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Learning a Potential Function from a Trajectory 
 

David R. Brillinger  

 Abstract— This letter concerns the use of stochastic gradient systems in the modeling of the paths of moving particles 

and the consequent estimation of a potential function. The work proceeds by setting down a model for the potential 

function which leads to a stochastic differential equation. The method is simple, direct and flexible being based on a 

linear model and least squares. The estimated potential function may be used for: simple description, summary, 

comparison, seeking patterns, simulation, prediction, and model appraisal. Explanatories, attractors and repellors, may 

be included in the potential function directly.  The large sample distribution of the estimated potential function is 

provided. There is an example analyzing the path of an elk. There are direct extensions to: updating, sliding window, 

adaptive, robust and real time variants. 

Index Terms—Mobility model, monitoring, potential function, stochastic differential equation, stochastic gradient system, 

surveillance, tracking, waypoint data.  

I. INTRODUCTION 

Location signals of moving objects, obtained for example by GPS or LORAN, have become common in 

practice. Typically one has scattered positions along trajectories of the objects. The questions of how to 

summarize, how to predict, and how to simulate, such movements arise. This happens particularly when a 

number of paths are involved or the path of an object is a tangle. (See Figure 1 which shows 1571 

locations along the track of an elk in Starkey Reserve, Oregon.) The setup of concern may be viewed as 

one of state space modeling with its many approaches and methods. One envisages a potential function as 

a spatial state variable and the paths of objects as determined by the measurement equation. This letter 

seeks to provide a unified approach for dealing with movement modelling and associated data. 

   The fields in which movement data have arisen include: animal tracking  [1], [2], drifters [3], eyescans 

[4], [5], soccer, [6], and waypoint data  [7]. There are various papers developing the potential approach 

[1], [2], [6], [14], [15] and [17]. This letter provides the formal background missing in that work and a 

general discussion. 

A. Dynamical Systems and Potential Functions 
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   The historical development of the concept of potential function may be described as:  Brahe collected 

data on the paths of planets in the sky, then Kepler analysed that data to produce “laws”, next Newton 

found differential equations consistent with Kepler’s laws and produced further laws. Later Lagrange set 

down the potential function for the gravitational potential case namely V(r) = –G/|r0 – r| with G the 

constant of gravitation where r denotes location in R3, [8]. This function leads to attraction of a particle at 

the position r towards the position r0, see [9] pages 277-289, [10] pages 13-17. In the mathematical 

expressions all the vectors appearing are column vectors. 

 

FIG 1. Path of an elk around the NE pasture of the Starkey Experimental Forest in Oregon. Locations 

were estimated every two hours and are joined consecutively by straight lines. 

 

   A potential function, V(r), is scalar-valued. This leads to simpler representations of the motion than one 

based on modeling velocities for example. In the so-called overdamped case, (meaning in a physical 

situation that the force acting on a particle does not determine the acceleration, but rather its velocity) the 

equation of motion is 
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                              dr(t)  = - V(r(t))dt           (1) ∇

where V:Rp → R is a differentiable function and ∇  denotes the gradient. (The negative sign in (1) is 

traditional.) The entity dr(t)/dt is called a vector field. Reference [9], page 203, defines a gradient system 

in Rp as a system of differential equations of the form (1). Here ∇ V = (∂V/∂x1,…, ∂V/∂xp)T, with r = (x1,…, 

xp)T and “T” denotes transpose. When p = 2 the level surfaces of the potential function are conveniently 

displayed in contour form and its gradient as arrows on a grid. (See Figures 2 and 3 below.) 

B. Stochastic Gradient Systems 

   The estimation method to be presented can be motivated by stochastic gradient systems that is systems 

that can be written, in the time invariant case, as 

      dr(t) = - ∇ V(r(t)) dt  + σ (r(t))dB(t)             (2) 

for some differentiable V with B(t) Brownian motion and σ a matrix. Brownian motion itself is an 

example of such a system corresponding to constant V and σ. Expression (2) is a particular case of the 

stochastic differential equation (SDE) 

      dr(t) =  µ (r(t)) dt  + σ (r(t))dB(t)                 (3) 

but what distinguishes the traditional SDE work from the present study is that the drift term µ has the 

special form - V for some real-valued function V. ∇

II. PROBLEM AND APPROACH 

   The basic problem supposes the model (2) and seeks to learn V(r) given data (r(ti), i = 1,…,n). These 

data will be viewed as scattered locations of a moving object with locations observed at increasing times ti 

along a trajectory of the process (2). One seeks both vector field and potential function estimates. 

