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Abstract

We place ourselves in the setting of high-dimensional statistical inference, where the number of
variables p in a dataset of interest is of the same order of magnitude as the number of observations
n. More formally we study the asymptotic properties of correlation and covariance matrices under the
setting that p/n → ρ ∈ (0,∞), for general population covariance.

We show that spectral properties for large dimensional correlation matrices are similar to those of
large dimensional covariance matrices, for a large class of models studied in random matrix theory.

We also derive a Marčenko-Pastur type system of equations for the limiting spectral distribution of
covariance matrices computed from elliptically distributed data. The motivation for this study comes
from the possible relevance of such distributional assumptions to problems in econometrics and portfolio
optimization. From a theoretical standpoint, we show that our approach can be extended beyond
elliptically distributed data to more general geometric frameworks.

A mathematical theme of the paper is the important use we make of concentration inequalities.

1 Introduction

It is increasingly common in multivariate Statistics to have to work with datasets where the number of
variables, p, is of the same order of magnitude as the number of observations, n. When studying asymptotic
properties of estimators in this setting, usually under the assumption that p/n has a finite limit, we often
obtain convergence results that differ from those obtained under the classical assumptions that p is fixed
and n goes to infinity.

This realization is not recent: the first paper in the area is probably Marčenko and Pastur (1967),
where the authors studied the behavior of the eigenvalues of large dimensional sample covariance matrices,
for diagonal population covariance matrices, and with some assumptions on the structure of the data. The
surprising result they found was, in the case of i.i.d data, that the eigenvalues of the sample covariance
matrix X∗X/n do not concentrate around 1, but rather were spread out on the interval [(1−

√
p/n)2, (1+√

p/n)2], when p ≤ n. Moreover their distribution is asymptotically non-random. We note that this
seminal paper is much richer than just described, and refer the reader there for more details.

Since this result there has been a flurry of activity, especially in recent years, concerning the behavior
of the largest eigenvalue of sample covariance matrices (Geman (1980), Yin et al. (1988)), their fluctuation
behavior in the null case (Forrester (1993), Johansson (2000), Johnstone (2001), El Karoui (2003)) and
under alternatives (Baik et al. (2005), El Karoui (2007), Paul (2007)), as well as fluctuation results for linear
spectral statistics of those matrices (Jonsson (1982), Bai and Silverstein (2004), Anderson and Zeitouni
(2006)). Even more recently, some of these results have started to be used to develop better estimators of
these large dimensional covariance matrices (Burda et al. (2004), El Karoui (2006) and Rao et al. (2007)).
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We note also that from a statistical point of view, other approaches to estimation using regularization have
been taken, with sometime striking results (Bickel and Levina (2007), Ledoit and Wolf (2004)).

As noted above, the random matrix results in question concern somewhat exclusively sample covariance
matrices. However, in practice, sample correlation matrices are often used, for instance for Principal
Component Analysis (PCA). A question we were asked several times by practitioners is how much of the
random matrix results would hold if one were concerned with correlation matrices and not covariance
matrices. Part of the answer is already known from a paper due to Jiang (2004), where he considered the
case of i.i.d data. The answer was that spectral distribution results as well as a.s convergence of extreme
eigenvalue results held in this situation. However, in practice, the assumption of i.i.d data is not very
reasonable, and in most cases, practitioners would actually hope to be in the presence of an interesting
covariance structure, away from the no-information case represented by the identity covariance matrix. In
this paper we tackle the case where the population covariance is not Idp, and show that classic random
matrix results hold then too, with the population covariance matrix replaced by the population correlation
matrix. This means that recently developed methods that make use of random matrix theory to better
estimate the eigenvalues of population covariance matrices can also be used to estimate the spectrum of
population correlation matrices.

As explained below, such results can be shown for Gaussian and some non-Gaussian data. A natural
question is therefore to wonder how robust to these distributional assumptions the results are. In partic-
ular, a recent paper (Frahm and Jaekel (2005)) and a recent monograph (McNeil et al. (2005)) make an
interesting case for modeling financial data through elliptically distributed data. As explained in Frahm
and Jaekel (2005) and McNeil et al. (2005), this has to do with certain tail-dependence properties that
are absent from Gaussian data and present in certain class of elliptically distributed data. We show in
the second part of the paper that for elliptically distributed data, the spectrum of the sample covariance
matrix is asymptotically non-random, and we characterize it through the use of Stieltjes transforms. In
particular, it shows that the Marčenko-Pastur equation is not robust to deviation from the “Gaussian+”
model usually considered in random matrix theory. The result explains some of the numerical results ob-
tained by Frahm and Jaekel (2005). From a more theoretical standpoint, our approach allows us to break
away from models for data where some independence between entries of a (observed or unobserved) data
vector is required. Rather, what we need are concentration properties for convex 1-Lipschitz (with respect
to Euclidian norm) functionals of these data vectors. Hence, our approach will show that some results in
random matrix theory hold in wider generality than was previously known.

As it turns out, a central element of the proofs to be presented are the concentration properties of
certain quadratic forms. We make use below of a number of concentration inequalities, recent and less
recent. The usefulness of these inequalities in random matrix theory has already been illustrated, in another
context than what we develop below, in Guionnet and Zeitouni (2000). A very good reference on the topic
of concentration is Ledoux (2001).

2 On correlation matrices

We now turn to our study of correlation matrices. The main result is Theorem 1, which says that under
the model considered there - related to the classical one in random matrix theory - results concerning the
spectral distribution and the largest eigenvalue pass without much modifications from the sample covariance
matrix to the sample correlation matrix.

Before we proceed, we need to set some notations. In the rest of the paper, we call C+ = {z ∈ C :
Im [z] > 0}.

2.1 A simple lemma

In what follows, we use ||| · |||2 to denote the spectral norm of a matrix.

Lemma 1. Suppose that Mp is a p× p Hermitian random matrix, whose spectral characteristics (spectral
distribution Fp or largest eigenvalue λ1(Mp)) converge a.s to a limit, and whose spectral norm is (a.s)
bounded as p →∞. Suppose that Dp is a p× p diagonal matrix and that |||Dp − Idp|||2 → 0 a.s. Then the
spectral characteristics of DpMpDp or D−1

p MpD
−1
p have the same limit as that of Mp.
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Proof. The assumption |||Dp − Idp|||2 → 0 implies that for p large enough, Dp is invertible. Now

|||Mp −DpMpDp|||2 = |||Mp −MpDp + MpDp −DpMpDp|||2
≤ |||Mp|||2|||Dp − Idp|||2 + |||Dp − Idp|||2|||Dp|||2|||Mp|||2 → 0 a.s

Using Weyl’s inequality (see Bhatia (1997), Corollary III.2.6), i.e the fact that for Hermitian matrices A and
B and any i, if λi denotes the i-th eigenvalue of A, ordered in decreasing order, |λi(A)−λi(B)| ≤ |||A−B|||2,
we conclude that for any fixed k

max
k
|λk(Mp)− λk(DpMpDp)| → 0 a.s .

Now because |||Mp|||2 is bounded a.s, the two sequences are a.s asymptotically distributed (see Grenander
and Szegö (1958), p.62, or Gray (2002)). Therefore, if Fp(Mp) weakly converges to F , then Fp(DpMpDp)
also converges to F .

Now if |||Dp− Idp|||2 → 0, then |||D−1
p − Idp|||2 → 0, too. So the same results hold when we replace Dp

by D−1
p .

The previous lemma is helpful in our context thanks to the following elementary fact, which is standard
in multivariate Statistics.

Fact 1 (Correlation matrix as function of covariance matrix). Call Cp the correlation matrix of our data
and Sp the covariance matrix of the data. Call Dp(Sp) the diagonal matrix consisting of the diagonal of
Sp. Then we have:

Cp = [Dp(Sp)]
−1/2 Sp [Dp(Sp)]

−1/2 .

Proof. This is just a simple consequence of the fact if D is a diagonal matrix

(DHD)i,j = di,iHi,jdj,j .

Note that Cp(i, j) = Sp(i, j)/
√

Sp(i, i)Sp(j, j) and the assertion follows.

The consequence of the previous remark is that we will deduce the asymptotic spectral properties of
correlation matrices from that of covariance matrices by simply showing convergence of the diagonal of Sp

(or a scaled version of it) to Idp in operator norm.
We are now ready to state the main theorem of this section.

