation for the excessive and harmonic functions.

Fix g € T and define k : T'x T' — R, the corresponding Martin kernel ,
by

k(z,y) = 9(z,y) _ Si(zw) ui€  €Elb=ylb}~Ldb
) g(@o,y) — (PC e elb = ylby-1db

(7.10)
h(x A —
S e gfb = o)t db
= ch(zon :
§70Y) e €lb = wolby =1 db
Note that the function k is continuous in both arguments and
0 < P{oy, < o} < k(o y) = 208 =P} Cprog, =1 <o

~ Pro{g, < o}
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We can follow the standard approach to constructing a Martin compactifi-
cation when there are well-behaved potential kernel densities (e.g. [94, 108]).
That is, we choose a countable, dense subset S < T and compactify T' using
the sort of Stone—Cech-like procedure described in Section 3.4.2 to obtain
a metrizable compactification T™ such that a sequence {y,}nen < T con-
verges if and only if lim,, k(x,y,) exists for all z € T. We discuss the analytic
interpretation of the Martin compactification later in this section. We inves-
tigate the probabilistic features of the compactification and the connection
with Doob h-transforms in Section 7.8. We first show that T coincides with
the compactification T of Section 3.4.2.

Proposition 7.15. The compact metric spaces T and T™ are homeomorphic,
so that TM can be identified with T U E. If we define

§D e glb = plby " db
§ronm e s glb = by =1 db

k(x,n) = zeT,neT v Ey,,

and k(x,1) = 1, then k(x,) is continuous on T U E. Moreover,

sup sup k(z,n) < o0
reEBneETUE

for all balls B T.

Proof. The rest of the proof will be almost immediate once we show for a
sequence {Y,}nen € T that lim, k(x,y,) exists for all x € T if and only if
lim,, h(x A y,) exists (in the extended sense) for all z € T'.

It is clear that if lim, h(x A y,) exists for all € T, then lim, k(z,y,)
exists for all x € T'.

Suppose, on the other hand, that lim, k(z,y,) exists for all x € T but
lim,, h(z’ A y,) does not exist for some 2’/ € T. Then we can find € > 0 and
a < h(z') — € such that 2" := 2'|a € T, liminf, h(z' A yn) < a — ¢, and
limsup,, h(z' Ayn) = a+e. This implies that for any N € N there exists p, g >
N such that h(z” Ayp) = h(z' Ayp) and h(2” Ayg) = a < a+€/2 < h(z' AYq).
Thus, we obtain the contradiction

! !
lim inf M = lim inf w

=1
n k(2" yn) no g, yn)

)

while

k( — i sup 22 ¥n)

n k(‘r”7y7’b) n g(‘r”ayn)
P e b = 2/ b} db
T u{e€lb=a'b}Ldb
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The following theorem essentially follows from results in [108], with most
of the work that is particular to our setting being the argument that the points
of FE, are, in the terminology of [108], . Unfortunately, the standing assump-
tion in [108] is that the state—space is locally compact. The requirement for
this hypothesis can be circumvented using the special features of our process,
but checking this requires a fairly close reading of much of [108]. Later, more
probabilistic or measure-theoretic, approaches to the Martin boundary such
as [b1, 74, 73, 86] do not require local compactness, but are rather less con-
crete and less pleasant to compute with. Therefore, we sketch the relevant
arguments.

Definition 7.16. An excessive function f is said to be a potential if
t—C
(The term purely excessive function is also sometimes used.)

Theorem 7.17. If u is an excessive function, then there is a unique finite
measure v on T = T U E such that u(zx) = §, 5 k(z,n)y(dn), x € T. Fur-
thermore, w is harmonic (resp. a potential) if and only if v(T) = 0 (resp.

A(E) = 0).

Proof. From Theorem XII.17 in [43] there exists a sequence {fn}nen of
bounded non—negative functions such that Gf, is bounded for all n and
Gfi(z) < Gfa(x) < ... < Gfn(x) T u(z) asn — oo for all z € T'. Define a mea-
sure v, by Y (dy) := g(x0,y) fu(y) v(dy), so that Gf,(x) = § k(z,y) ya(dy).
Note that v,(T) = Gfn(zg) < u(zg) < 0. We can think of {7, }neny as a
sequence of finite measures on the compact space T with bounded total mass.
Therefore, there exists a subsequence (n¢)een such that v = limy v, exists in
the topology of weak convergence of finite measures on 7. By Proposition 7.15,
each of the functions k(z,-) is bounded and continuous, and so

| k) =t [ k) o)
TuE TUE

= lim L k(x,y) Yn, (dy)

= 1 G, (2) = u().

This completes the proof of existence. We next consider the the uniqueness
claim.

Note first of all that the set of excessive functions is a cone; that is, it
is closed under addition and multiplication by non-negative constants. This
cone has an associated strong order: we say that f « g for two excessive
functions if g = f + h for some excessive function h. As remarked in XII.34 of
[43], for any two excessive functions f and g there is a greatest lower bound
excessive function h such that h « f, h « g and I/ « h for any other excessive
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function A’ with &' « f and b/ « g. There is a similarly defined least upper
bound. Moreover, if h and k are respectively the greatest lower bounds and
least upper bounds of two excessive functions f and g, then f 4+ g = h + k.
Thus, the cone of excessive functions is a lattice in the strong order.

From Proposition 7.15, all excessive functions are bounded on balls and
a fortiori v—integrable on balls. Thus, the excessive functions are a subset
of the separable, locally convex, topological vector space Li (T, v) of locally
v-integrable functions equipped with the metrizable topology of L!(T,v) con-
vergence on balls.

Consider the convex set of excessive functions u such that u(zo) = 1. Any
measure appearing in the representation of such a function u is necessarily a
probability measure. Given a sequence {u, }nen of such functions, we can, by
the weak compactness argument described above, find a subsequence (un, ) e
that converges bounded pointwise, and, therefore, also in LIIOC(T7 v), to some
limit u. Thus, the set of excessive functions u such that u(zg) = 1 is convex,
compact and metrizable.

An arbitrary excessive function is a non-negative multiple of an excessive
function u with u(xzg) = 1. Consequently, the cone of excessive functions is a
cone in a locally convex, separable, topological vector space with a compact
and metrizable base and this cone is a lattice in the associated strong order.
The Choquet uniqueness theorem — see Theorem X.64 of [43] — guarantees that
every excessive function u with u(zg) = 1 can be represented uniquely as an
integral over the extreme points of the compact convex set of such functions.

Write k,, for the excessive function k(-,7n), n € T'u E. The uniqueness claim
will follow provided we can show for all n € T U E that the function k, is an
extreme point. That is, we must show that if k, = . .k, v(dn’) for some
probability measure -y, then ~y is necessarily the point mass at 7.

Each of the functions &, y € T, is clearly a potential. A direct calculation
using (7.4), which we omit, shows that if £ € E, then aG.ke = ke for all
o > 0, and this implies that k¢ is harmonic. Thus, lim;_,.. Pk, is either 0 or
k,, depending on whether n € T or € E. In particular, if k,, = STUE ey ~y(dn),
then

tli}H;\: Ptkn = JTUE tlin’}c Ptkn’ ’y(dnl) = fE knl 'Y(dn’)
Thus, v must be concentrated on T'if n e T and on E if n € E.
Suppose now for y € T that

ky(z) = L by (2) 7 (dy)

or, equivalently, that

glz,y) [ 9(=,y) /
9(zo,y) JT 9(z0, ") ().

Thus, we have
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f g,y n(dy) = f o(e.y) p(dy)
T T

where 7 is the measure d,/g(xo, y) and p is the measure y/g(zo,-). Let g, be
the kernel corresponding to the operator G; that is,

Gf(x) = L G, 4) () v(dy).

It is straightforward to check that a«G,G = G — G, (this is just a special
instance of the resolvent equation). Thus

j gz, y) (dy) = f ga(z,9/) pl(dy)
T T

and
JT L f(@)go(z,y") w(dy") v(dz) = L L F(@)galz, ) pldy’) v(dz)

for any bounded continuous function f. Since g, is symmetric,

j F(@) gz, o) (dz) = j dal/ ) f(z) v(da).
T T
Moreover,

zeT

o L 9oy 2)f(2) v(d) < sup|f(2)

and

lim, o | gu )7 (e) vide) = 5(5)
for all y' € T. Thus, §. f(y') n(dy’) = §, f(%/') p(dy’) for any bounded contin-
uous function f, and m = p as required. The argument we have just given is
essentially a special case of the principle of masses — see, for example, Propo-
sition 1.1 of [75].

Similarly, suppose for some & € E.. that ke(x) = §,, ker(2) y(d€). Forx € T
and a > h(z A §)
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kf (ZIJ) =P [kf (Xog\a )]

_ g(w,&a) "
= g(Ea ey E1e-S)

D) e b = (€la) by db
{1 1{¢ < Clo = (€la)lb}— db
S (= gy b
§"0 ) (¢ s b = €fpy -t db
§C b = €y db
§", 1{C: Clb=€[by—"db
O L Y St
§0nS (¢ clb = €py 1 db
= ke(z).

Thus, ke(z) = P*[ke(Xo,, )] for all a sufficiently large. On the other hand, a
similar argument shows for &' € F,\{¢} that

ke (x) = P [ke (X, )]

and ,
§END g Clb = &byt db
§¢ {C b =¢Jby 1 db

for sufficiently large a, where the right—hand side converges to 0 as a — 0. Sim-
ilarly, lim, o, P*[kt (X, ,)] = 0. This clearly shows that if k¢ = {, ke 7(d¢'),
then + cannot assign any mass to E\{¢}. Uniqueness for the representation of
ky is handled similarly and the proof of the uniqueness claim is complete.

Lastly, the claim regarding representation of harmonic functions and po-
tentials is immediate from what we have already shown.

Pk (X, )] = ¢ (),

O

Remark 7.18. Theorem 7.17 can be used as follows to give an analytic proof (in
the transient case) of the conclusion of Corollary 7.13 that bounded harmonic
functions are necessarily constant.

First extend the definition of the Green kernel g to T' U F by setting

h(nAp)

g(n,p) = 2J p{C: ¢lb=mnb}"tdb

— o0

h(nAp)
=2 (e = iy an

— L

By Theorem 7.17, non—constant bounded harmonic functions exist if and
only if there is a non—trivial finite measure y concentrated on F such that
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sup k(z, ) v(d¢) < . (7.11)
€T JE4
Note that for any ball B ¢ E; of the form B = {¢ € E; : {|h(z*) = z*}
for h(xz*) = h(xzg) we have g(xo,() = g(xo,x*). Thus, by possibly replacing
the measure « in (7.11) by its trace on a ball, we have that non—constant
bounded harmonic functions exist if and only if there is a probability measure
(that we also denote by ) concentrated on a ball B ¢ E such that

sup JB g(z,¢) v(d¢) < . (7.12)

zeT

Observe that g(£[t, ) increases monotonically to g(&, () as t — o and so, by
monotone convergence, (7.12) holds if and only if

sup | g(6,0)7(d0) < . (713)
(eEL UB
It is further clear that if (7.13) holds, then
|, ste.0nt90 < (7.1

Suppose that (7.14) holds. For b € R write T} for the subset of T}, consisting
of z € T}, such that v{¢ € B : n|b =z} > 0. In other words, T}’ is the collection
of points of the form 7|b for some 7 in the closed support of ~. Note that
Zzewa pin = nb =z} < p(B) if 27% is at most the diameter of B. Applying
Jensen’s inequality, we obtain the contradiction

j j 9(€,¢) 1(d€) A(dC)

_ J [ [ =Y e sa

pu{n = mlb = €|b}
v{n : nlb = ¢|b}
f JB wi{n : njb = &b} y(d§) db
p{n : nlb = £|b} -1
Z7 J—x UB {n b= &b} Y(d€) | db

-1

=2J% 3 =T b=} |

x| g Vb = 2}

0.

7.8 Probabilistic interpretation of the Martin
compactification

Suppose that X is transient and consider the harmonic functions k¢ = k(-, &),
¢ € E,, introduced in Section 7.7 and the corresponding Doob h-transform
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laws Pig, x € T. That is, ]P’ig, x € T, is the collection of laws of a Markov
process X¢ such that Pre [f(X5)] = ke(x) P [ke(Xy) f(Xy)], f € bB(T). The

following result says that the process X¢ can be thought of as “X conditioned
to converge to &£.”

Theorem 7.19. For all x € T, P§ {lim; .. XS=¢ =1

Proof. Note that X¢ has Green kernel k¢(z)'g(z,y)ke(y) < oo. Thus, X¢ is
transient.

Now observe that lim;_, . Xf exists. This is so because, by compactness,
the limit exists along a subsequence and if two subsequences had different
limits then there would be a ball in T' that was visited infinitely often —
contradicting transience.

Thus, it suffices to show that if a > h(z A &), then Py {og, < 0} = 1.
However, after some algebra,

Pr{0¢la < 0} = ke(2) TP [ke(Xeja) 1{oga < 0}]

_ L g@ga) o
= B g(Ea gy 1O = L

[}

Remark 7.20. Recall that (h(X})):=0 is a standard Brownian motion under
P”. We can ask what (h(X%))=0 looks like under P} - Arguing as in the proof
of Theorem 7.24 below and using Girsanov’s theorem, we have under Py that

h(XF) = h(X§) + Wi + Dy,

where W is a standard Brownian motion and

(] X <g ] / M) 1
D _JO [U{g:Xs é(} J—oo N{<5X8|b<<} b} ds.