 Supposing ∇ V(r) to be a smooth function of r, and that the observation times ti are close together, one 

can set down the following approximation to (2), 

    r(ti+1)-r(ti)=- ∇ V(r(ti))(ti+1 - ti) +σ√(ti+1 - ti)Zi+1    (4) 

for i = 1, 2, 3, …, n  with, for example, the Zi  zero mean, unit variance independent variates and r(ti) 

given. 
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   The reason for the multiplier √(ti+1 - ti) is that for real-valued Brownian Var(dB(t)) = dt however other 

multipliers can be considered. Equation (4) may be set down so the error term has constant covariance 

matrix, namely 

   (r(ti+1)-r(ti))/√(ti+1 - ti)=- ∇ V(r(ti))√(ti+1 - ti)+σZi+1   (5) 

The approximation 

   (r(ti+1)-r(ti))/(ti+1 - ti) =  µ(r(ti)) + σZi+1 /√(ti+1 - ti)     (6) 

for the SDE (3) was employed in [1], [2] for elk and deer movement. There it was noted that the 

relationship (5) had the form of a smoothing/nonparametric regression problem as in [11], Chapter 3.  In 

[1] an early attempt was made at estimating a potential function by numerical integration and simulation. 

The question was also asked of whether the vector field, µ, has the form - ∇ V(r)? This may be addressed 

by comparing the unrestricted estimate of µ with the one assuming the existence of a potential function.  

III. THE POTENTIAL FUNCTION 

     A basic issue is how to describe the potential function, V(r), r in Rp, supposing one exists. General 

forms may be considered, but in the development here V is linear in a vector-valued parameter β making 

study and estimation easier. Suppose V(r) = φ(r)Tβ with φ an L by 1 vector of known functions and β an L 

by 1 unknown parameter. The gradient of V is the p by 1 vector ∇ φ(r)Tβ. Examples of such a V follow. 

Example 1. Polynomial expansion. 

Consider V(r) = ∑ βmrm where m = (m1,…, mp), and rm = {x1 to the power m1} times … times {xp to the 

power mp} and the sum is over nonnegative integers m1,…, mp with 1 ≤ m1+…+mp≤ M. 

    One could set down a finite trigonometric polynomial instead of the ordinary polynomial here. In a 

time domain problem, speaker adaptation, [Au-Yeung and Siu] use a polynomial expansion. 

Example 2. Node based. 

Consider nodal points ul, l=1,…,L in Rp and set V(r) = ∑ βlK(r-ul). for some real-valued differentiable 

kernel K. As a specific example of K one has the radial basis thin plate splines, [12] and [13], pages 30-

34, 
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    K(r)=|r|2q-p log |r| for p even and  = |r|2q-p for p odd    (7) 

Here q denotes the order of differentiability of K , 2q-p>0, and |r| = √rTr. 

Example 3. Attraction and repulsion. 

Consider a region A and a point r outside A. Potential functions can be set down allowing attraction or 

repulsion from A. Specifically let dA(r) denote the minimum distance from r to A and set V(r) = dA(r)α. For 

α >0 one has attraction to A and repulsion if α < 0. One can reverse attraction and repulsion by changing 

the sign of dA. It is also convenient to use V(r) = β1 log dA(r) + β2 dA(r). 

   The functional forms of Examples 1-3 may be added together to provide other forms. The gradient may 

be evaluated analytically for each of these examples and this is necessary for the fitting procedure 

described in the next section. 

   Reference [14] considers the observed trajectory of a monk seal near the island of Molokai employing 

the function 

    V(r) = γ1x + γ2y + γ11x2 + γ12xy + γ22y2 + C/d(x,y)    (8) 

where r = (x,y), is  in R2, and  represents location on the ocean surface. The value d(x,y) is the distance 

from the seal’s location r to the nearest point on the island. The γ ‘s and C are unknown parameters to be 

estimated. The final term in (8) keeps the seal off of the island. Another example, [6], studies the motion 

of a soccer ball in a game. The potential function employed there is 

   V(r)=αlog d (r)+βd(r)+γ1x+γ2y + γ11x2 +γ12xy+γ22y2  

with d(r) the shortest distance to the goal mouth from r = (x,y). The first two terms lead to attraction to the 

goalmouth.  A different monk seal is studied in  [15] and a time dependent potential function is employed 

namely, 

V(r,t) = α log d(r,t) + β d(r,t) 

with d(r,t) the distance from an attractor at time t. In this case the location of attraction switched 

depending on whether the animal was on an outbound or inbound journey. In each of these examples V(r) 

is linear in the parameter. Potential function and vector field estimates are provided in the papers just 
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referenced. The successful implementation of the proposed method for potential estimation is 

encouraging. 

IV. ESTIMATION 

The representation (4) with r in Rp and ∇ V(r) = ∇ φ(ri)Tβ will be employed. The values r(ti) will be 

written ri. Define the p by 1 vector yi+1 =(ri+1-ri )/√(ti+1-ti). Following expression (4) one has the form 

      yi+1 =  - φ(ri)Tβ√ (ti+1 - ti) + σZi+1, i = 1,…,n       (9) ∇

involving the L by 1 vector β,  the L by p matrix ∇ φ(ri), the p by p matrix σ, and the p by 1 vector Zi+1 . 