Theorem 1. Suppose X is n × p matrix of i.i.d random variables with mean 0, variance 1. Assume
further that E

(
|Xi,j |4(log(|Xi,j |))2+2ε

)
< ∞. Suppose Σp is a p × p covariance matrix and call Γp the

corresponding correlation matrix. Assume that |||Γp|||2 < K, for all p. Call Y1 = XΣ1/2
p and Y = XΓ1/2

p .
Then the spectral properties of corr(Y1) are the same as the spectral properties of Γ1/2

p (X−X̄)′(X−X̄)Γ1/2
p

= (Y − Ȳ )′(Y − Ȳ ).
In particular, the Stieltjes transform of the limiting spectral distribution of corr(Y1) satisfies the Marčenko-

Pastur equation, with parameter the spectral distribution of Γp: namely, if Hp, the spectral distribution of
Γp has a.s a limit H, if p/n has a finite limit ρ, and if mn is the Stieltjes transform of corr(Y1), we have,
calling wn = −(1− p/n)/z + (p/n)mn(z),

wn(z) → w(z) a.s , which satisfies − 1
w(z)

= z − ρ

∫
λdH(λ)

1 + λw(z)
,

and w is the unique function mapping C+ into C+ to satisfy this equation.
Also, if the norm of Γ1/2

p (X − X̄)′(X − X̄)Γ1/2
p has a limit, the norm of corr(Y ) has the same limit.

This theorem is related to that of Jiang (2004), which was concerned with Γp = Idp, which would
amount to doing multivariate analysis with i.i.d variables, an assumption that for obvious statistical reasons,
practitioners are not willing to make. By contrast, here we are able to handle general covariance structures,
assuming that the spectral norm of Γp is bounded. However, Jiang (2004) required only 4 moments and
we require a bit more. We explain in subsubsection 2.2.2 why it is so.
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We note that the proof can actually handle cases where |||Γp|||2 grows slowly with p. We refer the
reader to Silverstein (1995) for more information on the Marčenko-Pastur equation in the case of covariance
matrices, and an important strengthening of the result of Marčenko and Pastur (1967).

Recent progress has led to fairly explicit characterization of the norm of large dimensional sample
covariance matrices - a fact that makes these results potentially useful in, among other fields, statistics.
In particular, the following consequence for the norm of the correlation matrix can be drawn from the
recent El Karoui (2007), specifically Fact 2 there (which is partly a consequence of a deep result in Bai
and Silverstein (1998)):

Corollary 1. Under the assumptions of Theorem 1, we have: if λ1(Γp) tends to the endpoint of the support
of H, and the model {Γp, n, p} is in the class G defined in El Karoui (2007), then

|||corr(Y1)|||2 − µn,p → 0 a.s ,

where

µn,p =
1
c0

(
1 +

p

n

∫
λc0

1− λc0
dH(λ)

)
n

p
=

∫ (
λc0

1− λc0

)2

dH(λ) , c0 ∈ [0, 1/λ1(Γp)) .

2.2 Proof of Theorem 1

The proof is in three steps. The first one consists in showing that we need to focus only on the matrix
Y ′Y (or (Y − Ȳ )′(Y − Ȳ )). Then we need a truncation and centralization step for the entries of X. And
finally, we use concentration of measures result to show that indeed the diagonal of the corresponding
covariance matrix converges in operator norm to the identity.

2.2.1 Replacing Σp by Γp

Since the correlation coefficient is invariant under shifting and scaling random variables, we see that
for any diagonal matrix D,

corrY = corrY D ,

since (Y D)i,j = Yi,jdjj . In particular, for D we can use (diag(Σp))−1/2. After this adjustment, our data
matrix takes the form XG, where G = Σ1/2

p (diag(Σp))−1/2 = Σ1/2
p D, and G′G = Γp. Note in particular

that since Γp is a correlation matrix, its diagonal is full of 1-s. Because G is not symmetric, it is in general
not equal to

√
Γp. However, G is similar to D1/2Σ1/2

p D1/2, so all its eigenvalues are real and non-negative.
Further, because G′G = Γp, the eigenvalues of G are equal to the square root of the eigenvalues of Γp.

Because Σ1/2
p and D are invertible, so is Σ1/2

p D. Therefore the spectrum of the matrix of interest is
the same as the spectrum of X ′XΣ1/2

p D2Σ1/2
p . Even though in general Σ1/2

p D2Σ1/2
p 6= Γp, they have the

same eigenvalues. Because the Marčenko-Pastur equation involves only the eigenvalues of the deterministic
matrix at stake, the limiting spectral distribution of corr(Y ) is the same as the limiting spectral distribution
of Γ1/2

p X ′XΓ1/2
p . A similar conclusion applies to individual eigenvalues.

2.2.2 Truncation and centralization step

In this part, we show that we can truncate the entries of X at level
√

n/(log n)(1+ε)/2 =
√

n/δn and
not change the value of corrY , at least for p large enough. The same holds when the truncated values are
then recentered. The conclusion of this subsection is that it is enough to study matrices X whose entries
are i.i.d mean 0 and are bounded in absolute value by C

√
n/(log n)(1+ε)/2.

The proof is similar to the argument given for the proof of Lemma 2.2 in Yin et al. (1988). However,
because the term 1/(log n)(1+ε)/2 is crucial in our later arguments, and the author of Yin et al. (1988) gloss
over the details of their choice of δn, we feel a full argument is needed to give a convincing proof, though
we do not claim the arguments are new. This is where we need a slightly stronger assumption that just
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the finite 4-th moment assumption made in Yin et al. (1988). (Our problem is with Remark 1 in Yin et al.
(1988), which is not properly justified. There also appears to be counter-examples to this claim. However,
it does not seem that (the full-strength of) this remark is ever really used in that paper, and the rest of
the arguments are clear.)

We have the following lemma, which follows closely Lemma 2.2 in Yin et al. (1988).

Lemma 2 (Truncation). Let X be an infinite double array of identically distributed (i.d) random variables.
Suppose Xn is an n × p matrix of i.d random variables, with mean 0, variance 1, whose entries satisfy
E

(
|Xi,j |4(log(|Xi,j |))2+2ε

)
< ∞, corresponding to the upper left corner of X. Suppose that p/n has a finite

limit ρ. Call Tn the matrix with (i, j)-th entry xi,j1|xi,j |<
√

n/(log n)(1+ε)/2. Then

P (Xn 6= Tn i.o ) = 0 .

Proof. Because of the moment assumption made on Xn(i, j), we have, if we call fε(x) = x4(log x)2(1+ε),∫ ∞

0
f ′ε(y)P (Y > y)dy =

∞∑
m=0

∫ um+1

um

f ′ε(y)P (Y > y)dy < ∞ ,

for any increasing sequence {um}∞m=0, with u0 = 0 and um →∞ as m →∞. Now, when y is large enough,
f ′ε(y) ≥ 0, so ∫ um+1

um

f ′ε(y)P (Y > y)dy ≥ P (Y > um+1)(fε(um+1)− fε(um)) .

Call γm = 2m and um =
√

γm/(log γm)1+ε. Note that um is increasing for sufficiently large. Elementary
computations show that, as m tends to ∞, u4

m(log um)2+2ε ∼ 22m−(2+2ε). Consequently, fε(um+1) −
fε(um) ∼ 3× 22(m−1). Now note that our moments requirement therefore imply that

∞∑
m=1

22mP (Y > um) < ∞ .

Now, for n satisfying γm−1 ≤ n < γm, we threshold Xn(i, j) at level um−1. (In what follows, 2ργm should
be replaced by the smallest integer greater than this number, but to avoid cumbersome notations, we do
not stress this particular fact.)

P (Xn 6= Tn i.o ) ≤
∞∑

m=k

P (
⋃

γm−12m−1≤n<γm2m

n⋃
i=1

p⋃
j=1

(|Xn(i, j)| > um−1))

≤
∞∑

m=k

P (
⋃

γm−12m−1≤n<γm2m

γm2m⋃
i=1

2ργm2m⋃
j=1

(|Xn(i, j)| > um−1))

=
∞∑

m=k

P (
γm2m⋃
i=1

2ργm2m⋃
j=1

(|Xn(i, j)| > um−1))

≤ 2ρ
∞∑

m=k

22mP (Y > um−1) =
ρ

2

∞∑
m=k

22(m−1)P (Y > um−1) .

The right hand side tends to 0 when k tends to infinity and the left hand side is independent of k. We
conclude that

P (Xn 6= Tn i.o ) = 0 .

Lemma 3 (Centralization). Call TCn the matrix with entries TCn(i, j) = Tn(i, j)− ETn(i, j). Then

1
n
|||T ′

nTn − TC ′
nTCn|||2 → 0 a.s .
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Proof. The proof would be a simple repetition of the arguments in Lemma 2.3 of Yin et al. (1988), with
r = 1/2 and δ = (log n)−(1+ε)/2 in the notation of their papers, so we skip it. Note that their proof finds a
bound on the spectral norm of T ′

nTn − TC ′
nTCn.

We note that since we are dealing with correlation matrices, and those are invariant under recentering
of the columns of Y , we can assume without loss of generality that we work with TCn instead of Tn; i.e
we are working with centered random variables that are bounded by C

√
n/(log n)1+ε. Note also that their

variances tend to 1.
What the centralization lemma 3 guarantees is that the spectral characteristics of Γ1/2TC ′

nTCnΓ1/2

are asymptotically the same as those of Γ1/2T ′
nTnΓ1/2, and hence those of Γ1/2X ′

nXnΓ1/2 by the truncation
lemma.