In other words, when Xf is not on the ray R¢ the height process h(Xf ) evolves

as a standard Brownian motion, but when Xf is on the ray Re :={x e T :
x < &} the height experiences an added positive drift toward &.

7.9 Entrance laws

A probability entrance law for the semigroup (P;);»0 is a family (y¢)i=o of
probability measures on T such that ysP; = 7544 for all s,t > 0. Given
such a probability entrance law, we can construct on some probability space
(2, F,P) a continuous process that, with a slight abuse of notation, we denote
X = (X})¢>0 such that X; has law v, and X is a time-homogeneous Markov
process with transition semigroup (P):>o-
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In this section we show that the only probability entrance laws are the
trivial ones (that is, there is no way to start the process “from infinity” in
some sense).

Theorem 7.21. If (7:)t>0 is a probability entrance law for (P;)i=o, then vy =
Yo Py, t > 0, for some probability measure vy on T.

Proof. Construct a Ray-Knight compactification (T'%, p), say, as in Section17
of [128]. Write (P;)=0 and (Ga)aso for the corresponding extended semigroup
and resolvent.

Construct X with one-dimensional distributions (y:);>0 and semigroup
(Py)iz0 as described above. By Theorem 40.4 of [128], lim, o X, exists in the
Ray topology, and if vy denotes the law of this limit, then o P; is concentrated
on T for all t > 0 and ; is the restriction of v9P, to T. We need, therefore,
to establish that ~y is concentrated on T. Moreover, it suffices to consider
the case when 7 is a point mass at some zg € T%, so that lim; 0 Xt = 20
in the Ray topology. Note by Theorem 4.10 of [128] that the germ o-field
Fos 1= ﬂe o{X:0 <t < e} is trivial under P in this case.

By construction of (P;);=0, the family obtained by pushing forward each ~;
by the map h is an entrance law for standard Brownian motion on R. Because
Brownian motion is a Feller—-Dynkin process, the only entrance laws for it are
the trivial ones (pQ4)¢=0, where (Q)i=0 is the semigroup of Brownian motion
and p is a probability measure on R. Thus, by the triviality Fo., there is a
constant hg € R such that lim, g h(X;) = ho, P-a.s.

As usual, regard functions on T as functions on T% by extending them to
be 0 on TH\T. For every f € bB(T) we have by Theorem 40.4 of [128] that
lim; o Go f(Xe) = limypo Ga f(Xy) = Gaf().

From (7.4),
G () = | gne.0) 1) (),
where
M@y exp(—~2a(h(z) + h(y) — 2b
gol(z,y) = 2fioo i \L;( é(“|b):a:|(by}) ! db (7.15)
_ o f ") exp(—v2a(h(z) +h(y) = 2)) |
» (€ €[b = ylb}

It follows straightforwardly that lim, o h(X; Ay) exists for ally € T', P-a.s.,
and so, by the discussion in Section 3.4.2 and the triviality of Fg,, there exists
n e T u E such that h(n) < ho and lim; o h(X; A y) = h(n A y), P-a.s. Note,
in particular, that we actually have n € T'u {{} because h(n) < c0. Moreover,
we conclude that

f ey (f) dt = Gaf(x0)

0

B hIAY) exp(—~/2a(ho + h(y) — 2b))
=2 L U/ i€ < € = ylb}

db| v(dy)
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for all f e bB(T).

We cannot have n = 1, because this would imply that 7; is the null measure
for all t > 0. If n € T' and hg = h(n), then we have v, = 0, P;.

We need, therefore, only rule out the possibility that n € T but i(n) < ho.
In this case we have

J: e 'y (f)dt = exp (_\/ﬁ(ho - h(n))> JJ e o, P(f)dt

0

and so, by comparison of Laplace transforms, v; = S(t) 0y P;—s k(ds), where & is
a certain stable—1 distribution. In particular, y; has total mass ([0,¢]) < 1

and is not a probability distribution. (m]

7.10 Local times and semimartingale decompositions

Our aim in this section is to give a semimartingale decomposition for the
process He(t) := h(X¢ A &), t 20, for € By

This result will be analogous to the classical Tanaka’s formula for a stan-
dard Brownian motion B that says

t

B(t), = B(0)4 +L 1{B(s) > 0} dB(s) + %é(t),

where £ is the local time of the Brownian motion at 0. In other words, B
is constant (at 0) over time intervals when B < 0 and during time intervals
when B > 0 it evolves like a standard Brownian motion except at 0 when it
gets an additive positive “kick” from the local time.

From the intuitive description of X in the Section 7.1, we similarly expect
H¢ to remain constant over time intervals when X; is not in the ray R :=
{z € T : © < &}. During time intervals when X, is in Re we expect He to
evolve as a standard Brownian motion except at branch points of T" where
it receives negative “kicks” from a local time additive functional. Here the
magnitude of the kicks will be related to how much p—mass is being lost to
the rays that are branching off from Rg.

To make this description precise, we first need to introduce the appro-
priate local time processes and then use Fukushima’s stochastic calculus for
Dirichlet processes (in much the same way that Tanaka’s formula follows from
the standard It6’s formula for Brownian motion). Unfortunately, this involves
appealing to quite a large body of material from [72], but it would have re-
quired lengthening this section considerably to state in detail the results that
we use.

We showed in Section 7.4 that P*{o, < oo} for any x,y € T. By Theorems
4.2.1 and 2.2.3 of [72], the point mass 0, at any y € T belongs to the set
of measures Spg. (See (2.2.10) of [72] for a definition of Spg. Another way of
seeing that d, is in Sy is just to observe that sup, go(z,y) < oo for all & > 0.)
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By Theorem 5.1.6 of [72] there exists for each y € T a strict sense positive
continuous additive functional LY with Revuz measure §,. As usual, we call
LY the local time at y.

Definition 7.22. Given £ € E, write m¢ for the Radon measure onT that is
supported on the ray Re and for each a € R assigns mass p{¢ € E : (la = §|a}
to the set {£]b: b > a} = {x € R¢ : h(x) > a}.

Remark 7.23. Note that me is a discrete measure that is concentrated on the
countable set of points of the form & A ¢ for some ¢ € E,\{¢} (that is, on the
points where other rays branch from Rg).

Theorem 7.24. For each § € E and x € T the process He has a semimartin-
gale decomposition

He(t) = He(0) + Me(t) = 5 | L/ me(a). ¢ >0,

under P*, where M¢ is a continuous, square—integrable martingale with qua-

dratic variation .

(M) = J 1{X(s) < £} ds, t > 0.

0
Moreover, the martingales M and M for £, &' € E4 have covariation

¢
Ote, Mgy = [ 1X(s) <¢n€hds, 120
0
Proof. For £ € E, v € T, and A € N, set he(x) = h(z A §) and hg‘(az) =
(—A) v (h(x A &) A A).
It is clear that h‘g‘ is in the domain D of the Dirichlet form &, with
Vh?(x) = 1{¢|(—A) < = < & A}. Given f € D, it follows from the prod-
uct rule that

26 (WA f B ) — E((WEY2. f) = Lf(x)l{a(—A) <@ < €|A} v(da).

In the terminology of Section 3.2 of [72], the energy measure corresponding
to h? is u?(dm) = 1{¢|(—A) < x < €|A}v(dz). A similar calculation shows
that the joint energy measure corresponding to a pair of functions hg‘ and hg‘,’
is 1[{¢](—4) <z <€A} n {&](—A) <z <A wv(de) = (v A v{)(de) in
the usual lattice structure on measures.

An integration by parts establishes that for any f € D we have

e0d.) =5 | 1wy,

where
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mg o= mg = p{C: ¢|(=A) = E[(=A) ey ay + p{C : C[A = €| A}beja

with
m (de) := 1{¢|(-A) < = < §|A}me(dz).
Now V? is the Revuz measure of the strict sense positive continuous

additive functional SS 1{¢|(—4) < X(s) < {A}ds and 1/5 A I/?, is the
Revuz measure of the strict sense positive continuous additive functional

§o 1€ (- X(s) < &4} n {E(= A’) X(s) < &]AYds. A straight-
forward calculatlon shows that sup, § ga(z,y) mf A(dy) < oo, and so mE € Soo
is the Revuz measure of the strict sense positive continuous additive func-
tional SP% LY(t) m?(dy) (because the integral is just a sum, we do not need to

address the measurability of y — LY(t)).
Put Hé“(t) = hé“(X(t))7 t = 0. Theorem 5.2.5 of [72] applies to give that

HA(t) = HEA0) + M () — %L LY(t)mg (dy), t >0,

under P* for each x € T, where MgA is a continuous, square—integrable mar-
tingale with quadratic variation

QIAD) = | 1iel(—4) < X(s) < 4 s
Moreover, the martingales MgA and Mé‘,‘l for £,&' € E have covariation
(Mg, MEN(t)
- f LHE(-4) < X(5) < €14} 0 {€1(-4) < X () < €14 ds
In particular,
(ME — MEH )
¢ (7.16)
= L 1[{¢](=B) < X(s) < ¢IBIE|(-A) < X(s) < ¢[A}] ds

for A < B.
For each ¢ > 0 we have that Hg‘(s) = H(s) and SRE LY(s) m?(dy) =
SR€ L¥(s) me(dy) for all 0 < s <t when A > sup{|He(s)| : 0 < s < t}, P*-as.

Therefore, there exists a continuous process M, such that M, gA(s) = M¢(s) for
all 0 < s <t when A > sup{|He(s)| : 0 < s < t}, PP-a.s. It follows from (7.16)
that lim 4. P*[supgc s |M§A(s) — M¢(s)|*] = 0. By standard arguments, the
processes M, are continuous, square-integrable martingales with the stated
quadratic variation and covariation properties. O
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Remark 7.25. There is more that can be said about the process H¢. For in-
stance, given z € T' and £ € By with x € Re and a > h(z), we can explicitly
calculate the Laplace transform of inf{t > 0 : H¢(t) = a} = o¢, under P*.
We have

P*lexp(—aogja)] = 9a(@,¢la) / ga(Ela, Ela),

where g, is given explicitly by (7.15). When X is transient, the distribution
of o¢, has an atom at o0 and we have

P* {02157 He(t) = a} =P"{o¢)q < 00} = g(w,§la) / g(§la, &la).

By the strong Markov property, the cadlag process (0¢|q)azn(») has inde-
pendent (although, of course, non—stationary) increments under P*, with the
usual appropriate definition of this notion for non—decreasing Ru{+oo}-valued
processes.
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R—trees from coalescing particle systems

8.1 Kingman’s coalescent

Here is a quick description of Kingman’s coalescent (which we will hereafter
simply refer to as the coalescent). Let P denote the collection of partitions of
N. For n € N let P,, denote the collection of partitions of Ng,, := {1,2,...,n}.
Write p,, for the natural restriction map from P onto P,,. Kingman [90] showed
that there was a (unique in law) P—valued Markov process IT such that for all
n € N the restricted process I1,, := p, o Il is a P,—valued, time-homogeneous
Markov chain with initial state IT,,(0) the trivial partition {{1},...,{n}} and
the following transition rates: if I7,, is in a state with k£ blocks, then

e a jump occurs at rate (g),

e the new state is one of the (’2“) partitions that can be obtained by merging
two blocks of the current state,

e and all such possibilities are equally likely.

Let N(t) denote the number of blocks of the partition I7(t). It was shown
in [90] that almost surely, N(¢) < oo for all ¢ > 0 and the process N is a
pure—death Markov chain that jumps from k to k£ — 1 at rate (g) for k > 1
(the state 1 is a trap). Therefore, the construction in Example 3.41 applies
to construct a compact R-tree from II. Let (S,d) denote the corresponding
(random) ultrametric space that arises from looking at the closure of the leaves
(that is, N) in that tree, as in Example 3.41. We note that some properties of
the space (N, §) were considered explicitly in Section 4 of [10]. We will apply
Proposition B.3 to show that the Hausdorff and packing dimensions of S are
both 1 and that, in the terminology of [112] — see, also, [27, 113, 114] — the
space S is a.s. capacity—equivalent to the unit interval [0, 1].

Theorem 8.1. Almost surely, the Hausdorff and packing dimensions of the
random compact metric space S are both 1. There exist random wvariables
C*,C** such that almost surely 0 < C* < C** < o and for every gauge

f



130 8 R-—trees from coalescing particle systems

C*Cap([0,1]) < Cap(S) < C**Cap([0, 1]).