Suppose, for simplicity, σ = σ I with σ real-valued and with I the p by p identity matrix. Stack the n 

values yi+1, i=1,…,n vertically to form an np by 1 vector Yn. Stack the n matrices  - ∇ φ(ri)T √(ti+1 - ti)  to 

form the np by L matrix Xn . Let xi denote the i-th row of Xn so Xn
TXn= ∑xixi

T. Stack the n values σZi+1 to 

form εn . Then one has the regression model Yn = Xnβ + εn with the difference from ordinary regression 

that Xn is random. Supposing the matrix Xn
TXn to be nonsingular one can compute the ordinary least 

squares estimate b = (Xn
TXn)-1Xn

TYn of β and then φ(r)Tb as an estimate of V(r). 

   By setting xi = - ∇ φ(ri) and supposing the εij of εn = [εij]  to be independent, zero mean, variance σ2 

variates asymptotic properties of φ(r)Tb may be obtained from Theorem A.1 below. The theorem, and 

some additional assumptions needed, is found in  [16]. 

   One can compute sn
2 = n-1∑(yi-xi

Tb)T(yi-xi
Tb) as an estimate of σ2 and, for example, then set down a 

confidence interval for φ(r)Tβ using the results of Theorem A.2. Specifically, provided lim log 

λmax(Xn
TXn)/n→0 a.s., one has 

      (φ(r)T(Xn
TXn)-1φ(r))1/2φ(r)T (b-β)/sn→N(0,1), 

the standard normal, in distribution as n→∞. This last leads to the approximate 100(1-α)% confidence 

interval 

      φ(r)T β = φ(r)T b ± zα/2 (φ(r)(Xn
TXn)-1φ(r)T)1/2 

where  zα/2 denotes the 100α/2 percent point of the standard normal. 

V. AN EXAMPLE 
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FIG 2. The estimated vector field for the path of Figure1.    

   The Starkey Reserve is a large area in Oregon set aside to study the interactions of elk, deer, cows and 

man sharing an environment. There is a high fence around the Reserve.Figure 1 shows a sampled 

trajectory of one of the elk.There were 1571 GPS locations taken with a time interval of approximately 2 

 

FIG 3. The estimated potential for the path of Figure 1. The lighter shading corresponds to smaller values. 
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hours between successive locations [17]. 

A potential function V(r) was approximated by thin plate radial basis splines employing the kernel 

function of (7) with p and q = 2.  The coefficients βl were estimated by ordinary least squares employing 

the model (5). The results are provided in Figures 2 and 3. One sees the confusion of Figure 1 much 

reduced. A point of attraction appears near (7.5,11.0).  Figure 3 provides an image plot of the potential 

function. Now one sees the point of attraction with but a glance. 

VI. EXTENSIONS 

   Various generalizations of the letter’s results may be mentioned. The references listed contain some 

mention to the ideas. One could set down an expansion for V employing wavelet functions, [18]. One 

could consider updating methods for real-time work and also robust estimation, [19]. If the potential 

function is changing slowly one could consider a sliding window estimate., [20]. In video analysis one 

might consider the model I(r,t) = I0(r) + δ(r(t)-r) with t indexing frame, I0 representing background, and δ 

the Dirac delta [ 21], [22]. Lastly once could consider adaptive estimates. [23]. 

   Because of the simplicity of the approach obtaining results for these cases appears quite direct. 

VII. CONCLUSION 

    This letter presents a novel estimation method for handling moving objects. the computations may be 

implemented by least squares algorithms. 

APPENDIX 

Theorem A.1. [16] Consider the regression model yi = xi
Tβ + εi, i=1,2,… with {εi} martingale differences 

with respect to an increasing sequence of σ-fields {Fn}. Suppose that supn E(||εn||α|Fn-1) < ∞ a.s. for some α 

> 2. Suppose further that limn→∞ var{εn|Fn-1) = σ2 almost surely  for some nonstochastic σ.  Assume that xn 

is a Fn-1-measurable random variable and that there exists a non-random positive definite symmetric L by 

L matrix Bn for which Bn
-1(Xn

TXn)1/2→I and sup1≤i≤n|| Bn
-1xn||→0 in probability. Then 

                 (Xn
TXn)1/2(b-β) →N(0, σ2I) 

 in distribution as n→∞. 
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   Note that 0 mean independent observations like the σZi+1 of (5) form a martingale difference sequence 

with respect to the σ-field Fi generated by {r(t1),…,r(ti)}. 

Theorem A.2. Under the assumptions of Theorem A.1 and lim log λmax(Xn
TXn)/n→0 almost surely, one has  

          ((φ(r)(Xn
TXn)-1φ(r)T)-1/2φ(r)T (b-β)/sn →N(0,1)  

in distribution as n→∞. 

   The additional assumption in A.2 is to have the almost sure convergence of sn to σ. 
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