2.2.3 Controlling the diagonal in operator norm

Now that we have seen that a.s we can assume that the entries of X are bounded by C
√

n/(log n)(1+ε)/2,
we turn our attention to showing that the diagonal of G′X ′XG is close to 1. We assume wlog that C ≤ 2,
which is true since E(Tn(i, i)) → E(Xn(i, i)) = 0.

Lemma 4 (Mean 0 Gaussian MLE situation). Here we focus on Sp = 1
nY ′Y = 1

nG′X ′XG, a quantity
often studied in random matrix theory.

When p � n, we have

max
i

∣∣∣∣√Sp(i, i)− 1
∣∣∣∣ → 0 a.s

Proof. We call vi the ith column of G. Denoting M = X ′X/n, we note that

Sp(i, i) = v′iMvi = ‖Xvi/
√

n‖2
2 .

Now consider the function f from Rnp to R defined by turning the vector x into the matrix X, by filling
first the rows of X and then computing the Euclidian norm of Xvi. In other words,

f(x) = ‖Xvi‖2 .

This function is clearly convex, and 1-Lipschitz with respect to Euclidian norm. As a matter of fact, for
θ ∈ [0, 1], and x, z ∈ Rnp,

f(θx + (1− θ)z) = ‖(θX + (1− θ)Z)vi‖2 ≤ ‖θXvi‖2 + ‖(1− θ)Zvi‖2 = θf(x) + (1− θ)f(z) .

Similarly,

|f(x)− f(z)| = |‖Xvi‖2 − ‖Zvi‖2| ≤ ‖(X − Z)vi‖2 ≤ ‖X − Z‖F ‖vi‖2 = ‖x− z‖2 ,

using the Cauchy-Schwarz’s inequality and the fact that ‖vi‖2 = (G′G)(i, i) = Γ(i, i) = 1. Because the Xij

are i.i.d we can apply recent results concerning concentration of measure of convex Lipschitz functions. In
particular, from Corollary 4.10 in Ledoux (2001) (a consequence of Talagrand’s inequality, Theorem 4.6 in
Ledoux (2001)) we see that for any r > 0, we have

P (|f(X)−mf | ≥ r) ≤ 4 exp(−r2/(16C2n/(log n)(1+ε))) ,

where mf is a median of f(X). In particular, since
√

Sp(i, i) = f(X)/
√

n, we see that

P (|
√

Sp(i, i)−mi,i| ≥ r) ≤ 4 exp(−r2(log n)(1+ε)/16C2) .

Finally,

P ([max
i
|
√

Sp(i, i)−mi,i|] ≥ r) ≤ 4p exp(−r2(log n)(1+ε)/(16C2)) ,
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so, since p � n, using the first Borel-Cantelli lemma (see Durrett (1996), p. 47), we see that

max
i
|
√

Sp(i, i)−mi,i| → 0 a.s

All we have to do now is show that the mi,i are all close to 1. We call υn = var (TCn(i, j)). Note that
υn is independent of i, j and υn → 1, as n →∞.

Since we have Gaussian concentration, using Proposition 1.9 in Ledoux (2001), we have

|E(
√

Sp(i, i)−mi,i| ≤ 8C
√

π(log n)−(1+ε)/2

and, since E(Sp(i, i)) = ‖vi‖2
2υn = Γ(i, i)υn = υn,

0 ≤ υn − E(
√

Sp(i, i))2 ≤
64C2

(log n)(1+ε)

Consequently,

− 8C
√

π

(log n)(1+ε)/2
+

√
υn −

64C2

(log n)(1+ε)
≤ mi,i ≤ υn +

8C
√

π

(log n)(1+ε)/2
.

Therefore, max |mi,i − 1| = O(max(|1− υn|, (log n)−(1+ε)/2)) and we have

max
i
|
√

Sp(i, i)− 1| → 0 a.s

We now turn to the more interesting situation of a covariance matrix.

Lemma 5 (Covariance matrix). We now focus on the matrix

Sp =
1

n− 1
(Y − Ȳ )′(Y − Ȳ ) .

For this matrix, we also have

max
1≤i≤p

|
√

Sp(i, i)− 1| → 0 a.s .

Proof. Note that Y − Ȳ = (Idn− 1
n11′)Y = (Idn− 1

n11′)XG. Now Sp(i, i) = v′iX
′(Idn− 1

n11′)Xvi/(n− 1),
so the same strategy as above can be employed, with f now defined as

f(x) = f(X) = ‖(Idn −
1
n

11′)Xvi‖2 .

This function is again a convex 1-Lipschitz function of x. Convexity is a simple consequence of the fact
that norms are convex; the Lipschitz coefficient is equal to ‖vi‖2|||Idn − 1

n11′|||2. The eigenvalues of this
matrix are (n− 1) 1s and one zero. So its operator norm is 1. We therefore have Gaussian concentration.
All we need to check to conclude is that E(Sp(i, i)) → 1. By renormalizing by 1/

√
n− 1, we ensure that

E(Sp(i, i)) = υn, and so we can conclude as before.

2.2.4 A remark on |||(X − X̄)′(X − X̄)/n− 1|||2

Finally, we note that in the literature, most results concerning the spectral norm of covariance matrices
are dealing only with the case of the mean 0 Gaussian MLE, namely the matrix X ′X/n. Since in practice,
(X − X̄)′(X − X̄)/(n − 1) is almost always used, it is of interest to know what happens for this matrix.
Note that the spectral norm of the difference between these two matrices goes to ρ, as n and p goes to
infinity, so coarse bounding of this type will not be enough to find the limiting behavior of the quantity
we are interested in.
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However, calling Hn = Idn − 1
n11′, we see that

X − X̄ = HnX .

Therefore, since σ1, the largest singular value, is matrix norm, we have

σ1(X − X̄)/
√

n ≤ σ1(Hn)σ1(X/
√

n) = σ1(X/
√

n) ,

since Hn is a symmetric matrix with (n− 1) eigenvalues equal to 1 and 1 eigenvalue equal to 0.
Now because X ′X/n and (X − X̄)′(X − X̄)/n− 1 have asymptotically the same spectral distribution,

calling l1 the right endpoint of this limit (if it exists), we conclude that

lim inf σ2
1((X − X̄)/

√
n− 1) ≥ l1 .

Hence, when |||X ′X/n|||2 → l1, we also have

|||(X − X̄)′(X − X̄)/(n− 1)|||2 → l1 .

This justifies the assertion made in Corollary 1, and more generally, the fact that when the norm of a
non-recentered sample covariance matrix convergence to the right endpoint of the support of its limiting
spectral distribution, so does the norm of the centered sample covariance matrix.

3 Elliptically distributed data

We now turn our attention to the problem of finding a Marčenko-Pastur -type system of equations for
the limiting spectral distribution of sample covariance matrices computed, first, from elliptically distributed
data, and then from more general distributions. Our aim in doing so is to explain the lack of robustness
in high-dimension of this estimate of scatter, and to explain some of the numerical findings highlighted
in Frahm and Jaekel (2005). We refer to this paper and to the book McNeil et al. (2005) for interesting
discussions of the potential relevance of elliptical distributions to problems arising in the analysis of financial
data. However, let us mention at least two properties that make them appealing. The first is the tail-
dependence properties that they induce between components of our data vector, a property that in practice
is found in financial data and cannot be accounted for by say multivariate Gaussian data. Second, at least
some of these distributions allow for a certain amount of heavy-tailed observations. This is often mentioned
as an important feature in financial data modeling. By contrast, it is sometimes advocated in the random
matrix community that matrices with say i.i.d heavy-tailed entries should be studied as models for those
financial data. We find that these models suffer at least from one deep flaw: in the case of a crash, many
companies or stocks suffer on the same day, and a model of i.i.d heavy-tailed entries does not account
for this. Besides the particulars of different models, what is also important to notice is that the limiting
spectra will be drastically different and the behavior of extreme eigenvalues is also very likely to be so.
Before we return to our study, we refer the reader to Anderson (2003) and Fang et al. (1990) for thorough
introductions to elliptically distributed data.

We will assume that we observe n i.i.d observations of an elliptically distributed vector v in Rd. Specif-
ically, v can be written as

v = µ + λΓr ,

where µ is a deterministic d-dimensional vector, λ is a real-valued random variable, r is uniformly dis-
tributed on the unit sphere in Rp (i.e ‖r‖2 = 1) and Γ is a d × p matrix. We call Σ = ΓΓ′. Here Σ, a
d×d matrix, is assumed to be deterministic, and λ and r are independent. We call the corresponding data
matrix X, which is n × d, i.e the vectors of observations are stacked horizontally in this matrix. We will
assume below that n/p and d/p have finite limits.