Proof. We will apply Proposition B.3.
Note that o, := inf{t > 0 : N(t) = n} is of the form 7,41 + T2 + ...,
where the 71 are independent and 7 is exponential with rate (g) Thus

2 2 2
Ploal = e T e T T (8.1)

It is easy to check that

limtN(t) = lim 0,N(o,) = lim o,n =2, a.s.
tl0 n—a n—wa
— see, for example, the arguments that lead to Equation (35) in [18].
It was shown in [90] that almost surely for all ¢ > 0 the asymptotic block
frequencies

Fi(t) = nhﬁmf”*l {7 €Nen:j~nu L}, 1 <i<N(),
exist and
Fl(t) + -+ FN(t)(t) =1.
We claim that
N(t)
limt™ ) Fi(t)? =1, a.s. 2
im ¢ ;1 i (1) ; a.s (8.2)
To see this, set X, ; := F;(0,) for n € N and 1 < ¢ < n, and observe from
(8.1) that it suffices to establish
n
. 2
nh_rgv n Z Xni=2, as. (8.3)

i=1

By the “paintbox” construction in Section 5 of [90] the random variable
S sz' has the same law as U(Ql) + Uy —Uy)? 4+ U1y = Uy +
(1- U(n,l))Q, where U1y < ... < U(,—1) are the order statistics correspond-
ing to i.i.d. random variables Uy, ..., U,—; that are uniformly distributed on
[0,1] — see Figure 8.1 and Section 4.2 of [18] for an exposition from which
essentially this figure was taken with permission. By a classical result on the
spacings between order statistics of i.i.d. uniform random variables — see, for
example, Section II1.3.(e) of [66] — the law of 37" | X7, is the same as that of
> TAH/(X, T;)?, where Ty,...,T, are i.i.d. mean one exponential ran-
dom variables.

Now for any 0 < ¢ < 1 we have, recalling P[T7?] = 2

9

P (Zn:l Tf) / (zn: Ti> >(1+e)(1—e)22n~!

i=1

3

3

< ]P’{ (T? —P[T7]) > 2sn} +P {Zn: (T, —P[T;]) < —5n} .

i=1



8.1 Kingman’s coalescent 131

Fig. 8.1. Kingman’s description of the block frequencies in the coalescent. Let

Vi, Va,... be independent random variables uniformly distributed on [0, 1]. For
on <t < op—1 put Yl(t) = Vv(l),yvz(t) = V(Q) — W1)7---,Yn(t) =1- ‘/(n—l)y
where V(1),...,V(n—1) are the order statistics of Vi,...V,_1. Then, as set val-

ued processes, the block proportions ({Fi(t),... Fn)(t)})i=0 and the spacings
({Y1(?), ... YN@)(t)})e=0 have the same distribution.

A fourth moment computation and Markov’s inequality show that both terms
on the right-hand side are bounded above by ¢(g)n =2 for a suitable constant
¢(€). A similar bound holds for

P (Zn] Tf) / <§n] T) <(1-e)(1+e)22n7}
i=1 i=1

The claim (8.3) and, hence, (8.2) now follows by an application of the Borel-
Cantelli Lemma.

The proof is finished by an appeal to Proposition B.3 and the observation
there exist constants 0 < ¢# < ¢## < oo such that

ct <J01 f(t) dt)

-1 -1

< Cap, ([0, 1]) < ## (Ll 0 dt)
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(this is described as “classical” in [113] and follows by arguments similar to
those used in Section 3 of that paper to prove a higher dimensional analogue
of this fact). O

8.2 Coalescing Brownian motions

Let T denote the circle of circumference 2. It is possible to construct a
stochastic process Z = (Z1(t), Z2(t), . ..) such that:

e cach coordinate process Z; evolves as a Brownian motion on T with uni-
formly distributed starting point,
until they collide, different coordinate processes evolve independently,
after they collide, two coordinate processes follow the same evolution

— see, for example, [44]. We can then define a coalescing partition valued
process II be declaring that i ~ 7 j if Z;(t) = Z;(t) (that is, i and j are in
the same block of IT(t) if the particles ¢ and j have coalesced by times t). Let
N(t) denote the number of blocks of I1(t). We will show below that almost
surely N(t) < oo for all ¢ > 0, and the procedure in Example 3.41 gives a
R-tree with leaves corresponding to N and a compactification of N that we
will denote by (S, ).
Our main result is the following.

Theorem 8.2. Amost surely, the random compact metric space (S,d) has

Hausdorff and packing dimensions both equal to % There exist random vari-

ables K*, K** such that 0 < K* < K** < o0 and for every gauge f
K*Capf(C'%) < Cap(S) < K**Cap,(Ch),

1
2
where C% is the middle-% Cantor set.

Remark 8.3. One of the assertions of the following result is that S is a.s.
capacity—equivalent to C’%. Hence, by the results of [113], S is also a.s.
capacity—equivalent to the zero set of (one—dimensional) Brownian motion.

Before proving Theorem 8.2, we will need to do some preliminary compu-
tations to enable us to check the conditions of Proposition B.3.

Given a finite non—empty set A € T, let W4 be a process taking values in
the space of finite subsets of T that describes the evolution of a finite set of
indistinguishable Brownian particles with the features that W4(0) = A and
that particles evolve independently between collisions but when two particles
collide they coalesce into a single particle.

Write O for the collection of open subsets of T that are either empty
or consist of a finite union of open intervals with distinct end—points. Given
B € O, define on some probability space (X,G, Q) an O-valued process V5,
the annihilating circular Brownian motion as follows. The end—points of the
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constituent intervals execute independent Brownian motions on T until they
collide, at which point they annihilate each other. If the two colliding end-
points are from different intervals, then those two intervals merge into one
interval. If the two colliding end—points are from the same interval, then that
interval vanishes (unless the interval was arbitrarily close to T just before the
collision, in which case the process takes the value T). The process is stopped
when it hits the empty set or T.

We have the following duality relation between W4 and VE. An analogous
result for the coalescing Brownian flow on R is on p18 of [22].

Proposition 8.4. For all finite, non-empty subsets A € T, all sets B € O,
and allt = 0,
P{W4(t) € B} = Q{AcC VB (1)}.

Proof. For N € N, let Zy := {0,1,...N — 1} denote the integers modulo

N. Let ZJ%\, = %, %, ey %} denote the half-integers modulo N. A non-
empty subset D of Zy can be (uniquely) decomposed into “intervals”: an
interval of D is an equivalence class for the equivalence relation on the points
of D defined by z ~ y if and only if z = y, {z,z + 1,...,y — L,y} € D,

or {y,y+1,...,2 — 1,2} € D (with all arithmetic modulo N). Any interval

other than Zy itself has an associated pair of (distinct) “end-points” in Z]%V:
if the interval is {a,a+1,...,b—1,b}, then the corresponding end—points are
a— 1% and b+ 3 (with all arithmetic modulo N). Note that the end-points of
different intervals of D are distinct.

For C' € Zy, let W§ be a process on some probability space (2, F', ')
taking values in the collection of non—empty subsets of Zy that is defined in
the same manner as W4, with Brownian motion on T replaced by simple,
symmetric (continuous time) random walk on Zy (that is, by the continuous
time Markov chain on Zy that only makes jumps from x to x + 1 or z to
x — 1 at a common rate A > 0 for all z € Zy). For D € Zy, let V1€ be
a process taking values in the collection of subsets of Zy that is defined on
some probability space (X, G’, Q') in the same manner as V2, with Brownian
motion on T replaced by simple, symmetric (continuous time) random walk

1
on ZZ2 (with the same jump rate A as in the definition of W§). That is,

end—points of intervals evolve as annihilating random walks on ZJ%\,.

The proposition will follow by a straightforward weak limit argument if we
can show the following duality relationship between the coalescing “circular”
random walk W§ and the annihilating “circular” random walk V:

P{WR (1) = D} = Q{C = VP (1)} (8:4)

for all non—empty subsets of C' € Z, all subsets of D € Zy, and all ¢t > 0.
It is simple, but somewhat tedious, to establish (8.4) by a generator cal-

culation using the usual generator criterion for duality — see, for example,

Corollary 4.4.13 of [56]. However, as Tom Liggett pointed out to us, there



134 8 R-—trees from coalescing particle systems

is an easier route. A little thought shows that V;2 is nothing other than the
(simple, symmetric) voter model on Z . The analogous relationship between
the annihilating random walk and the voter model on Z due to [124] is usually
called the border equation — see Section 2 of [32] for a discussion and further
references. The relationship (8.4) is then just the analogue of the usual duality
between the voter model and coalescing random walk on Z and it can be es-
tablished in a similar manner by Harris’s graphical method (again see Section
2 of [32] for a discussion and references and Figure 8.2 for an illustration).

le—o
—>|
—] —
le—— «—
—>
— —
| —
le—
—>
—
«—
] le—— f——
—>
le—o

Fig. 8.2. The graphical construction of the (symmetric, nearest neighbor) voter
model on Zie. Time proceeds up the page. The initial configuration is at the bottom
of the diagram. Horizontal arrows issue from each site at rate A\, and are equally likely
to point left or right. The state of the site at the head of an arrow is changed to the
current state of the site at the tail. Arrows wrap around modulo 16. Going forwards
in time, the boundaries between blocks of Os and blocks of 1s execute a family of
continuous time annihilating simple random walks. By reversing the direction of the
vertical and horizontal arrows, it is possible to trace back from some location in
space and time to the ultimate origin at time 0 of the state at that location. The
resulting history is a continuous time simple random walk. Any two such histories
evolve independently until they collide, after which they coalesce.
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Define a set—valued processes W™l n e N, and W by
Wl(t) .= {Z1(t), Zo(t), ..., Zu(t)} S T, t > 0,
and
W(t) :={Z1(t), Z2(t),...} € T, t = 0.

Thus, W) ¢ WBl(t) < ..., U,,.ey W (£) = W(¢), and the cardinality of
W (t) is N(t), the number of blocks in the partition IT(t).

Corollary 8.5. Fort > 0,

P[N{#)]=1+2 exp <— (Z)zt) <o

neN

and

1%17:%1@[1\«0] = 2.

Proof. Note that if B is a single open interval (so that for all ¢ > 0 the set
VB (t) is either an interval or empty) and we let L(¢) denote the length of
VB(t), then L is a Brownian motion on [0, 27] with infinitesimal variance 2
that is stopped at the first time it hits {0, 27}.

Now, for M € Nand 0 < i < M —1 we have from the translation invariance
of Z and Proposition 8.4 that

B AW (1) ( [2/ M, 2m(i + 1)/M] # &1}
—1-P {W["] () €10, 27 (M — 1)/M[}

—1-P {W["] (0) c V]O’QW(M_l)/M[(t)} ,

where we take the annihilating process V10:27(M=1)/M[ 5 he defined on the
same probability space (2, F,P) as the process Z that was used to construct
W and W, and we further take the processes V1027(M=1/M[ anq Z to be
independent. Thus,

P{W(t) n[2mi/M,27(i + 1)/ M] # &}
—1_P {V]O,Qw(M—l)/M[(t) _ ']T}
—1- 1}»{% <2t, B(7) = 2 | B(0) = 2n(M — 1)/M} ,
where B is a standard one-dimensional Brownian motion on some probability

space (£2,F,P) and 7 = inf{s > 0 : B(s) € {0,27}}.
By Theorem 4.1.1 of [91] we have
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PLW ()]
M—1
lim P l D1 LW () A [2mi/M, 27 (i + 1)/ M] # @}]

Mo
- i=0

Jim M (1 P {% <2t, B(7) = 2 | B(0) = 2n(M — 1)/M})

. 2 (=™ . M-1 nY 2
_1_1‘}%‘1%]\/[;”6&; - sm(mr( U ))exp(—(Z) t)

—1 +QT§NeXp (— (Z)2t>

:9(4;) < 0,

where

e
O(u) := Z exp(—mn?u) (8.5)
n=—w
is the Jacobi theta function (we refer the reader to [31] for a survey of many of
the other probabilistic interpretations of the theta function). The proof is com-
pleted by recalling that 6 satisfies the functional equation 6(u) = u=20(u™1)
and noting that lim, ., 6(u) = 1. o

For ¢t > 0 the random partition I7(t) is exchangeable with a finite number
of blocks. Let 1 = I1(t) < Iz(t) < ... < In(t) be the list in increasing
order of the minimal elements of the blocks of II(¢). Results of Kingman —
see Section 11 of [11] for a unified account — and the fact that IT evolves by
pairwise coalescence of blocks give that P-a.s. for all ¢ > 0 the asymptotic
frequencies

Fi(t) = nlig}f‘ﬂfw{j € Nep 1 ~mry Li(D)}]

exist for 1 <4 < N(t) and Fi(t) + -+ + Fy()(t) = 1.
Lemma 8.6. Almost surely,
. 2
ltllr(rjlt 3 Z Fi(t)° = =

Proof. Put T;; :=inf{t > 0: Z;(t) = Z;(t)} for i # j. Observe that

N(t) n n
21 _
2 B =P T}gnwfgzzl
= P{1 ~z(0) 2}

= P{T» < t}
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From Theorem 4.1.1 of [91] we have

P{Tlg < t}

1 ( n—l)x) 1 <2n—1)2
—stm exp | — t) dx
= 2n —1 2

_ :2 ) (2ni1)2 {1 —exp (_ <2n2— 1>2t>}
:iJ;t% Xp —<2n2_1> 5) ds
_ :2 Lt ; {ngl exp (—nQZ) ng% exp (_”25)} ds

1t
IR USRI G
T Jo 4T s
where 6 is again the Jacobi theta function defined in (8.5). By the properties

of 6 recalled after (8.5),

N(t)

1 1 2
imt 2 (t)? | =limt 2 <th=——
1t1¢%1t P 2 Fi(t) ltlfglt 2P{To < t} 53 (8.6)
Now
N ?
Pl D] Fit)?
i=1
P lim F Z Z Z Z 1{i1 ~p(p) i2, i3~ ia}
i1=142=143=1194=1
= P{1 ~110) 2 3 ~110 4},
and so
Z F(t)* | =P{l ~111) 2, 3~y 4} — P{T12 < t}?
~ (8.7)

=P{l ~g@) 2,3~ 4} —P{T12 < t, Toz < t}.
Observe that
]P){Tlg t, T34 < t, T3 > t, Tig > t, Tos > t, Toy > t}

SP{L~pwy 2,3~y 4 (W) = 1}
SP{Tho <t, T3y <t}
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and
P{Tio <t, Tyy <t} —P{Tio <t, T3y <t,T13>1t, Ty >t, Tog >t, Toy >t}
< Z Z P{Tip <t, T3y < t, Tj; <t}

i=1,2=3,4

Thus

DIE? | <P~ 2~y 3 ~mey 4}
= (8.9)

+ >0 ) P{Tia <t Toy < t, Ty < th.

i=1,2j=3,4
Put D;; :=|Z;(0) — Z;(0)|. We have

P{L ~m(e) 2~y 3~y 4}
=P{Tho <t, Tis ATos <t, Tia ATog A Tyq <t}

= P({T12 < t, T13 A T23 < ﬁ, T14 A T24 A T34 < t}
\ D12 < tg? (D13 A Da3) < ¢, (D14 A Doy A D3y) < tg}) =)
+P{D12 < t%7 (D13 A D23) < t%7 (D14 A D24 A D34) St%}

< Z P{Tij <t Dij > t%} +P {1<r£1<a]X<4 Dz] < 3t } s

1<i<j<4

[S[¥)

where we have appealed to the triangle inequality in the last step. Because
% < %, an application of the reflection principle and Brownian scaling certainly
gives that the probability P{T;; < t, D;; > 3} is o(t*) as ¢ | 0 for any a > 0.
Moreover, by the translation invariance of m (the common distribution of the
Z;(0)), the second term in the rightmost member of (8.9) is at most

2
5

P{|Z2(0) — Z1(0)] < 3t5, [Z5(0) — Z1(0)] < 3¢5, | Z4(0) — Z1(0)] < 3t5}
= P{|1Z2(0)] < 317, |Z3(0)| < 31, | Za(0)] < 3t}
= Ct37
for a suitable constant ¢ when ¢ is sufficiently small. Therefore,
P{L ~r0) 2~y 3 ~mqy 4}
=P{Th2 <t, Tz AToz < t, Tra AToa ATaq <t} (8.10)
=O(t5), ast]O0.

A similar argument establishes that
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P{T» <t Tsa <t, Ty <t} = O(t%), ast|O0, (8.11)

for i =1,2 and j = 3,4.
Substituting (8.10) and (8.11) into (8.8) gives

N(t)
Var Z Fi(t)? | = O(tg), ast| 0.
i=1

This establishes the desired result when combined with the expectation cal-
culation (8.6), Chebyshev’s inequality, a standard Borel-Cantelli argument,
and the monotonicity of Zfi(f ) F(t)%. O

We may suppose that on our probability space (2, F,P) there is a sequence
By, Bs, ... of i.i.d. one—dimensional standard Brownian motions with initial
distribution the uniform distribution on [0,27] and that Z; is defined by
setting Z;(t) to be the image of B;(t) under the usual homomorphism from
Ronto T. Forn e Nand 0 < j < 2" —1, let I/ < I’ < ... be a list in
increasing order of the set of indices {i € N : B;(0) € [27j/2",2m(j 4+ 1)/2"[}.
Put B := Bnj and Z"7 := Zn;. Thus, (B]"”)en is an i.i.d. sequence of

standard R-valued Brownian motions and (Z;" J )ien is an i.i.d. sequence of
standard T—valued Brownian motions. In each case the corresponding initial
distribution is uniform on [27j/2",27(j + 1)/2"[. Moreover, for n € N fixed
the sequences (B;"”);ey are independent as j varies and the same is true of
the sequences (Z,"7);en.

Let W (resp. En’j, W™J) be the coalescing system defined in terms of
(Bi)ien (vesp. (B )ien, (Z;"7)ien) in the same manner that W is defined in
terms of (Z;)ien.

It is clear by construction that

2" —1 2" —1

Nty = W< > W) < > W), t>0,neN  (812)
=0 =0

Lemma 8.7. The expectation P[ |W(1)|] is finite.

Proof. There is an obvious analogue of the duality relation Proposition 8.4
for systems of coalescing and annihilating one—dimensional Brownian motions.
Using this duality and arguing as in the proof of Corollary 8.5, it is easy to
see that, letting L and U be two independent, standard, real-valued Brownian
motions on some probability space (12, F,P) with L(0) = U(0) = 0,
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PIW(1)]]
= lim_ -:Z_OOP{MD A [2mi/M, 27 (i + 1)/ M] # &}

= Jim Z P{Oréltigl (T (t) + 2 (i + 1)/M) — (L(t) + 27i/M)) > 0,

[L(1) + 2mi/M, U (1) + 27(i + 1)/M] ~ [0, 2] # @}

< limsup ¢ MP [1 { min (U(t) — L(t)) > —27T/M} (U(1) = L(1) + ")

M- Ost<1

for suitable constants ¢’ and ¢”. Noting that (U — L)/+/2 is a standard Brown-
ian motion, the result follows from a straightforward calculation with the joint
distribution of the minimum up to time 1 and value at time 1 of such a process
— see, for example, Corollary 30 in Section 1.3 of [70]. |

Proposition 8.8. Almost surely,

0 < liminf¢2 N(t) < limsup t2 N(t) < .
tl0 tl0

Proof. By the Cauchy—Schwarz inequality,

2

N(t) N(t)
1=| Y F®) ) <N@®) Y R
i=1 i=1
Hence, by Lemma 8.6,
%
lminft?N(t) > —, P—a.s.
im in t2 N(t) 5 a.s

On the other hand, for each n € N, [W™*(272")|,i = 0,...,2" — 1, are
i.i.d. random variables that, by Brownian scaling, have the same distribution
as [W(1)]. By (8.12),

on 1
1 1 n,i(o—22n
tzN(15)<2ni_1 Z | (2 ? )l
=0

for 272" < t < 272(»=1)_ An application of Lemma 8.7 and the following
strong law of large numbers for triangular arrays completes the proof. O

Lemma 8.9. Consider a triangular array {X,; 1 1 <i < 2", n € N} of identi-
cally distributed, real-valued, mean zero, random variables on some probability
space (£2,F,P) such that the collection {X,,;: 1 <1i < 2"} is independent for
each n € N. Then

lim 27" (X, 1+ + X, 0n) =0, P—a.s.

n—xKC
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Proof. This sort of result appears to be known in the theory of complete
convergence . For example, it follows from the much more general Theorem
A in [23] by taking N,, = 2™ and v (t) = 2 in the notation of that result — see
also the Example following that result. For the sake of completeness, we give
a short proof that was pointed out to us by Michael Klass.

Let {Y,, : n € N} be an independent identically distributed sequence with
the same common distribution as the X, ;. By the strong law of large numbers,
for any € > 0 the probability that |Y; + --- + Yan| > £2” infinitely often is
0. Therefore, by the triangle inequality, for any € > 0 the probability that
[Yon t1 + -+ + Yon+1| > €2™ infinitely often is 0; and so, by the Borel-Cantelli
lemma, for sequences of independent events,

DIP{[Yaniy + -+ Yourr| > 62"} < o0

n

for all € > 0. The last sum is also

DIP{Xpq + e+ Xpgn| > €27,

and an application of the “other half” of the Borel-Cantelli lemma for possibly
dependent events establishes that for all & > 0 the probability of | X, 1 +--- +
Xp,on| > €2™ infinitely often is 0, as required. O

We can now give the proof of Theorem 8.2. Proposition 8.8 and Lemma 8.6
verify the conditions of Proposition B.3. The proof is then completed using
Equation (10) of [113] that gives upper and lower bounds on the capacity of
C 1 in an arbitrary gauge.
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Subtree prune and re-graft

9.1 Background

As we mentioned in Chapter 1, Markov chains that move through a space of
finite trees are an important ingredient in several algorithms in phylogenetic
analysis, and one standard set of moves that is implemented in several phy-
logenetic software packages is the set of subtree prune and re-graft (SPR)
moves.

In an SPR move, a binary tree T (that is, a tree in which all non-leaf
vertices have degree three) is cut “in the middle of an edge” to give two
subtrees, say T and T"”. Another edge is chosen in T, a new vertex is created
“in the middle” of that edge, and the cut edge in T” is attached to this new
vertex. Lastly, the “pendant” cut edge in T” is removed along with the vertex
it was attached to in order to produce a new binary tree that has the same
number of vertices as T — see Figure 9.1.

In this chapter we investigate the asymptotics of the simplest possible tree-
valued Markov chain based on the SPR moves, namely the chain in which the
two edges that are chosen for cutting and for re-attaching are chosen uniformly
(without replacement) from the edges in the current tree. Intuitively, the
continuous time Markov process we discuss arises as limit when the number
of vertices in the tree goes to infinity, the edge lengths are re-scaled by a
constant factor so that initial tree converges in a suitable sense to a continuous
analogue of a combinatorial tree (more specifically, a compact real tree), and
the time scale of the Markov chain is sped up by an appropriate factor. We
do not, in fact, prove such a limit theorem. Rather, we use Dirichlet form
techniques to establish the existence of a process that has the dynamics we
would expect from such a limit.

The process we construct has as its state space the set of pairs (T,v),
where T is a compact real tree and v is a probability measure on T. Let
1t be the length measure associated with 7. Our process jumps away from
T by first choosing a pair of points (u,v) € T x T according to the rate
measure g ® v and then transforming 7" into a new tree by cutting off the
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Fig. 9.1. A subtree prune and re-graft operation

subtree rooted at u that does not contain v and re-attaching this subtree at
v. This jump kernel (which typically has infinite total mass — so that jumps
are occurring on a dense countable set) is precisely what we would expect
for a limit (as the number of vertices goes to infinity) of the particular SPR
Markov chain on finite trees described above in which the edges for cutting
and re-attachment are chosen uniformly at each stage. The limit process is
reversible with respect to the distribution of Brownian CRT weighted with the
probability measure that comes from the push-forward of Lebesgue measure
on [0, 1] as in Example 4.39.

For R-trees arising from an excursion path, the counterpart of an SPR
move is the excision and re-insertion of a sub-excursion. Figure 9.2 illustrates
such an operation.

We follow the development of [65] in this chapter.

9.2 The weighted Brownian CRT

Consider the It6 excursion measure for excursions of standard Brownian mo-
tion away from 0. This o-finite measure is defined subject to a normalization
of Brownian local time at 0, and we take the usual normalization of local
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# # N\
Y v
i

. .

Fig. 9.2. A subtree prune and re-graft operation on an excursion path: the excursion
starting at time w in the top picture is excised and inserted at time v, and the
resulting gap between the two points marked # is closed up. The two points marked
# (resp. =) in the top (resp. bottom) picture correspond to a single point in the
associated real tree.

times at each level that makes the local time process an occupation density
in the spatial variable for each fixed value of the time variable. The excursion
measure is the sum of two measures, one that is concentrated on non-negative
excursions and one that is concentrated on non-positive excursions. Let N be
the part that is concentrated on non-negative excursions. Thus, in the nota-
tion of Example 3.14, N is a o-finite measure on the space of excursion paths
U, where we equip U with the o-field U generated by the coordinate maps.

Define a map v : U — Ul by e —> <) Then

P Y e o

N{v= Y I)n{eeU:((e) = c}}

(1) = N{ee U :((e) = c} ’

I'el,

does not depend on ¢ > 0 — see, for example, Exercise 12.2.13.2 in [117]. The
probability measure P is called the law of normalized non-negative Brownian
excursion. We have

de

N{eeU:C(e)edc}zm

(9.1)



146 9 Subtree prune and re-graft
and, defining S, : U! — U°® by
Sce = \Jee(/c) (9.2)

f N(de) G(e) = JO/ 2\/% Ll P(de) G (S.e) (9.3)

for a non-negative measurable function G : U — R.

Recall from Example 4.39 how each e € U!' is associated with a
weighted compact R-tree (T, dr,,vr, ). Let P be the probability measure on
(T%', dguwe) that is the push-forward of the normalized excursion measure
by the map e — (The,dr,,, VT, ), Wwhere 2e € U is just the excursion path
t — 2e(t).

Thus, the probability measure P is the distribution of an object consist-
ing of the Brownian CRT equipped with its natural weight. Recall that the
Brownian continuum random tree arises as the limit of a uniform random tree
on n vertices when n — oo and edge lengths are rescaled by a factor of 1/4/n.
The associated weight on each realization of the continuum random tree is
the probability measure that arises in this limiting construction by taking
the uniform probability measure on realizations of the approximating finite
trees. Therefore, the probability measure P can be viewed informally as the
“uniform distribution” on (T%' dgpw).

we have

9.3 Campbell measure facts

For the purposes of constructing the Markov process that is of interest to us,
we need to understand picking a random weighted tree (T, dr, vr) according
to the continuum random tree distribution P, picking a point u according to
the length measure x” and another point v according to the weight v7, and
then decomposing 7" into two subtrees rooted at u — one that contains v and
one that does not (we are being a little imprecise here, because u” will be an
infinite measure, P almost surely).