Note that without loss of generality, we can assume that µ = 0, and deal with the corresponding X ′X
matrix, because (X − X̄)′(X − X̄) or (X − µ)′(X − µ) have asymptotically the same spectral distribution
as X ′X, because the difference between the matrices is a rank 1 matrix. In what follows, we will therefore
assume that

vi = λiΓri , i = 1, . . . , n .
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As is now classical, we will obtain our main result on this question (Theorem 2) by making use of Stieltjes
transform arguments. If needed, we refer the reader to Geronimo and Hill (2003) for background on the
connection between weak convergence of distributions and pointwise convergence of Stieltjes transforms.

We note that our model basically falls into the class of covariance matrices of the type T
1/2
p X∗

n,pLnXn,pT
1/2
p ,

where Xn,p is a random matrix, independent of the square matrices Tp (p× p) and Ln (n× n), which can
also be assumed to be random, as long as their spectral distribution converge to a limit. These matrices
have been the subject of investigations already: see Tulino and Verdú (2004) Theorem 2.43, which refers
to Boutet de Monvel et al. (1996), Li et al. (2004) and Girko (1990) and the very recent Paul and Silver-
stein (2007), which refers to Burda et al. (2005) and to Zhang (2006) for systems of equations involving
Stieltjes transforms similar to the one we will derive. We note that under some restrictions, methods of
free probability using the S-transform (see Voiculescu (2000)) could be used to derive a characterization of
the limit.

However in all these papers, the entries of Xn,p are assumed to be independent. Naturally, this is not
the case in the situation we are considering, since the vectors ri all have norm 1. (We note that the original
Marčenko and Pastur (1967) allowed for dependence, too, and one of our questions was to know if one
could recover (and generalize) those results from a different angle than the one taken in Marčenko and
Pastur (1967).) Also, our matrix Γ is d×p, and usually only square matrices are considered. Our aim here
is to show that independence in Xn,p is not the key element, rather we will rely on the fact the rows of
Xn,p are independent, and that the distribution of the corresponding vectors satisfy certain concentration
properties. As our proof will make clear, using the “rank 1 perturbation” method originally proposed
in Silverstein and Bai (1995) and Silverstein (1995), proofs of convergence of spectra of random matrices
basically boil down to concentration of certain quadratic forms and concentration of Stieltjes transforms,
the latter being easily achieved using Azuma’s inequality. We discuss this in more detail in subsection 3.3,
and propose some extensions of Theorem 2 there, in particular in situations where the random vectors of
interest cannot be broken into independent parts. As far as we know, some of these results are new and
cannot be achieved with other methods involving (one way or another) moment computations.

Finally, we outline in Remark 4 a possible strategy for deriving Theorem 2 from known results, using
certain properties of vectors sampled uniformly at random on the 1-sphere. While that would give us the
result we want for elliptically distributed data, it would not be as generalizable and reach as wide results
as our approach will. Also, one of our points is really that the importance of concentration inequalities in
this context appears to not have been realized and they permit generalizations of random matrix results
to problems that look intractable by other methods.

3.1 A preliminary lemma of independent interest

We show a result of independent interest, namely the fact that the Stieltjes transform of a matrix which
is the sum of n independent rank 1 matrices is asymptotically equivalent to a deterministic function. We
have a bit more than this: we show concentration around its mean, which also gives us immediately some
lower bounds on the rate of convergence.

Lemma 6 (Concentration of Stieltjes transforms). Suppose M is a p× p matrix, with

M =
n∑

i=1

rir
∗
i ,

where ri are independent random vectors in Rp. Call

mp(z) =
1
p
trace

(
(M − zIdp)−1

)
.

Then, if Im [z] = v,
P (|mp(z)−E (mp(z)) | > r) ≤ 4 exp(−r2p2v2/(16n)) .

Note that the lemma makes no assumptions whatsoever about the structure of the vectors {ri}n
i=1,

beside the fact that they are independent.
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Proof. We call Mk = M − rkr
∗
k. We call Fi the filtration generated by {rl}i

l=1. The first classical remark
(see Bai (1999) p. 649, but note that the equation after (3.16) there contains a spurious 1/n, which is
problematic for the rest of the argument) is to write the random variable of interest as sum of martingale
differences:

mp(z)−E (mp(z)) =
n∑

k=1

E (mp(z)|Fk)−E (mp(z)|Fk−1) .

Now we note that E
(
trace

(
(Mk − zIdp)−1

)
|Fk

)
= E

(
trace

(
(Mk − zIdp)−1

)
|Fk−1

)
. So

|E (mp(z)|Fk)−E (mp(z)|Fk−1) | =
∣∣∣∣E (mp(z)|Fk)−E

(
1
p
trace

(
(Mk − zIdp)−1

)
|Fk

)
+ E

(
1
p
trace

(
(Mk − zIdp)−1

)
|Fk−1

)
−E (mp(z)|Fk−1)

∣∣∣∣
≤

∣∣∣∣E (
mp(z)− 1

p
trace

(
(Mk − zIdp)−1

)
|Fk

)∣∣∣∣
+

∣∣∣∣E (
mp(z)− 1

p
trace

(
(Mk − zIdp)−1

)
|Fk−1

)∣∣∣∣
≤ 2

pv
,

the last inequality following from Silverstein and Bai (1995), Lemma 2.6. So mp(z)− E (mp(z)) is a sum
of bounded martingale differences. Note that the same would be true for its real and imaginary parts. For
both of them we can apply Azuma’s inequality (see Ledoux (2001), Lemma 4.1), to get that

P (|Re [mp(z)−E (mp(z))] | > r) ≤ 2 exp(−r2p2v2/(8n)) ,

and similarly for its imaginary part. We therefore conclude that

P (|mp(z)−E (mp(z)) | > r) ≤ P (|Re [mp(z)−E (mp(z))] | > r/
√

2) + P (|Im [mp(z)−E (mp(z))] | > r/
√

2)

≤ 4 exp(−r2p2v2/(16n)) .

We have the following immediate corollary.

Corollary 2. Suppose we consider the following sequence of random matrices: for each p, pick n inde-
pendent p dimensional vectors. Call M =

∑n
i=1 rir

∗
i . Assume that p/n remains bounded away from 0.

Then
∀ z ∈ C+ ,mp(z)−E (mp(z)) → 0 a.s ,

and also
∀ z ∈ C+ ,

√
p

(log p)(1+α)/2
|mp(z)−E (mp(z)) | → 0 a.s , for α > 0 .

In other words, mp(z) is asymptotically deterministic.

Proof. The proof is an immediate consequence of the first Borel-Cantelli lemma.

Remark 1. We note that if Σ is a matrix independent of the ri, similar results would apply to

1
p
trace

(
(M − zIdp)−1Σl

)
,

after we replace v by v/|||Σ|||l2. In particular, if |||Σ|||2 ≤ C(log p)m, for some m, we have

1
p
trace

(
(M − zIdp)−1Σl

)
−E

(
1
p
trace

(
(M − zIdp)−1Σl

))
→ 0 a.s .

However, the rate in the second part of the previous corollary needs to be adjusted.
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Remark 2. We notice that the rate given by Azuma’s inequality does not match the rate that appears
in results concerning fluctuation behavior of linear spectral statistics, which is n and not

√
n. Of course,

our result encompasses many situations that are not covered by the currently available results on linear
spectral statistics, which might contribute to explain this discrepancy. The “correct” rate can be recovered
using ideas similar to the ones discussed in Guionnet and Zeitouni (2000) and Ledoux (2001), Chapter 8,
Section 5. As a matter of fact, if we consider the Stieltjes transform of the measure that puts mass 1/p
at each of the singular values of M = X∗X/n, it is an easy exercise to see that this function (of X) is
1/(
√

npv2)-Lipschitz with respect to Euclidian (or Frobenius) norm. Hence if the np dimensional vector
made up of the entries of X has a distribution that satisfies a dimension free concentration property with
respect to Euclidian norm, we find that the fluctuations of the Stieltjes transform at z are of order

√
np,

which corresponds to the “correct” rate found in the analysis of these models. (Note however, that results
have been shown beyond the case of distributions with dimension-free concentration.)

The conclusion of this discussion is that since the spectral distribution of random matrices is character-
ized by their Stieltjes transforms, it is not surprising that they are asymptotically non-random, for a very
wide class of data matrices of covariance type. We now turn to examining a case of particular interest, the
one where the data are elliptically distributed.

3.2 Marčenko-Pastur -type system for covariance matrices computed from elliptically
distributed data

We refer the reader to the discussion introducing Section 3 for a review of related literature. In what
follows, we assume that we have a triangular “array” of random variables, where the n-th line contains n
i.i.d λi’s and n i.i.d ri’s uniformly distributed on the unit sphere in Rp. In what follows, we allow Σ = ΓΓ′

to be random, as long as it is independent of the vectors ri’s. For all practical matters, however, Σ can be
considered deterministic.