In order to understand this decomposition, we must understand the
corresponding decomposition of excursion paths under normalized excur-
sion measure. Because subtrees correspond to sub-excursions and because
of our observation in Example 4.34 that for an excursion e the length
measure pu’¢ on the corresponding tree is the push-forward of the measure
Sre ds®da méﬁ(e,&@ by the quotient map, we need to understand
the decomposition of the excursion e into the excursion above a that strad-
dles s and the “remaining” excursion when when e is chosen according to the
standard Brownian excursion distribution P and (s, a) is chosen according to
the o-finite measure ds ® da m on I, — see Figure 9.3.
Given an excursion e € U and a level a > 0 write:

o ((e):=inf{t > 0:e(t) = 0} for the “length”of e,
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O\

A~ TN

Fig. 9.3. The decomposition of the excursion e in the top picture into the excursion

excursion é

above level a that straddles time s in the middle picture and the “remaining”
%% in the bottom picture.

£¢(e) for the local time of e at level a up to time ¢,
el for e time-changed by the inverse of ¢~ {; ds1{e(s) < a} (that is, et
is e with the sub-excursions above level a excised and the gaps closed up),
09 (e*) for the local time of e*® at the level a up to time t,
U'e(e) for the set of sub-excursion intervals of e above a (that is, an
element of U4 (e) is an interval I = [g7,d;] such that e(gr) = e(dr) = a
and e(t) > a for g; <t < dj),
NTa(e) for the counting measure that puts a unit mass at each point
(s',€'), where, for some I € U (e), s’ := £ (e) is the amount of local time
of e at level a accumulated up to the beginning of the sub-excursion I and
e’ € U is given by

el(t):{e(gf+t)_a7 0<t<d1_917

0, t>dr — gr,

is the corresponding piece of the path e shifted to become an excursion

above the level 0 starting at time 0,
€5 e U and é>* € U, for the subexcursion “above” (s,a) € I, that is,
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~S a(t) _ 6(§(6757a) + t) —a, 0 S 5(6,5,0,) —Q(G,S,a}),
0, t > 5(e,s,a) — s(e, s,a),

respectively “below” (s,a) € I, that is,

e(t), 0<t<s(es,a),
e(t +5(e,s,a) — s(e,s,a)), t>

c%(e) :=inf{t = 0: £%(e) = s} and 72(e) := inf{t = 0: £i(e) > s},
e>® e U for e with the interval Jo%(e), 7%(e)[ containing an excursion above
level a excised, that is,
sy o [0 0<t<ote)
e(t +72(e) —09(e)), > o9(e).
The following path decomposition result under the o-finite measure N

is preparatory to a decomposition under the probability measure P, Corol-
lary 9.2, that has a simpler intuitive interpretation.

Proposition 9.1. For non-negative measurable functions F on Ry and G, H
on U,

JN(dd L 5( N F(s(e,s,a))Ge™) H(e)

e, s,a) — s(e, s, a)
= [0 [ aa [Areoats ) Pz o e
¢
— N[G] N[HJO ds F(s)].

Proof. The first equality is just a change in the order of integration and has
already been remarked upon in Example 4.34.

Standard excursion theory — see, for example, [119, 117, 29] — says that
under N, the random measure e — N1¢(e) conditional on e > e® is a Poisson
random measure with intensity measure AV (e) @ N, where A\‘4(e) is Lebesgue
measure restricted to the interval [0, 2 (e)] = [0, 202 (e*®)].

Note that &% is constructed from e!® and N1 (e) — d(s',ey in the same
way that e is constructed from e*® and N'%(e). Also, 0%(&5%) = o%(e).
Therefore, by the Campbell-Palm formula for Poisson random measures —
see, for example, Section 12.1 of [41] —
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JN(de) f: da J/\/T“(e)(d(s’, ) F(o%(e))G (') H (&%)

eia]

=1fNﬁw)LfdaN[fAﬁ“@deﬁd»zxag@»G@gfﬂéiﬂ

:fN(de) J:da N[G]N[{JZ%(E) ds’F(o‘;,(e))}H‘eia]

0

— N[C] L " da f N(de) ({fdé‘;(e)F(s)}H(e))
N f N(de) ({ L " da Jdﬁ?(e) )} ()

~ N[GIN[ 1 LC ds F(s)].

The next result says that if we pick an excursion e according to the stan-
dard excursion distribution P and then pick a point (s,a) € I, according to
the o-finite length measure corresponding to the length measure p7* on the
associated tree T, then the following objects are independent:

(a) the length of the excursion above level a that straddles time s,

(b) the excursion obtained by taking the excursion above level a that straddles
time s, turning it (by a shift of axes) into an excursion é>% above level
zero starting at time zero, and then Brownian re-scaling é%“ to produce
an excursion of unit length,

(c) the excursion obtained by taking the excursion é*¢ that comes from ex-
cising €% and closing up the gap, and then Brownian re-scaling é*® to
produce an excursion of unit length,

(d) the starting time s(e,s,a) of the excursion above level a that straddles
time s rescaled by the length of €% to give a time in the interval [0, 1].

Moreover, the length in (a) is “distributed” according to the o-finite mea-
sure
1 dp
2V27 /(1 = p)p?’
the unit length excursions in (b) and (c) are both distributed as standard
Brownian excursions (that is, according to IP), and the time in (d) is uniformly
distributed on the interval [0, 1].

0<p<1,

Corollary 9.2. For non-negative measurable functions F on R, and K on
UxU,
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e, s,a) — s(e, s,a ¢(es@)

- {Ll duF(u)}J]P’(de) JF S(e, s (ciz;(i)(sl?e s a)K(éS7a7éS7a)

"Y@P(de") K(S,¢’,S1-,€").

{Ld“F 2\/%J\/1—7f

Proof. For a non-negative measurable function L on U x U, it follows straight-
forwardly from Proposition 9.1 that

fN(de) Jre 5( o F(§(eis7 a))L(ém’ &)

6,3,&) —§(e,s,a) C(esﬂ)

X (9.4)
- { J du F(u)} J N(de') @ N(de") L(e', ¢")C(e").
0
The left-hand side of equation (9.4) is, by (9.3),

s(Sce,s,a o o5a S sa

c de F(25es) 1S, 8™
P 9.5
L 2\/ 2’/T03 (de) .L"Sce ds ®© da (Scea S, a) - §(Scea S, a) ( )

If we change variables to t = s/c and b = a/+/c, then the integral for (s, a)
over I's . becomes an integral for (¢,b) over I'.. Also,

s(See, ct,/cb) = sup {r <ct: «Jce (g) < \/Eb}
=csup{r <t: e(r) < b}
= cs(e, t,b),

and, by similar reasoning,
5(S.e, ct,\/cb) = c5(e, t,b)

and

Thus, (9.5) is

—~ct,\/cb ——ct,\/cb

PG L(See ¥ See ™)
Jp(de)ﬁfa dt@db s(e,t,b) — s(e,t,b)

*  de
J(; 242me3 (0.6)

Now suppose that L is of the form

L(e,e") = K(Reeryreen s Regenreene”)

where, for ease of notation, we put for e € U, and ¢ > 0,
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Ree:=S.-1e (c+).

1
B \ﬁe
Chen (9.6) becomes

[t oo [ won” (#8) e enme
€ . .
0 2\/2mc? 3 5(e,t,b) — s(e, t,b)

Since (9.7) was shown to be equivalent to the left hand side of (9.4), it follows
from (9.3) that

dt ®db s(e,t,b) sth st
fIP’(de) fre 5(e,t,b) — s(e,t,b) F( C(&th) )K(e b’e b)

_ &JE;EAZ](” JN(de’) @ N(de") L(¢', ¢") ¢("),

and the first equality of the statement follows.
We have from the identity (9.8) that, for any C' > 0,

N{((e) > C} Jp(de)J ds ® da

r., 5(e,s,a) — s(e, s, a)

S

(9.8)

K(és,a’ és,a)

H{c(e') +¢(e") > C}
¢(e’) +¢le”)

¢(e")

= JN(CIGI) ® N(de”) K(Rc(e/)+<(e//)el7 Rg(e/)+<(e//)ell)

vs] dcl €L dC”
:Jo 2\/271'0’3L 24/2me”

fIP’(de') ® P(de”) K(RC/+C//SCIGI, RervenSen 6”)

'+ > C}
NCEN .

and & = ¢ + ¢” (with corresponding

/
_c
c’+c”

Make the change of variables p =
Jacobian factor £) to get

00 dc/ €L dC”
Jo 2v2me® L 2V2mc”
J]P)(del) ® ]P(de") K(Re 4 onSer €, RetyenSen 6”)

H{d+">C}

- <w1%> f “ f w% 1{5%0}

fIE”(de') ®P(de") K(Sye’, S1-pe")

LN (7 de | (f dp
B <2\/ﬂ> { c V?}L V(= p)
fIE”(de') ®P(de”) K(S,€’,S1-,€"),

and the corollary follows upon recalling (9.1). =
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Corollary 9.3. (i) For x > 0,
ds®d
J]P’(de)f - s®da 1{ max é%% >z}
r. 5(e,s,a) —s(e,s,a) “ost<((ese)

=2 Z na exp(—2n2z?)

neN

(i) For 0 < p <1,

[pae) | S e > =y 5

6,5,(1) —§(e,5,a) 27Tp

Proof. (i) Recall first of all from Theorem 5.2.10 in [92] that

1. — _ 2.2
P{eeU : mta<xle >a:} 2% (4n?x? — 1) exp(—2n2z?).
n

By Corollary 9.2 applied to K(e',e") := I{max;e[g ¢(ey) €' (t) = 2} and F = 1,

J}P’(de) L < ds®da 0 s

e,s,a) — s(e,s,a) “ost<c(ese)

e

! Jl dp ]P’{ ma e(t/p) > x}
= X
24271 \/ﬁ setoop) VPP

max e(t) >

2\/%J \/T {te[m \%}
ZZMJ \/T T;\I(ZML—l)exp( 2n2xp>

=2 Z nx exp(—2n2z?),

neN

as claimed.
(i) Corollary 9.2 applied to K(¢,e") := 1{¢(¢’) = p} and F = 1 immediately

yields
Jrae) | ST > )

€, S, a) - §(€, S, Cl)

1—p

_ 1 P
55, vy N

O

We conclude this section by calculating the expectations of some func-
tionals with respect to P (the the “uniform distribution” on (T"*, dggw:) as
introduced in the end of Section 9.2).

Fore > 0, T € T, and p € T, write R.(T, p) for the e-trimming of the
rooted R-tree obtained by rooting T at p (recall Subsection 4.3.4). With a
slight abuse of notation, set
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mpeT RE (T7 p)7 dla’m(T) > &

9.9
singleton, diam(T) < e. (0.9)

R.(T) := {

For T' € T"* recall the length measure 7 from (4.10). Given (T,d) € T"*
and u,v e T, let
STuv .= {reT: uelv, [}, (9.10)

denote the subtree of T that differs from its closure by the point u, which can
be thought of as its root, and consists of points that are on the “other side”
of u from v (recall v, z[ is the open segment in T between v and x).

Lemma 9.4. (i) Forz >0,
P[u" ®@vr {(u,v) € T x T : height(ST"") > z}]
- PU vr(dv) u7 (Ry (T, 0))]
T

=2 Z nx exp(—n’z?/2).

neN

(i) Forl< a < o,

where, as usual, (o) 1= >, o n~“.
(iii) For 0 <p < 1,

P @uvr{(u,v) e T x T : vp(ST*") > p}] = 2(17T;]7)

(iv) For & < B <,

P [ L vr(dv) JT p" (du) (vr (ST*"’”))ﬁ] — 9% F(ﬁ(g)%)

Proof. (i) The first equality is clear from the definition of R, (T, v) and Fubini’s
theorem.

Turning to the equality of the first and last terms, first recall that P is
the push-forward on (T™*, dgpwt) of the normalized excursion measure P by
the map e +— (Tae,dr,,, V1, ), where 2e € U is just the excursion path ¢ —
2e(t). In particular, Ty, is the quotient of the interval [0, 1] by the equivalence
relation defined by 2e. By the invariance of the standard Brownian excursion
under random re-rooting — see Section 2.7 of [13] — the point in Th. that
corresponds to the equivalence class of 0 € [0, 1] is distributed according to
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vr,, when e is chosen according to P. Moreover, recall from Example 4.34
that for e € U!, the length measure p’* is the push-forward of the measure
ds®da m@(w)a) on the sub-graph I, by the quotient map defined
in (3.14).

It follows that if we pick T" according to P and then pick (u,v) € T x T
according to uT @ur, then the subtree STV that arises has the same o-finite
law as the tree associated with the excursion 2é°** when e is chosen according
to P and (s, a) is chosen according to the measure ds®da méﬁ(e’s)a)
on the sub-graph I%.

Therefore, by part (i) of Corollary 9.3,

P UT vr(dv) L 1" (du)1 {height(S™*") > x}]

=2J’P(d€)J, — s ®da 1{ max és’a>x}
r. 5(e,s,a) —s(e,s,a)  (ost<((ese) 2

=2 Z nx exp(—n?z?/2).

neN

Part (ii) is a consequence of part (i) and some straightforward calculus.
Part (iii) follows immediately from part(ii) of Corollary 9.3.
Part (iv) is a consequence of part (iii) and some more straightforward
calculus. =

9.4 A symmetric jump measure

In this section we will construct and study a measure on T¥® x T"* that is
related to the decomposition discussed at the beginning of Section 9.3.

Define a map O from {((T,d),u,v) : T € T,u € T,v € T} into T by
setting O((T, d), u,v) := (T,d™")) where letting

d(z,y), if 2,y € ST,

(u,v) - d(l’, y), ifx,ye T\ST,u,v,
d (x7 y) . d({E, U) + d(v7 y), ifre S”-T'fuz,’l)7 Y€ /I’\Sf':[','u,,v7
d(y,u) +d(v,z), if y € ST,z € T\ST™.

That is, O((T,d), u,v) is just T as a set, but the metric has been changed so
that the subtree ST'*? with root u is now pruned and re-grafted so as to have
root v.

If (T,d,v) € T and (u,v) € T x T, then we can think of v as a weight on
(T, d¥)), because the Borel structures induces by d and d(**) are the same.
With a slight misuse of notation we will, therefore, write O((T, d, v), u,v) for
(T, d(“’”)71/) e T™*. Intuitively, the mass contained in ST"* is transported
along with the subtree.

Define a kernel x on T%® by
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k(T dr,vr),B) = p’ @vr{(u,v) € T x T : O(T,u,v) € B}

for B € B(T""). Thus, «((T,dr,vr),") is the jump kernel described informally
in Section 9.1.

We show in part (i) of Lemma 9.5 below that the kernel k is reversible
with respect to the probability measure P. More precisely, we show that if we
define a measure J on T%* x TV by

J(A x B) := JA P(dT) x(T, B)

for A,B e B(T"), then J is symmetric.

Lemma 9.5. Then

(i) The measure J is symmetric.
(ii) For each compact subset K < T"* and open subset U such that K c
UCT,
J(K, T"\U) <
(iii)
J J(AT,dS) A e (T, S) < o0
Twtx Twt

Proof. (i) Givene’,e” € U, 0 <u < 1,and 0 < p < 1, define e°(-; €', e”, u, p) €
U! by

eo(t; elv 6”7 U, p)

31 pe"(t% 0<t<(1-pu,
= (1= pJu) + Spe’(t = (L = plu), (1-plu<t<(l-plu+np,
51 pe "t —p), (I-plut+tp<t<l

That is, €°(+;€’,€”,u, p) is the excursion that arises from Brownian re-scaling
e’ and e” to have lengths p and 1 — p, respectively, and then inserting the
re-scaled version of ¢’ into the re-scaled version of e” at a position that is a
fraction u of the total length of the re-scaled version of e”.

Define a measure J on U' x U! by

JUl . J(de*, de**) K (e*,e**)
X

Y@ P(de”)

= du ® dv J J
J[QJ]Z 2\/271’ «/ 1 -
x K (e°(¢,e",u,p),e (-,e,ew,p)).

Clearly, the measure J is symmetric. It follows from the discussion at the
beginning of the proof of part (i) of Lemma 9.4 and Corollary 9.2 that the
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measure J is the push-forward of the symmetric measure 2] by the map that
sends the pair (e*,e**) e U! x U! to the pair

((TQG* 5 dTZe* P VTze* )a (TQG** 5 dTZe** 5 VTQE** ))

Hence, J is also symmetric.
(ii) The result is trivial if K = ¢, so we assume that K # . Since TV \U
and K are disjoint closed sets and K is compact, we have that

c:= TeIl(r}geU Agpwt(T,S) > 0.

Fix T € K. If (u,v) € T x T is such that Agu(T,O(T,u,v)) = ¢, then
either

e ueR.(T),or

e there exists p € T° such that u ¢ R.(T,p) and v7(ST %) > ¢ (recall that
R.(T) is the c-trimming of T, that R.(T, p) is the c-trimming of T rooted
at p, and that ST>“ is the subtree of T consisting of points that are on
the other side of u to p).

Hence, we have
J(K, T\U)

< J P{AT} k(T {S : Acus (T, S) > ¢})
K
< [ Pan )
K
+ J, P(dT) J ve(dv)pt {ue T : vp(ST*Y) > ¢}
K T
< o,
where we have used Lemma 9.4 and the observation that

W (Ro(T)) < f vr(dv) T (Ro(T, v)
T

because R (T) € R.(T,v) for all ve T.
(iii) Similar reasoning yields that
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J J(AT,dS) A% (T, S)
TWtx Twt
ool

:J P{dT}f dt 2t K(T,{S : Aguw (T, S) > t})

o %
< J P(dT)J dt 2t ;T (Ru(T))

Twt 0

o
+J P(dT)J dt 2t J vp(dv)pT{ue T : vp{ST*?} >t}
Twt 0 T

< f dt 2t f P(AT) " (R.(T))

0 th

+ JTM P(dT) fT vy (dv) J u7 (du)2 (STw)

T
< o0,

where we have applied Lemma 9.4 once more. O

9.5 The Dirichlet form

Consider the bilinear form

E(f.g) == f (AT, dS)((8) — F(T)) (4(S) - 9(T)).

Twt x Twt

for f,g in the domain
D*(E) := {f e L*(T"",P) : f is measurable, and E(f, f) < o0},

(here as usual, L?(T"*, P) is equipped with the inner product (f,g)p :=
{P(dz) f(z)g(z)). By the argument in Example 1.2.1 in [72] and Lemma 9.5,
(€,D*(€)) is well-defined, symmetric and Markovian.

Lemma 9.6. The form (£,D*(£)) is closed. That is, if (fn)nen be a sequence
in D*(E) such that
lim (g(fn - fmafn - fm) + (fn - fm,fn - fm)P) =0,

m,n—w

then there exists f € D*(E) such that

nh_l;rjlo(g(fn_f»fn_f)+(fn_fafn_f)P) = 0.
Proof. Let (fn)nen be a sequence such that lim,, n—o E(frn = fins fn — fm) +
(fn — fms fn — fm)p = 0 (that is, (fn)nen is Cauchy with respect to &(-,-) +
(,-)p). There exists a subsequence (ng)ren and f € Lo(TW' P) such that
limg oo fr, = f, P-as, and limg 00 (fn, — f, fne — f)p = 0. By Fatou’s
Lemma,
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[ 1ar.a8)((#(5) = 5(D)° < tnint (o fu) <
and so f € D*(E). Similarly,

E(fn=ffn— 1)

~ [1a7.48) fim (U= £2)(S) = (o = £ )(T)’

as n — 0. Thus, {f,}nen has a subsequence that converges to f with respect
to E(+,-) + (-, -)p, but, by the Cauchy property, this implies that {f,, }nen itself
converges to f. ]

Let £ denote the collection of functions f : T"* — R such that

sup |f(T)] < o (9.11)
TeTwt

and

sup F8) = 1Dl < 0. (9.12)

srerv, ser Ay (S, T)
Note that £ consists of continuous functions and contains the constants. It fol-
lows from (4.20) that £ is both a vector lattice and an algebra. By Lemma 9.7
below, £ € D*(E). Therefore, the closure of (€, L) is a Dirichlet form that we
will denote by (€, D(E)).

Lemma 9.7. Suppose that {f,}nen 48 a sequence of functions from T%' into
R such that

sup sup |fu(T)] < o,

neN TeTwt

|fn(S) = fu(T)]

sup sup — e <00,
neN S, TeTvt S#T AGH""t (Sv T)

and
lim f, = f, P-a.s.

for some f: T — R. Then {fn}nen € D*(E), f € D*(E), and

n—o0

Proof. By the definition of the measure J, see (9.4), and the symmetry of
J (Lemma 9.5(i)), we have that f,(z) — fu(y) — f(z) — f(y) for J-almost
every pair (x,y). The result then follows from part (iii) of Lemma 9.5 and the
dominated convergence theorem. ]
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Before showing that (£,D(£)) is the Dirichlet form of a nice Markov
process, we remark that £, and thus also D(&), is quite a rich class of func-
tions. We show in the proof of Theorem 9.8 below that £ separates points of
TY'. Hence, if K is any compact subset of T%®, then, by the Arzela-Ascoli
theorem, the set of restrictions of functions in £ to K is uniformly dense in
the space of real-valued continuous functions on K.

The following theorem states that there is a well-defined Markov process
with the dynamics we would expect for a limit of the subtree prune and re-
graft chains.

Theorem 9.8. There exists a recurrent P-symmetric Hunt process X =
(X4, PT) on T whose Dirichlet form is (€, D(E)).

Proof. We will check the conditions of Theorem A.8 to establish the existence
of X.

Because T%' is complete and separable (recall Theorem 4.44) there is a
sequence Hy € Hy C ... of compact subsets of T*" such that P(|J,oy Hi) =
1. Given o, 8 > 0, write L, g for the subset of £ consisting of functions f
such that

sup [f(T)] < o
TeTwt

wp ) = 5@

s e, 27 Aguw (S, T)

and

<B.

By the separability of the continuous real-valued functions on each Hy with
respect to the supremum norm, it follows that for each £ € N there is a
countable set Ly g1 © Lq,3 such that for every f e L, g

inf  sup |f(T)—g(T)|=0.
9€La g,k TeH,,

Set Lag := Upen La.gk- Then for any f € L, p there exists a sequence
{fn}nen in Lo such that lim, . f, = f pointwise on |J,.yHs, and, a
fortiori, P-almost surely. By Lemma 9.7, the countable set |,,cn Lim,m is
dense in £ and, a fortiori, in D(E), with respect to E(-,-) + (-, *)p.

Now fix a countable dense subset S © TV'. Let M denote the countable
set of functions of the form

T p+q(Agaw(S,T) A T)

for some S € S and p, g, € Q. Note that M < L, that M separates the points
of TV and, for any T € TV, that there is certainly a function f € M with
f(T) #0.

Consequently, if C is the algebra generated by the countable set M u
Upmen Lim,m, then it is certainly the case that C is dense in D(E) with respect
E(-,)+(-,-)p, that C separates the points of T"' and, for any 7' € T"*, that
there is a function f € C with f(7T') # 0.
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All that remains in verifying the conditions of Theorem A.8 is to check
the tightness condition that there exist compact subsets K; € Ky € ... of
TV such that lim,_,, Cap(T¥"\K,) = 0 where Cap is the capacity asso-
ciated with the Dirichlet form This convergence, however, is the content of
Lemma 9.11 below.

Finally, because constants belongs to D(E), it follows from Theorem 1.6.3
in [72] that X is recurrent. |

The following results were needed in the proof of Theorem 9.8

Lemma 9.9. For £,a,0 > 0, put V., := {T € T : pT(R.(T)) > a} and, as
usual, V‘;a ={T €T :dgu(T,V.q) < }. Then, for fized € > 30,

(V.=
a>0
Proof. Fix S € T. If § € Vg’a, then there exists T' € V., such that

dgu(S,T) < §. Observe that R.(T) is not the trivial tree consisting of a
single point because it has total length greater than a. Write {y1,...,yn} for
the leaves of R.(T). Note that T\R.(T")° is the union of n subtrees of diameter
. The closure of each subtree contains a unique y;. Choose z; in the subtree
whose closure contains y; such that dr(y;, z;) = €.

Let : be a correspondence between S and T with dis(*) < 26. Pick
x1,...,%, € S such that (z;,2;) € R. Hence, |ds(z;, ;) — dr(zi, z;)| < 26 for
all 4, 5.

The distance in R.(T) from the point y; to the segment [y;,y;] is

1
g(ds(yk, yi) + ds(yr, y;) — ds(yi, ;).

Thus, the distance from yg, 3 < k < n, to the subtree spanned by y1,...,yx—1
is

/\ %(dT(ymyi) + dr (Y, y5) — dr(yi, y5))-

1<i<y<k—1

Hence,

1" (R(T)) = dr(y1,y2)

+2 A %(dT(ykayi)+dT(yk’yj)_dT(yi’yj))'

k=3 1<i<j<k—1

Now the distance in S from the point z to the segment [z;, ;] is

1
B (ds(l‘k,l‘i) + ds(l'lml‘j) - ds(l‘i,l‘j))
1
> 5 (dr(ze, 2i) +dr(zk, 25) = dr(zi, 25) = 3 % 20)
1
=3 (dr(yx,yi) + 2 + dr(yx, yj) + 26 — dr(yi, yj) — 2 — 66)

>0
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by the assumption that ¢ > 36. In particular, z1,...,z, are leaves of the
subtree spanned by {z1,...,2,}, and R,(S) has at least n leaves when 0 <
v < 2¢ — 60. Fix such a .
Now
1 (Ry(S))

,
> ds(w1,72) — 27

n Z /\ [;(ds(xk,xi)+ds($k,$j)—ds(mi’mj))_7]
k=31

<i<j<k—1
pT(R(T)) 4+ (26 =25 — 29) + (n —2)(e — 36 — )
a+(2e—20—2v)+ (n—2)(e =36 — 7).