Theorem 2. Let {{vi}n
i=1}∞n=1 form a triangular array of independent random vectors, elliptically dis-

tributed as described above. In particular, recall that they are in Rd. Call θn = d/p, ρn = p/n, ξn =
d2/np = θ2

nρn. Call Hd the spectral distribution of ΓΓ′ = Σ (which is d × d), and νn the spectral dis-
tribution of the diagonal matrix containing the λi. Assume that Hd converges weakly a.s to a probability
distribution H 6= 0. Assume that νn converges weakly a.s to a probability distribution ν 6= 0. Assume
further that

∫
τdHd(τ) remains bounded.

Call X the n× d data matrix whose i-th row is vi. Consider the matrix

Bn =
d

n
X ′X =

d

n

n∑
i=1

viv
′
i ,

n∑
i=1

uiu
′
i .

If ρn has a finite non-zero limit, ρ, and θn has a finite non-zero limit θ, then ξn obviously has a finite
non-zero limit ξ and the Stieltjes transform of Bn, mn, has a deterministic limit m satisfying the equations:

m(z) =
∫

dH(τ)
τ

∫
θλ2

1+ξλ2w(z)
dν(λ)− z

and

w(z) =
∫

τdH(τ)
τ

∫
θλ2

1+ξλ2w(z)
dν(λ)− z

.

w is the unique solution of this equation mapping C+ into C+. (The intuitive meaning of w is explained
just below.) Let us remind the reader that m uniquely characterizes the limiting spectral distribution of Bn.

We note further that we have

1 + zm(z) = w(z)
∫

θλ2

1 + ξλ2w(z)
dν(λ) .

The same results hold for the scaled sample covariance matrix d/n(X − X̄)′(X − X̄), since it is a finite
rank perturbation of Bn.

The conclusion is that the limiting spectral distribution of Bn is non-random and is characterized by
the previous system of two equations.
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In the proof we actually do not need the λi’s to be independent of each other. We only need them to
be independent of the r’s and we need their empirical distribution to converge a.s to a deterministic limit,
ν. In the case of i.i.d λi’s, we note that νn has an almost sure limit ν by the Glivenko-Cantelli Theorem
(van der Vaart (1998), Theorem 19.1) for triangular arrays. (A simple modification to the proof given in
van der Vaart (1998), which is not for triangular arrays, can be obtained using Hoeffding’s inequality for
the variables 1λi≤t, which guarantees that the result is true for triangular arrays.)

We note that, maybe interestingly, the proof could be adapted to show that quantities of the type
trace

(
Σk(Bn − zIdp)−1

)
/d satisfy the same equation as w, with τ raised to the power k at the numerator

and the same denominator involving w, provided the Hd’s have enough moments. (Note that this is the
case for m, with k=0 and w which basically corresponds to k = 1.)

Finally let us say that we explain in Subsection 3.3 how our approach can be generalized beyond
elliptically distributed data to include vectors with more general dependence structure. This allows us
to derive other new results, in particular when the dependence structure between the entries of the data
vectors is complicated.

3.2.1 On quadratic forms involving vectors sampled uniformly from the 1-sphere in Rp

We consider the concentration properties of quantities of the type

r′(M − zIdp)−1r ,

where r is sampled uniformly at random from the 1 sphere in Rp, and M is a symmetric matrix, independent
of r. For the sake of simplicity, let us assume for a moment that M is deterministic. We also note that M
could be assumed to be Hermitian.

We have the following lemma.

Lemma 7. Let r be a random vector uniformly distributed on the 1 sphere in Rp. Let M be a deterministic
complex matrix. Assume that |||M |||2 ≤ K. Then we have,

P (|r′Mr − 1
p
trace (M) | > t) ≤ 4 exp(−(p− 1)(t− cp)2/16K2) , t > 0 ,

with cp =
√

8πK2

(p−1) .

Proof. Let us write M = RM + iIM , where RM and IM are real matrices. We note that

|||RM |||2 ≤ K and |||IM |||2 ≤ K ,

by simply writing RM = (M + M̄)/2.
Now, because we are on the unit sphere, we see that

|r′1RMr1−r′2RMr2| = |r′1RM(r1−r2)+(r1−r2)′RMr2| ≤ ‖r1−r2‖2|||RM |||2(‖r1‖2+‖r2‖2) = 2|||RM |||2‖r1−r2‖2 .

So the map r → r′RMr is 2K-Lipschitz on the unit sphere, equipped with the geodesic distance, since
d(r1, r2) ≥ ‖r1 − r2‖2.

We can therefore use well-known concentration results on the unit sphere (see Ledoux (2001), Theorem
2.3) to conclude that, if mRM is a median of r′RMr,

P (|r′RMr −mRM | > t) ≤ 2 exp(−(p− 1)t2/8K2) .

Similarly,
P (|r′IMr −mIM | > t) ≤ 2 exp(−(p− 1)t2/8K2) .

Now using Lemma 1.9 in Ledoux (2001), and the fact that E (rr′) = Idp/p, (see Anderson (2003), p.49),
we have, because RM and IM are deterministic so independent of r,

∣∣E (
r′RMr

)
−mRM

∣∣ =
∣∣∣∣1ptrace (RM)−mRM

∣∣∣∣ ≤
√

8πK2

(p− 1)
, and

∣∣∣∣1ptrace (IM)−mIM

∣∣∣∣ ≤
√

8πK2

(p− 1)
.
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Therefore,

P (|r′Mr − 1
p
trace (M) | > t) ≤ 4 exp(−(p− 1)(t− cp)2/16K2) .

Remark 3. We note that similar concentration arguments to those developed here can be derived for
other types of correlated random vectors and can also be used to strengthen the results of Lemma 3.1 in
Silverstein and Bai (1995). The key here is really the phenomenon of dimension-free concentration, which
induces strong concentration of quadratic forms around their mean, for vectors distributed according to
measures having the dimension-free concentration property. We develop this remark in subsection 3.3.
The technical gist of the remark lies in the fact that if M is a positive semidefinite matrix, whose largest
eigenvalue is λ1, then g(y) =

√
y′My = ‖M1/2y‖ is a convex

√
λ1-Lipschitz function of y, and we can apply

known results on concentration of convex 1-Lipschitz functions. (See for instance Corollary 4.10 in Ledoux
(2001), or Theorem 2.7 where the assumptions of convexity is not needed.) To give the reader a flavor of
such results, let us just say that in the case of i.i.d entries for y, belonging to [a, b], we have, if mg denotes
a median of g we have P (|g −mg| > t) ≤ 4 exp(−t2/(4(a− b)2λ1)). We note further that with the help of
Proposition 1.9 in Ledoux (2001), we can also control the distance of any median to the mean µg of g, as
well as the distance of µ2

g to E (y′My), which here would just be trace (M), because the covariance of y is
Idp, if y ∈ Rp, and its entries are independent.

Corollary 3. Suppose ri are independent random vectors uniformly distributed on the unit sphere and Mi

are random matrices, Mi being independent of ri, with |||Mi|||2 ≤ K, where K is non random, and having
the property that, for some matrix M, and some Kp, with Kp = O(K/p) and Kp → 0,

∀i ,

∣∣∣∣1p trace (Mi)−
1
p
trace (M)

∣∣∣∣ ≤ Kp .

Then √
p

(log p)(1+α)/2K
max

i

∣∣∣∣r′iMiri −
1
p
trace (M)

∣∣∣∣ → 0 a.s . (1)

Proof. From the previous lemma, we have

P (max
i
|r′iMiri−

1
p
trace (Mi) | > t) ≤

p∑
i=1

P (|r′iMiri−
1
p
trace (Mi) | > t) ≤ 4p exp(−(p−1)(t− cp)2/16K2) ,

by conditioning on Mi to compute each probability in the sum. Therefore, using the first Borel-Cantelli
lemma, we have √

p

(log p)(1+α)/2K
max

i
|r′iMiri −

1
p
trace (Mi) | → 0 a.s .

And because |1ptrace (Mi)− 1
ptrace (M) | ≤ Kp, we conclude that

√
p

(log p)(1+α)/2K
max

i
|r′iMiri −

1
p
trace (M) | → 0 a.s .

3.2.2 Preliminaries

We note that the matrix we are considering is of the form ΓX ′DXΓ′, where D is a diagonal matrix,
containing the λ2

k. We call τi the eigenvalues of Σ = ΓΓ′. We call the entries of D λ2
i .