\AR\Y

Because ;% (R, (9)) is finite, it is apparent that S cannot belong to V‘;a when
a is sufficiently large. (m]

Lemma 9.10. For ,a,6 > 0, let V., be as in Lemma 9.9. Set U, , :=
{(T,v) e TV : T € V. ,}. Then, for fized ¢,

lirg Cap(U.,) = 0.
Proof. Choose > 0 such that € > 36. Suppressing the dependence on € and
J, define u, : TV — [0,1] by

ua((T,v)) := 070 — deu(T, Vea)) -

Note that u, takes the value 1 on the open set U 4, and so Cap(Ug 4) <
E(ug, uq) + (g, ug)p- Also, observe that

|ua (T, 1)) = ua((T", V"))] <
< 6_1AGHW‘ ((Tla VI)7 (Tﬂv V”))'

It suffices, therefore, by part (iii) of Lemma 9.5 and the dominated conver-
gence theorem to show for each pair ((T7,v'),(T",v")) € T*® x T%' that
ua (T, V")) —ug ((T",v")) is 0 for a sufficiently large and for each T' € T%* that
ua((T,v)) is 0 for a sufficiently large. However, u,((T",v")) —ua ((T”,v")) # 0
implies that either 7" or 7" belong to Vf;a, while u,((7,v)) # 0 implies that

T belongs to Vga. The result then follows from Lemma 9.9. |
Lemma 9.11. There is a sequence of compact sets K1 € Ky C ... such that

lim Cap(T""\K,,) = 0.

n—oC

Proof. By Lemma 9.10, for n = 1,2,... we can choose a, so that

Cap(Up-n,,) <27



162 9 Subtree prune and re-graft

Set
F, = T""\Uyn,, = {(T,v) e TV : n"(Ry-n (1)) < ay}

K, = [ Fa.

m=n

and

By Proposition 4.43 and the analogue of Corollary 4.38 for unrooted trees,
each set K,, is compact. By construction,

Cap(T""\K,) = Cap ( U Ug—m,,”)

mzn

< Y Cap(Upemy, ) < D) 27 =27 (D),

mz=n mzn
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Summary of Dirichlet form theory

Our treatment in this appendix follows that of the standard reference [72] —
see also, [106, 3].

A.1 Non-negative definite symmetric bilinear forms

Let H be a real Hilbert space with inner product (-,-). We say £ is a non-
negative definite symmetric bilinear form on H with domain D(E) if

D(E) is a dense linear subspace of H,

£ :D(E) x DE) - R,

E(u,v) = E(v,u) for u,v e D(E),

E(au + bv,w) = a&(u,w) + bE(v,w) for u,v,w € D(E) and a,b € R,
E(u,u) = 0 for u e D(E).

Given a non-negative definite symmetric bilinear form £ on H and a > 0,
define another non-negative definite symmetric bilinear form £, on H with
domain D(&,) := D(E) by

Ealu,v) :=E(u,v) + au,v), u,ve D).

Note that the space D(E) is a pre-Hilbert space with inner product &,, and
Eq and £ determine equivalent metrics on D(E) for different o, 8 > 0.

If D(&) is complete with respect to this metric, then & is said to be closed
. In this case, D(€) is then a real Hilbert space with inner product &, for each
a>0.

A.2 Dirichlet forms

Now consider a o-finite measure space (X, B,m) and take H to be the Hilbert
space L2(X,m) with the usual inner product
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(u,v) := j u(z)v(xz) m(dx), wu,ve L*(X,m).
X

Call a non-negative definite symmetric bilinear form & on L?(X,m)
Markovian if for each € > 0, there exists a real function ¢. : R — R, such
that

(ZSE(t) = t7 te [07 1]7
—e<¢:(t)<1+e, teR,
0<¢e(t) —ge(s) <t—s, —w0<s<t<on,

and when u belongs to D(€), ¢. o u also belongs to D(E) with
E(pe ou, e ou) < E(u,u).

A Dirichlet form is a non-negative definite symmetric bilinear form on
L?(X,m) that is Markovian and closed.

A non-negative definite symmetric bilinear form £ on L?(X,m) is certainly
Markovian if whenever u belongs to D(E), then v = (0 v u) A 1 also belongs
to D(E) and E(v,v) < E(u,u). In this case say that the unit contraction acts
on £. It turns out the if the form is closed, then the form is Markovian if and
only if the unit contraction acts on it.

Similarly, say that a function v is called a normal contraction of a function
u if

[v(z) = v(y)

v w(@) —uy)l, zyeX,
|v(z)

| <|
| < lu@). zeX,
and say that v € L?(X,m) a normal contraction of u € L?(X,m) if some
Borel version of v is a normal contraction of some Borel version of u. Say
that normal contractions act on £ if whenever v is a normal contraction of
u € D(€), then v € D(E) and E(v,v) < E(u,u). It also turns out that if the
form is closed, then the form is Markovian if and only if the unit contraction
acts on it.

Ezxample A.1. Let X € R be an open subinterval and suppose that m is a
Radon measures on X with support all of X. Define a non-negative definite
symmetric bilinear form by

E£(u,v) = %J’X du(x) dv(z) da

dr dx
on the domain
D(E) := {u e L*(X,m) : u is absolutely continuous and & (u,u) < o0}.

We claim that & is a Dirichlet form on L?(X,m).
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It is easy to check that the unit contraction acts on £. To show the form is
closed, take any & -Cauchy sequence {u,}. Then {du,/dz} converges to some
f e L*(X,dz) in L*(X,dx). Also, {u;} converges to some u € L?(X,m) in
L?(X,m). From this and the inequality

[u(a) — u()? < 2la - blE(w,w), abe X,

we conclude that there is a subsequence {¢;} such that w,, converges to a
continuous function @ uniformly on each bounded closed subinterval of X.
Obviously © = u m-a.e. For all infinitely differentiable compactly supported
functions ¢ on X, an integration by parts shows that

L —0

JX f(z)o(z)dr = lim JX du%ﬁaﬁ(m) dx
=— lim | wup(2)¢' (z)de=— JX w(x)¢' () dx.

Ly—>0 ) x
This implies that @ is absolutely continuous and di/dx = f. Hence, 4 € D(E)
and {ue} is &-convergent to .

Ezample A.2. Counsider a locally compact metric space (X, p) equipped with
a Radon measure m. Suppose that we are given a kernel 7 on X x B(X)
satisfying the following conditions.

e For any € > 0, j(z, X\B:(x)) is, as a function of z € X, locally integrable
with respect to m. Here, as usual, B(z) is the ball around z of radius ¢.

o [ u(z)(jv)(z) m(dz) = § (ju)(z) v(z) m(dx) for all u,v € pB(X).

Then, j determines a symmetric Radon measure J on X x X\A, where A is
the diagonal, by

Lxx\A f(x,y) J(dz, dy) := L {JX f(x,y)j(x7dy)} m(dz).

Put
E(u,v) = J (u(@) — u(y))(v(z) — v(y)) J (dz, dy)
X xX\A

on the domain

D(E) :={ue L*(X,m) : E(u,u) < oo}

We claim that € is a Dirichlet form on L?(X,m) provided that D(£) is dense
in L2(X,m).

It is clear that £ is non-negative definite, symmetric, and bilinear. We next
show that for a Borel function u that u = 0 m-a.e. implies that £(u,u) = 0.
Suppose that v = 0 m-a.e. Put I'x . = {(z,y) € K x K : p(x,y) > €} for
€ > 0 and K compact. Then
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).

(u(z) = u(y))® J(do,dy) <2 L (u(2)? +u(y)?) J(dz, dy)

_y J w(@)2J (d, dy) < 4 J w(@)2j(z, X\B.(x)) m(dz) = 0.
I'k K

€

€

Letting ¢ | 0 and K 1 X gives E(u,u) = 0.

It is clear that every normal contraction operates on the form and so the
form is Markovian. To prove that the form is closed, consider a sequence {uy}
in D(&) such that limyg y—yoe €1 (e — U, Ug — Um,) — 0. Since {uy} converges
in L?(X,m), there is a subsequence {f;} and a set N € B(X) with m(N) =0
such that {ug, (x)} converges on X\N. Put g, () = wu () on X\N and
g, (z) = 0 on N. Then 4y, (x) has a limit u(x) everywhere and u,; converges
to u in L?(X,m). Moreover,

E(U — U, U — Uy

= J Jim {(ue (2) = e, (1)) = (wm (@) = wm(9))} T (dw, dy)
X xX\A te2%

< liminf E(up, — Um, g, — Um).
lp—C

The last term can be made arbitrarily small for sufficiently large m. Thus, u,,
is & —convergent to u € D(E), as required.

A.3 Semigroups and resolvents

Suppose again that we have a real Hilbert space H with inner product (-, ).
Consider a family {T}}:~¢ of linear operators on H satisfying the following
conditions:

e each T; is a self-adjoint operator with domain H,
o T,y =Tsy, s,t >0 (that is, {T3}¢>0 is a semigroup),
o (Tyu,Tiu) < (u,u), t >0, ue H (that is, each T} is a contraction).

We say that {T}}i~0 is strongly continuous if, in addition,
o limyo(Tiu —u, Tyu —u) =0 for all ue H.

A resolvent on H is a family {G4}a>0 of linear operators on H satisfying
the following conditions:

e (G, is a self-adjoint operator with domain H,
o G,—Gp+(a—P)G,Gp =0 (the resolvent equation),
e cach operator aGG, is a contraction.

The resolvent is said to be strongly continuous if, in addition,

o lim, o (aGau —u,aGou—u) =0 for all ue H.
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Ezample A.3. Given a strongly continuous semigroup {7} };~o on H, the family
of operators

8]

Gou := f e T dt

0
is a strongly continuous resolvent on H called the resolvent of the given semi-
group. The semigroup may be recovered from the resolvent via the Yosida
approximation

Ttu—hme , ueH.

A.4 Generators

The generator A of a strongly continuous semigroup {7;};~0 on H is defined
by

Ay := lim Tu—u

tl0 t
on the domain D(A) consisting of those u € H such that the limit exists.
Suppose that {G4}a=0 is a strongly continuous resolvent on H. Note that

if Gou = 0, then, by the resolvent equation, Ggu = 0 for all 3 > 0, and, by
strong continuity, v = limg_,.. 8Ggu = 0. Thus, the operator G, is invertible
and we can set

Au = au— Gl

on the domain D(A) := G, (H). This operator A is easily seen to be indepen-
dent of a > 0 and is called the generator of the resolvent. {Gy}a=0-

Lemma A.4. The generator of a strongly continuous semigroup on H coin-
cides with the generator of its resolvent, and the gemerator is a mon-positive
definite self-adjoint operator.

A.5 Spectral theory

A self-adjoint operator S on H with domain H satisfying S? = S is called a
projection . A family {F)} er of projection operators on H is called a spectral
family if

E\E, =E\, A<p,

lim Fyu= FEyu, u€H,
NI

lim Fyu=0, ueH,
A—>>—C

lim Eyu=u, wue€H.
A—0
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Note that 0 < (Ej\u,u) T (u,u) as A T oo, for u € H, and, by polarization,
A+ (Eyu,v) is a function of bounded variation for u,v € H.

Suppose we are given a spectral family {E)} eg on H and a continuous
function ¢(A) on R. We can then define a self-adjoint operator A on H, denoted
by SO_OI ¢(N\) dEy, by requiring that

(Auv)= [ o) d(Eruv), Voe H,

—C

where the domain of A is D(A) :={ue H : Sfl d(A) d(Eyu,u) < 0}.

Conversely, given a self-adjoint operator A on H, there exists a unique
spectral family {E)} er such that A = SfL AdE). This is called the spectral
representation of A. If A is non-negative definite, then the corresponding
spectral family satisfies £ = 0 for A < 0.

Let —A be a non-negative definite self-adjoint operator on H and let
—A = SOL AdFE)y be its spectral representation. For any non-negative con-
tinuous function ¢ on Ry, we define the self-adjoint operator ¢(—A) by
P(—A) = S(T ®(A) dEy. Note that ¢(—A) is again non-negative definite.

A.6 Dirichlet form, generator, semigroup, resolvent
correspondence

Lemma A.5. Let —A be a non-negative definite self-adjoint operator on H.
The family {T;} =0 := {exp(tA)}i=0 s a strongly continuous semigroup, and
the family {Golaso = {(a — A)"laso is a strongly continuous resolvent.
The generator of {Ti}i=o is A and {T;}i=o is the unique strongly continuous
semigroup with generator A. A similar statement holds for the resolvent.

Theorem A.6. There is a bijective correspondence between the family of
closed non-negative definite symmetric bilinear forms £ on H and the family
of non-positive definite self-adjoint operators A on H. The correspondence is
given by

and

E(u,v) = (V—Au,/—Av).

Consider a o-finite measure space (X,B,m). A linear operator S on
L2(X,m) with domain L?*(X,m) is Markovian if 0 < Su < 1 m-a.e. whenever
uwe L?(X,m) and 0 < u < 1 m-a.e.

Theorem A.7. Let £ be a closed non-negative definite symmetric bilinear
form on L?(X,m). Write {T; }+=0 and {G4}a>0 for the corresponding strongly
continuous semigroup and the strongly continuous resolvent on L*(X,m). The
following five conditions are equivalent.
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(a) Ty is Markovian for each t > 0.

(b) aG,, is Markovian for each o > 0.
(c) € is Markovian.

(d) The unit contraction operates on E.
(e) Normal contractions operate on E.

A.7 Capacities

Suppose that X is a Lusin space and m is a Radon measure. There is a set
function associated with a Dirichlet form (£, D(£)) on L?(X,m) called the
(1)-capacity and denoted by Cap. If U € X is open, then

Cap(U) :=inf{&(f, f) : feDE), f(z) =21, m—ae xzeU}.
More generally, if V € X is an arbitrary subset, then
Cap(V) :=inf {Cap(U) : V € U, U is open}.

The set function Cap is a Choquet capacity.

We say that some property holds quasi-everywhere or, equivalently, for
quasi-every x € X, if the set © € X where the property fails to hold has
capacity 0. We abbreviate this by saying that the property holds g.e. or for
q.e. every r € X.

A.8 Dirichlet forms and Hunt processes

A Hunt process is a strong Markov process

X = (2, F {Fi}t20, {P" }aer, { Xt }z0)

on a Lusin state space E that has right-continuous, left-limited sample paths
and is also quasi-left-continuous. Write {P;};>o for the transition semigroup
of X. That is, P f(x) = P*[f(Xy)] for f € bB(E). If p is a Radon mea-
sure on (E, B(E)), we say that X is u-symmetric if §, f(z) Pig(x) p(dx) =
Sz P f(x) g(x) p(de) for all f, g € bB(E). Intuitively, if the process X is started
according to the initial “distribution” p, then reversing the direction of time
leaves finite-dimensional distributions unchanged.

Theorem A.8. Let (£,D(E)) be a Dirichlet form on L*(E,u), where E is
Lusin and p is Radon. Write {T}}4~0 for the associated strongly continuous
contraction semigroup of Markovian operators. Suppose that there exists a
collection C € L%*(E, 1) and a sequence of compact sets Ki € Ky C ... such
that:

(a)C is a countably generated subalgebra of D(E) n bC(E),
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(b)C is & -dense in D(E),

(c)C separates points of E and, for any x € E, there is an f € C such that
f(x) #0,

(d)lim,,_,., Cap(E\K,) = 0.

Then there is a p-symmetric Hunt process X on E with transition semigroup
{P;}t=0 such that Pif(z) = Ty f(x) for f € bB(E) n L2(E, ).

Remark A.9. The theory in [72] for symmetric Hunt processes associated with
Dirichlet forms is developed under the hypothesis that the state space is locally
compact. However, the embedding results outlined in Section 7.3 of [72], shows
that the results developed under the hypothesis of local compactness still holds
if the state space is Lusin and the hypotheses of Theorem A.8 hold.

Lemma A.10. Suppose that X is the p-symmetric Hunt process constructed
from a Dirichlet form (£, D(E)) satisfying the conditions of Theorem A.8 and
B € B(E). Then P*{3t > 0 : Xy € B} = 0 for u-a.e. x € E if and only if
Cap(B) = 0.
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Some fractal notions

This appendix is devoted to recalling briefly some definitions about various
ways of assigning sizes and dimensions to metric spaces and then applying this
theory to the ultrametric completions of N obtained in Example 3.41 from the
R-tree associated with a non-increasing family of partitions of N.

B.1 Hausdorff and packing dimensions

Let (X,p) be a compact metric space. Given a set A € X and ¢ > 0, a
countable collection of balls {B;} is said to be an e-covering of Aif A < |, B;
and each ball has diameter at most €. Note that if ¢ < ¢”, then an ¢’-covering
of A is also an €’-covering. For a > 0, the a-dimensional Hausdorff measure
on X is the Borel measure that assigns mass

H*(A) := supinf {Z diam(B;)® : {B;} is an e-covering of A}

e>0

to a Borel set A. The Hausdorff dimension of A is the infimum of those «
such that the corresponding a-dimensional Hausdorff measure is zero.

A countable collection of balls {B;} is said to be an e-packing of a set
A C X if the balls are disjoint, the center of each ball belongs to A, each ball
has diameter at most €. Note that if ¢ < €”, then an ¢”-packing of A is also an
€/-packing. For o > 0, the a-dimensional packing pre-measure on X assigns
mass

P*(A) := ing sup {Z diam(B;)* : {B;} is an e-packing of A}
> -

to a set A. The a-dimensional packing measure on X is the Borel measure
that assigns mass
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P(A) := inf {ZPO‘(Ai) AC UAl}

to a Borel set A where the infimum is over all countable collections of Borel
sets {A;} such that A | J, A;. The packing dimension of A is the infimum of
those a such that the corresponding a-dimensional packing measure is zero.

Theorem B.1. The packing dimension of a set is always at least as great as
its Hausdorff dimension.

We refer the reader to [107] for more about and properties of Hausdorff
and packing dimension.

B.2 Energy and capacity

Let (X, p) be a compact metric space. Write M;(X) for the collection of Borel
probability measures on X. A gauge is a function f : [0,00[— [0, 0], such
that:

f is continuous and non-increasing,

f(0) = oo,
f(r) < oo for r >0,
lim, 5 f(r) = 0.

Given p € M1(X) and a gauge f, the energy of p in the gauge f is the quantity

&) = [ ulde) [ uldy) Flot.0).
The capacity of X in the gauge f is the quantity
Cap; () i= (nf{E; () : e Mi()})™

(note by our assumptions on f that we need only consider diffuse p € M;(X)
in the infimum).

The capacity dimension of X is the supremum of those o > 0 such that
X has strictly positive capacity in the gauge f(x) = z~ (where we adopt the
convention that the supremum of the empty set is 0).

Theorem B.2. The Hausdorff and capacity dimensions of a compact metric
space always coincide.

We again refer to [107] for more about capacities and their connection to
Hausdorft dimension.
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B.3 Application to trees from coalescing partitions

Recall the construction in Example 3.41 of a R-tree and an associated ultra-
metric completion (S, ) of N from a coalescing family {I1(t)};~0 of partitions
of N . We will assume that IT(¢) has finitely many blocks for ¢ > 0, so that
(S,6) is compact.

Write N(t) for the number of blocks of II(t) and for k € N put oy :=
inf{t > 0 : N(¢) < k}. The non-increasing function I is constant on each of
the intervals [o, ox1[, k > 1. Write 1 = I1(t) < -+ < In)(t) for an ordered
listing of the least elements of the various blocks of II ().

We can associate each partition /7(t) with an equivalence relation ~ )
on N by declaring that i ~ () j if i and j are in the same block of I1(t).

Given B C S, write clB for the closure of B. Each of the sets

Ui(t) =cl{j e N: j ~p Li(t)}
=cl{j e N: (5, I;(¥)) < 2t}
={yeS: iy, I;(t)) <2t}

is a closed ball with diameter at most ¢ (in an ultrametric space, the diameter
and radius of a ball are equal). The closed balls of S are also the open balls and
every ball is of the form U;(t) for some ¢t > 0 — see, for example, Proposition
18.4 of [123] — and, in fact, every ball is of the form U;(oy) for some k € N
and 1 < 7 < k. In particular, the collection of balls is countable. Any ball of
diameter at most 2¢ is contained in a unique one of the U;(t), and any ball
of diameter at least 2¢ contains one or more of the U;(t) — see, for example,
Proposition 18.5 of [123].

We need to adapt to our setting the alternative expression for energy
obtained by summation—by—parts in Section 2 of [112]. For t > 0 write U(t)
for the collection of balls {U1 (%), ..., Uy (t)}. Let U denote the union of these
collections over all ¢t > 0, so that U/ is just the countable collection of all balls
of S. Given U € U with U # S, let U™ denote the unique element of ¢ such
that there exists no V e U with U € V ¢ U™. More concretely, such a ball U
is in U(o) but not in U(oy_1) for some unique k > 1, and U™ is the unique
element of U(ok—1) such that U ¢ U™. Define S~ := f, where } is an adjoined
symbol. Put diam(f) = cc.

Given a gauge f, write ¢y for the diffuse measure on [0, 00[ such that
wf([r,of) = @s(]r,o]) = f(r), r = 0. For a diffuse probability measure
€ M;(S) we have, with the convention f(o0) = 0,
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&) = | ntdo) [ () £5(2.)
~ [nto) [uay) ¥ i) - fdiam@-)

Ueld, {z,y}cU

= ). (f(diam(V)) — f(diam(U™)))

Ueld
« [[utde) [ ntan) 14121 € 0} (B.1)
S (f(diam(U) — f(diam(U)) u(U)?

UeUd

S st eumpuwy

Ueu [07

_ 2
- f[ WRCCIWIGE

Ueld(t)

Proposition B.3. Suppose for all t > 0 that the asymptotic block frequencies
Ei(t) =nh—I>nLn |{0<] n—1:j~npu Lit)}], 1<i<N(t),

exist and
Fl(t) + -+ FN(t)(t) =1.

Suppose also that for some o > 0 that

0 < liminft*N(¢) < limsupt*N(t) < oo

tl0 t40
and
N(t) N(t)
0 < liminf¢=® F;(t)” <limsupt™® F;(t)® < oo.
ni ;1 (t)? < A Sup ;1

Then the Hausdorff and packing dimensions of S are both « and there are
constants 0 < ¢’ < " < o0 such that for any gauge f

d (Jolf(t)ta—ldt> B < Cap,(S) (J f)e 1dt>

Proof. In order to establish that both the Hausdorff and packing dimensions of
S are at most « it suffices to consider the packing dimension, because packing
dimension always dominates Hausdorff dimension.

By definition of packing dimension, in order to establish that the packing
dimension is at most « it suffices to show for each > « that there is a constant
¢ < oo such that for any packing Bi, Bo, ... of S with balls of diameter at most
1, we have Y, diam(By)" < ¢. If 2- 277 < diam(By,) < 227~ for some
pe{0,1,2,...}, then By contains one or more of the balls U;(27P). Thus

—1
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{keN:2.27P < diam(By;) < 22~ PV} < N(27P)

and
s8]

D idiam(By)" < Y, N(277)27 P77 < o,
k

p=0

as required.

If we establish the claim regarding capacities, then this will establish that
the capacity dimension of S is a. This then gives the required lower bound on
the packing and Hausdorff dimensions because the Hausdorff measure equals
the capacity dimension and the packing dimension dominates Hausdorff di-
mension.

In order to establish the claimed lower bound on Cap f(S) it appears, a
priori, that for each gauge f we might need to find a probability measure
p depending on f such that (7(u))~! is at least the left-hand side of the
inequality. It turns out, however, that we can find a measure that works si-
multaneously for all gauges f. We construct this measure as follows.

Let A denote the algebra of subsets of S generated by the collection
of balls Y. Thus, A is just the countable collection of finite unions of
balls. The o-algebra generated by A is the Borel o-algebra of S. The
sets in A are compact, and, moreover, for all £ € N and indices 1 <
i < kif Ui(or) = Uiy (0k41) U Uiy(0k41) U --- 0 U, (0k41) (that is, if
{Liy(0k11), Liy(0k41), - - 5 Liyy (Okg1)} = {Le(0ny1) = Le(oky1) ~m(or) Lilon)}),
then Fi(oy) = Fiy (0k4+1) +Fiy(Okg1)+- - -+ F;, (0k+1). It is, therefore, possible
to define a finitely additive set function v on A such that

v(U;(t)) = Fi(t), t >0, 1 <i < N(t), (B.2)
and
v(S) =1. (B.3)

Furthermore, if A1 2 Ay D ... is a decreasing sequence of sets in the
algebra A such that (1), A, = &, then, by compactness, A, = & for all
n sufficiently large and it is certainly the case that lim, . v(A4,) = 0. A
standard extension theorem — see, for example, Theorems 3.1.1 and 3.1.4 of
[48] — gives that the set function v extends to a probability measure (also
denoted by v) on the Borel o—algebra of S.

From (B.1) we see that for some constant 0 < ¢’ < oo (not depending on
f) we have
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Cap;(8) = (&5(v) ' = (Jw(dt) > V(U)2>
Uel(t)

N(®) !

= J pp(dt) Y] Fi(t)®

=1

> (J or(dt)(t A 1)0‘)1 =c Uol fyret dt)

Turning to the upper bound on Cap f(S), note from the Cauchy-Schwarz
inequality that for any u € M (S)

—1

Uel(t) Uel(t)

and so, by (B.1),

—1

Capy(S) < ( | w(dt)N(zeV)

< (J@f(dt)(t A 1)“)1 = (Ll f(t)t"_ldt> ,

for some constant 0 < ¢” < o0. O

Remark B./. By the Cauchy-Schwarz inequality,
N (t) 2 N (t)
1= Y E® ]| <[> BE®?|NG.
i=1 i=1

N(t)

limsupt®N(t) < o0 = liminf ¢t~ Fi(t)?>0
1sup 1N () i 3 RO

Thus,

and
N(t)
limsupt™® Fi(t)? < 00 = liminf t*N(t) > 0.
1e p Zl (t) nh (t)
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