If we denote by ‖F‖ the value supx |F (x)|, and by FM the cdf of the spectral distribution of the matrix
M . We see using Lemma 2.5 in Silverstein and Bai (1995) that

‖FQ∗TQ − F Q̃∗T̃ Q̃‖ ≤ 1
p

(
rank

(
T − T̃

)
+ 2rank

(
Q̃−Q

))
.
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In our situation, we have Q = XΓ′ and T = D, so using the fact that rank (AB) ≤ min(rank (A) , rank (B)),
we conclude that

‖FQ∗TQ − F Q̃∗T̃ Q̃‖ ≤ 1
p

(
rank

(
D − D̃

)
+ 2rank

(
Γ̃′ − Γ′

))
.

Now let us choose for D̃ the diagonal matrix with entries λ2
i 1|λi|≤αp

, which we abbreviate by D1|D|≤αp
,

and for Γ̃′ = Γ′1|Σ|≤βp
(this is understood using the singular value decomposition of Γ′, where we keep the

singular values that are less than
√

βp and replace the others by 0).

We see that rank
(
D − D̃

)
=

∑n
i=1 1|λi|>αp

, and similarly, 0 ≤ rank
(
Γ′ − Γ̃′

)
≤

∑d
i=1 1|τi|>βp

. Because
we assumed that Hd converges weakly a.s to H, and νn converges weakly a.s to ν, we conclude that for
αp = βp = log p, rank

(
Γ′ − Γ̃′

)
/p → 0 a.s and rank

(
D − D̃

)
/p → 0 a.s. Here it is important that d/p

and p/n have finite non-zero limits.
So to prove the theorem, it is sufficient to prove it for D and Σ bounded in operator norm by, for

instance, log p, since we just showed that Q∗TQ and Q̃∗T̃ Q̃ will have the same limiting spectral measure,
provided it exists.

3.2.3 Proof of Theorem 2

As explained above, we now assume that all the eigenvalues of Σ = ΓΓ′ are less than log p and similarly,
we assume that |λi| <

√
log p. We call the corresponding spectral measures H̃d and ν̃n, to keep track of the

modifications we have induced by truncation. However, to avoid cumbersome notations, we use Σ and Γ
to refer to the matrices we deal with. (Σ̃ might have been more appropriate but the notation would be too
cumbersome.) The approach we use follows the “rank-1 perturbation” approach developed in Silverstein
and Bai (1995) and Silverstein (1995).

Recall that uk =
√

d/nλkΓrk. We call B(k) = Bn − uku
′
k, Mk = (Bn − uku

′
k − zIdd)−1, Mn =

(Bn − zIdd)−1, and

β(z) =
1
n

n∑
k=1

θnλ2
k

1 + u′kMkuk
.

We note that Bn is d× d and so are all the other matrices involved here. Using the first resolvent identity
A−1 −B−1 = A−1(B −A)B−1, and the fact that (see Silverstein (1995))

Bn(Bn − zIdd)−1 = Idd + z(Bn − zIdd)−1 =
n∑

k=1

uku
′
kMk

1 + u′kMkuk
, (2)

we have

(β(z)Σ− zIdd)
−1 − (Bn − zIdd)−1 = (β(z)Σ− zIdd)

−1

[
n∑

k=1

uku
′
kMk

1 + u′kMkuk
− β(z)Σ(Bn − zIdd)−1

]
,

and hence

(β(z)Σ− zIdd)
−1 − (Bn − zIdd)−1 =

n∑
k=1

1
1 + u′kMkuk

[
(β(z)Σ− zIdd)

−1 uku
′
kMk −

θn

n
λ2

k (β(z)Σ− zIdd)
−1 Σ(Bn − zIdd)−1

]
Taking traces and dividing by d, we get ∫

dH̃d(τ)
β(z)τ − z

−mn(z) =

1
d

n∑
k=1

1
1 + u′kMkuk

[
u′kMk (β(z)Σ− zIdd)

−1 uk −
θn

n
λ2

ktrace
(
(β(z)Σ− zIdd)

−1 ΣMn

)]
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Now using for instance Equation (2.3) in Silverstein (1995), we have easily

1
1 + u′kMkuk

≤ |z|
v

.

On the other hand, it is clear that Im [β(z)] ≤ 0. As a matter of fact, the eigenvalues of Mk all have a
positive imaginary part (if z = u+iv, they are 1/(λj(B(k))−u−iv)), so the imaginary part of 1+u′kMkuk is
positive, and the imaginary part of 1/(1+u′kMkuk) is negative. Hence the imaginary part of the eigenvalues
of β(z)Σ−zIdd is smaller than −v (Σ is positive semidefinite), and their module is greater than v. Therefore

|||Re
[
(β(z)Σ− zIdd)−1

]
|||2 ≤

1
v

and |||Im
[
(β(z)Σ− zIdd)−1

]
|||2 ≤

1
v

.

Now β(z) depends on all the uk’s in a non-trivial fashion, so we cannot apply our concentration results
directly. However, we note that if b(z) is another complex number we have, if Σ =

∑p
i=1 τieie

′
i,

(β(z)Σ− zIdd)−1 − (b(z)Σ− zIdd)−1 =
∑ τi(b(z)− β(z))

(τib(z)− z)(τib(z)− z)
eie

′
i and

Σm
[
(β(z)Σ− zIdd)−1 − (b(z)Σ− zIdd)−1

]
Σl =

∑ τ l+m+1
i (b(z)− β(z))

(τib(z)− z)(τib(z)− z)
eie

′
i

Therefore, if b(z) is such that |β(z)− b(z)| ≤ ε, and Im [b(z)] ≤ 0, we have,

|||(β(z)Σ− zIdd)−1 − (b(z)Σ− zIdd)−1|||2 ≤
ε|||Σ|||2

v2

|u′kMk(β(z)Σ− zIdd)−1uk − u′kMk(b(z)Σ− zIdd)−1uk| ≤
1
v3

ε|||Σ|||2‖uk‖2
2 and∣∣∣∣1ptrace

(
ΣlMk

[
(β(z)Σ− zIdd)−1 − (b(z)Σ− zIdd)−1

])∣∣∣∣ ≤ 4|||Σ|||l2ε
v3

,

by decomposing the matrices appearing in the trace into real and imaginary parts, which are both sym-
metric in this instance, and using well-known result (see e.g Anderson (2003), Theorem A.4.7) on bounds
of the trace of a product of symmetric matrices.

Consider

bn(z) =
θn

n

n∑
k=1

λ2
k

1 + ξnλ2
kE (Ω1(z))

, with Ω1(z) =
1
d
trace

(
Σ(Bn − zIdp)−1

)
.

Our Corollary 3 on concentration implies that maxi |r′iΓ′MiΓri−E (Ω1(z)) | is less ε(log p)(1+α)/2K/
√

p ,
εγp a.s. We note that here, K is of the order of |||Σ|||2/v, so (log p)/v, because we are thresholding Σ at
this level.

When this happens, we have, if we call αk = r′kΓ
′MkΓrk = u′kMkuk/(ξnλ2

k), and α = E (Ω1(z)),

|β(z)− bn(z)| =

∣∣∣∣∣θn

n

n∑
k=1

(
λ2

k

1 + ξnλ2
kαk

−
λ2

k

1 + ξnλ2
kα

)∣∣∣∣∣ ,

≤ ξnθn

n

n∑
k=1

λ4
kεγp

|(1 + ξnλ2
kαk)(1 + ξnλ2

kα)|
≤ ξnθnε|z|2γp

nv2

n∑
k=1

λ4
k .

Using our concentration bounds from Corollary 3 applied to[
u′kMk (bn(z)Σ− zIdd)

−1 uk/λ2
k −

θn

n
trace

(
(bn(z)Σ− zIdd)

−1 ΣMn

)]
,

we see that, we have a.s

max1≤k≤p

∣∣∣∣[u′kMk (bn(z)Σ− zIdd)
−1 uk/λ2

k −
θn

n
trace

(
(bn(z)Σ− zIdd)

−1 ΣMn

)]∣∣∣∣ <
εγp

v
,
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and therefore∣∣∣∣∣1d
n∑

k=1

1
1 + u′kMkuk

[
u′kMk (bn(z)Σ− zIdd)

−1 uk −
θn

n
λ2

ktrace
(
(bn(z)Σ− zIdd)

−1 ΣMn

)]∣∣∣∣∣ ≤ Cεγp
|z|
v2

1
d

n∑
k=1

λ2
k .

We conclude that a.s,∣∣∣∣∣
∫

dH̃d(τ)
bn(z)τ − z

−mn(z)

∣∣∣∣∣ ≤ C(z)γpε
1
n

n∑
k=1

(
λ2

k + λ4
k

)
≤ C(z)ε

2(log p)5
√

p

Because of our assumptions, we finally get∫
dH̃d(τ)

bn(z)τ − z
−mn(z) → 0 a.s .

This corresponds to the first part of the theorem. Now note that Im [bn(z)] ≤ 0, and therefore |1/(bn(z)τ −
z)| ≤ 1/v. Because

∫
|dH̃d(τ)− dHd(τ)| → 0, we conclude that∫

dHd(τ)
bn(z)τ − z

−mn(z) → 0 a.s .

To get to the second part of the theorem, we consider instead

Σ (β(z)Σ− zIdd)
−1 − Σ(Bn − zIdd)−1 .

Taking traces and dividing by d, we get∫
τdH̃d(τ)
τβ(z)− z

− 1
d
trace

(
Σ(Bn − zIdd)−1

)
.

To control this quantity, we can use the same expansions we used before, replacing everywhere (β(z)Σ− zIdd)
−1

by Σ (β(z)Σ− zIdd)
−1. This has the effect of multiplying the upper bounds by |||Σ|||2 and dividing the

terms appearing in the exponential by |||Σ|||22. So we conclude that∫
τdH̃d(τ)

τbn(z)− z
− Ω1(z) → 0 a.s .

Now the result we got using Azuma’s inequality shows clearly (see Remark 1) that

Ω1(z)−E (Ω1(z)) → 0 a.s .

Calling wn(z) = E (Ω1(z)), we have shown that
∫ τdH̃d(τ)

τ
∫ θnλ2dν̃n(λ)

1+ξnλ2wn(z)
−z
− wn(z) → 0 a.s , and∫ dH̃d(τ)

τ
∫ θnλ2dν̃n(λ)

1+ξnλ2wn(z)
−z
−mn(z) → 0 a.s .

(3)

• Subsequence argument to reach the conclusion of Theorem 2
We now need to turn to technical arguments to go from the statement of Equation 3 to that of Theorem

2. Because of our assumption that
∫

τdHd(τ) < K, for all d (or p, which is equivalent), with K fixed and
independent of d, we see that |wn(z)| ≤ trace (Σ) /(dv) < K/v. So, at z fixed, wn(z) is bounded. From this
sequence, let us extract a convergent subsequence wm(n)(z), or wm for short, that converges to w. Through
tightness arguments (see below), we see that w ∈ C+. We will now show that w(z) satisfies∫

τdH(τ)

τ
∫ θλ2dν(λ)

1+ξλ2w(z)
− z

− w(z) = 0
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and that there is a unique solution to this equation in C+. Let us call bm(z) =
∫

θmλ2dν̃m(λ)/(1 +
ξmλ2wm(z)). We first show that bm → b =

∫
θλ2dν(λ)/(1+ ξλ2w(z)). To do so, note that λ2/(1+amλ2)−

λ2/(1 + aλ2) = (a− am)λ4/[(1 + aλ2)(1 + amλ2)]. Note because am → a ∈ C+, their imaginary parts are
uniformly bounded below by δ, from which we conclude that, if am → a ∈ C+,∫

λ2dν̃m

1 + amλ2
−

∫
λ2dν̃m

1 + aλ2
→ 0

On the other hand, for a ∈ C+, λ2/(1 + aλ2) is a bounded continuous function of λ. Since νm ⇒ ν, and
therefore ν̃m ⇒ ν, we conclude that ∫

λ2dν̃m

1 + aλ2
→

∫
λ2dν

1 + aλ2
.

Therefore, since θm → θ, bm(z) → b(z). Because we have assumed that ν 6= 0, we have b(z) ∈ C−. By
essentially the same arguments, using the fact that |Im [bm(z)] | is bounded below by δ and b(z) ∈ C−, we
conclude that ∫

τdH̃d(m(n))(τ)
τbm(n)(z)− z

−
∫

τdH(τ)
τb(z)− z

→ 0 .

In other words, ∫
τdH(τ)

τb(z)− z
− w(z) = 0 ,

where

b(z) =
∫

θλ2dν(λ)
1 + ξλ2w(z)

.

Similarly, we can show that along this subsequence,∫
dHd(τ)

τbm(z)− z
→

∫
dH(τ)

τb(z)− z
,

and so we also get the first equation in Theorem 2.
• Uniqueness of possible limit
We now prove that there is a unique solution in C+ to the equation characterizing w, the only question
remaining to tackle being uniqueness. To do so, we employ an argument similar to that given in Silverstein
and Bai (1995), though the details are slightly different.

Suppose we have two solutions in C+ to the equation characterizing w(z). Let us call them w1 and w2

and b1 and b2 are the corresponding b’s. We have

w1 − w2 =
∫ (

τ

τb1 − z
− τ

τb2 − z

)
dH(τ)

= (b2 − b1)
∫

τ2

(τb1 − z)(τb2 − z)
dH(τ)

= θ(w1 − w2)
∫

λ4ξdν(λ)
(1 + ξλ2w1(z))(1 + ξλ2w2(z))

∫
τ2

(τb1 − z)(τb2 − z)
dH(τ)

Let us call f the quantity multiplying w1−w2 in the previous equation. We want to show that |f | < 1.
As in Silverstein and Bai (1995), using Holder’s inequality, we have, given that θ > 0,

|f | ≤
(

θ

∫
λ4ξdν(λ)

|1 + ξλ2w1(z)|2

∫
τ2

|τb1 − z|2
dH(τ)

)1/2 (
θ

∫
λ4ξdν(λ)

|1 + ξλ2w2(z)|2

∫
τ2

|τb2 − z|2
dH(τ)

)1/2

Let us write w1 = a + ic, z = u + iv, and b1 = α − iγ. By writing the definition of b1 in terms of w1 we
see immediately that

γ = c

∫
θξλ4

|1 + ξλ2w1|2
dν(λ) ,
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so
∫ θξλ4

|1+ξλ2w1|2 dν(λ) = −Im [b1] /Im [w1]. Since ν 6= 0 by our assumptions, we see that γ > 0. On the other
hand, using the definition of w1 in terms of b1, we see that

Im [w1] =
∫
−Im [b1]

τ2

|τb1 − z|2
dH(τ) + Im [z]

∫
τ

|τb1 − z|2
dH(τ) ,

and therefore Im [w1] > −Im [b1]
∫

τ2

|τb1−z|2 dH(τ), since H 6= 0.
Hence, (∫

θλ4ξdν(λ)
|1 + ξλ2w1(z)|2

∫
τ2

|τb1 − z|2
dH(τ)

)1/2

< 1 ,

and |f | < 1. We conclude that w2 = w1, so there is at most one solution to the equation characterizing w.
• Tightness of Bn and consequences for w
Finally, we need to show that the spectral distribution FBn is tight a.s and draw consequences for w. It
is shown - through Lemma 2.3 - in Silverstein and Bai (1995), that if Bn = T

1/2
n Y ∗

n YnT
1/2
n , the spectral

distributions of the Tn’s form a tight sequence and so do the spectral distributions of the Y ∗
n Yn’s, then

FBn form a tight sequence. We note that in our case Bn = ΓR∗
nD2

nRnΓ′, which up to a number of
zeros has the same eigenvalues as Σ1/2R∗

nD2
nRnΣ1/2; we temporarily call Rn the matrix containing our

random vectors uniformly distributed on the sphere, to insist on this property which will play a crucial
role shortly. So all we have to show is that FR∗nD2

nRn forms a tight sequence. Note that our assumption
on the convergence of the spectral distribution of the λ’s implies that the spectral distribution of D2

n form
a tight sequence. So all we have to do to be able to conclude is to show that so does FR∗nRn . Note that
trace (R∗

nRn) /p =
∑n

i=1 trace (rir
∗
i ) /p = n/p. Because n/p is uniformly bounded, we conclude that FR∗nRn

forms a tight sequence. So FBn forms a tight sequence, a.s. Note also that FR∗nRn([M,∞)) ≤ n/(pM). So
for any ε, we can find Mε such that FBn [Mε,∞) < ε, a.s. Using the second inequality in Lemma 2.3 in
Silverstein and Bai (1995) and the fact that H and ν are deterministic, as well as the fact that if Xn ⇒ X
and F is closed, lim supP (Xn ∈ F ) ≤ P (X ∈ F ), we see that Mε can be chosen uniformly in ω.

We now want to show that w ∈ C+; to do so, we will show that a.s, Im [wn] is bounded away from
zero. Note that Im

[
(Bn − zId)−1

]
is a symmetric matrix. Its eigenvalues, which we denote by ak, are, if

lk denote the eigenvalues of Bn, v/((lk−u)2 + v2) ≥ v/(2(l2k +u2)+ v2. Assume a1 ≥ a2 ≥ . . . ≥ ad. Using
Theorem A.4.7 in Anderson (2003), we see that, if we call τi’s the decreasingly ordered eigenvalues of Σ,

Im
[
1
d
trace

(
Σ(Bn − zIdp)−1

)]
≥ 1

d

d∑
i=1

τiad−i+1 .

Now all we need to show is that a.s a fixed non-zero proportion of τiad−i stay bounded away from 0. Because
H 6= 0, we can find η such that H(η,∞) > ε, for some ε > 0. Let us pick such an ε 6= 0. In particular,
the proportion of indices for which τi > η is a.s greater than ε, because lim inf Hd(η,∞) ≥ H(η,∞), a.s.
For this ε, we can find mε < ∞, such that FBn [0,mε] ≥ 1 − ε/2, a.s from our arguments above. So
the proportion of i’s such that ad−i+1 ≥ v/(2(m2

ε + u2) + v2) is greater than 1 − ε/2. So the proportion
of i’s for which both τi > η and ad−i+1 ≥ v/(2(m2

ε + u2) + v2) must be greater than ε/2, a.s. Hence,
Im [wn(z)] ≥ δ > 0, a.s.

Remark 4. We also note that another approach to the proof of the theorem is possible by starting with
Gaussian random vectors. We give a rough sketch here. A point distributed uniformly at random of the
unit sphere in Rp can be obtained by generating a Gaussian random vector in Rp, with identity covariance
and dividing each entry of the vector by the Euclidian norm of the vector. Hence our covariance matrix for
elliptically distributed data is of the form (say if d = p) T

1/2
p X∗

n,pLnDnXn,pT
1/2
p . Now Dn is diagonal and

Dn(i, i) = 1/‖Xi‖2
2, where Xi is the i-th row of Xn,p. Xi is standard Gaussian in Rp. The problem now is

that we have dependence between LnDn and Xn,p. So the known results do not apply directly. However,
since our Bn is p times the standard estimate of covariance, we see that Bn is a standard covariance of the
above type, if we replace Dn by pDn. Now standard results in extreme value theory give that |||pDn−Idn|||2
is of order

√
log(p)/p because n and p are of the same order of magnitude. What we then need to do is

truncate Ln and Tp and remove the eigenvalues that are say larger than log(p). This does not change the
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results on the convergence of the spectral distribution (see subsubsection 3.2.2). After this truncation is
done, using coarse bounds on ||| · |||2, and known results on the largest eigenvalue of sample covariance
matrices computed from i.i.d Gaussian data, we see that

|||Bn −
1
n

T 1/2
p X∗

n,pLnXn,pT
1/2
p |||2 = O

(
(log p)3
√

p

)
,

and the two matrices have asymptotically the same spectrum.

3.3 Possible generalization and comments on the proof

The reader will have noted that the crux of our argument relies on the fact that certain quadratic forms
are concentrated around their mean, and the rank 1 developments explained in Silverstein and Bai (1995)
and Silverstein (1995). As far as concentration is concerned, we essentially used so-called dimension free
Gaussian concentration results. In our case, we used the fact that this applied to random vectors uniformly
distributed on the sphere of radius 1 to get around the difficulty that the dependence of the coordinates
creates.

We note that this approach is not limited to such vectors. In fact, it would work as soon as we were
working with independent random vectors that have the property that convex Lipschitz functionals of
those vectors are themselves concentrated, in an “almost dimension free” fashion and Gaussian manner.
As a matter of fact, we have the following result, which is a small generalization of our main idea and was
implicit in the study of elliptically distributed data.

Lemma 8 (Role of Gaussian Concentration). Suppose that the random vector r ∈ Rp has the property that
for any convex 1-Lipschitz (with respect to Euclidian norm) functional F , we have

P (|F (r)−mF | > t) ≤ C exp(−c(p)t2) ,

where C and c(p) are independent of F and C is independent of p. We allow c(p) to be a constant or to
go to zero with p like p−α, 0 ≤ α < 1. Suppose further that E(rr∗) = Σ, with |||Σ|||2 ≤ log(p).

If M is a complex deterministic matrix, with |||M |||2 ≤ ξ, where ξ is independent of p,

1
p
r′Mr is strongly concentrated around its mean,

1
p
trace (MΣ) .

The same is true if one works with Σ1/2r instead of r, when r has identity covariance.

The statement might seem a bit vague, but what we mean by strong concentration here is the fact the
probabilities of deviations are exponentially small in p.

Proof. In what follows, K denotes a generic constant, that may change from display to display, but is
independent of p. First, as seen above, we can rewrite M as M = RM + iIM where RM and IM are real
matrices. Further the spectral norm of those matrices is less than ξ.

Now strong concentration for r′RMr/p and r′IMr/p will imply strong concentration for the sum of
those two terms. We note that, since r′RMr is a real, r′RMr = (r′RMr)′ and

r′RMr = r′
(

RM + RM ′

2

)
r .

Hence instead of working on RM we can work on its symmetrized version.
Now let us decompose (RM + RM ′)/2 into RM+ + RM−, where RM+ is positive semi-definite and

−RM− is positive definite (or 0 if (RM + RM ′)/2 itself is positive semi-definite). This is possible because
(RM+RM ′)/2 is real symmetric and we do this decomposition by just following its spectral decomposition.
Note that both matrices have spectral norm less than ξ. Now the map φ : r →

√
r′RM+r is

√
ξ-Lipschitz

(with respect to Euclidian norm) and convex, which is easily seen after one notices that
√

r′RM+r =
‖RM

1/2
+ r‖2. This guarantees by our assumption that

P (|
√

r′RM+r −mφ| > t) ≤ C exp(−c(p)t2/ξ) , where mφ is a median of φ .
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Using the same type of arguments as in the end of Lemma 4, we see that the variance of
√

r′RM+r/p
can be explicitly bounded, as well as the deviation of its mean from its median which guarantees that
E(r′RM+r/p) = trace (RM+Σ/p) cannot be far from m2

φ. Again, as in Lemma 4, we can get a bound of
the type

P (|
√

r′RM+r/p−
√

trace (RM+Σ/p)| > t) ≤ C exp(−pc(p)(t−κp)2/ξ) , for some K and κp → 0 as p →∞ .

The fact that κp → 0 is consequence of the fact that pc(p) →∞. Let us denote by

ζp = trace (RM+Σ/p)
A = {|r′RM+r/p− ζp| > t}

B = {
√

r′RM+r/p ≤
√

ζp + 1}

Our aim is to show that the probability of A is exponentially small in p. Of course, we have P (A) ≤
P (A ∩ B) + P (Bc). We note that P (Bc) is exponentially small in p from our previous arguments. Now,
note that

A ∩B ⊆ D = {|
√

r′RM+r/p−
√

ζp| >
t

2
√

ζp + 1
} .

To see this, note simply that for positive reals, |x − y| = |
√

x − √y|(
√

x +
√

y). Finally, because of our
bounds on the norm of Σ and the fact that |||RM+|||2 ≤ ξ, we see that trace (RM+Σ/p) = ζp ≤ log(p)ξ.
Hence, P (D) ≤ C exp(−Kc(p)(t− κp)2p/[(log p)2ξ]), for some K independent of p, and hence, we have

P (A) ≤ 2C exp(−Kc(p)(t− κp)2p/[(log p)2ξ]) .

Similarly, we can obtain the same type of bounds for
√
−r′RM−r/p. From those we conclude that

P (
∣∣r′RMr/p− trace (RMΣp) /p

∣∣ > t) ≤ 4C exp(−Kc(p)v(t/2− κp)2p/[(log p)2ξ]) .

And finally,

P (
∣∣r′Mr/p− trace (MΣp) /p

∣∣ > t) ≤ C̃ exp(−Kc(p)v(t/2
√

2− κp)2p/[(log p)2ξ]) .

This guarantees the same convergence results as in Lemma 7. And hence a result similar to Corollary 3
holds.

Along the same lines, we also have:

Lemma 9 (Beyond Gaussian Concentration). Suppose that the random vector r ∈ Rp has the property
that for any convex 1-Lipschitz (with respect to Euclidian norm) functional F , we have

P (|F (r)−mF | > t) ≤ C exp(−c(p)tb) ,

where C and c(p) are independent of F and C is independent of p. We allow c(p) to be a constant or to
go to zero with p like p−α, 0 ≤ α < b/2. Suppose further that E(rr∗) = Σ, with |||Σ|||2 ≤ log(p).

If M is a complex deterministic matrix, with |||M |||2 ≤ ξ, where ξ is independent of p,

1
p
r′Mr is strongly concentrated around its mean,

1
p
trace (MΣ) .

The same is true if one works with Σ1/2r instead of r, when r has identity covariance.

Proof. We only give a sketch of the proof. The ideas are exactly the same as above. However, when studying
the concentration of

√
r′RM+r/p, the exponent of the exponential is to leading order pb/2c(p)(t − κp)b.

We note that κp will be a bit different in its form than it was in the Gaussian concentration case. This
comes from the fact, following the analysis in Proposition 1.9 of Ledoux (2001), the inequalities we now
have, if µF denotes the mean of F are:

|µF −mF | ≤
C

bc1/b
Γ(

1
b
) and var (F ) ≤ 2C

bc2/b
Γ(

2
b
) ,

where Γ denotes the Gamma function. After this adjustment the previous proof goes through.
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Corollary 4. When the two above lemmas apply, and trace (Σp) /p is bounded, the spectral distribution of∑
rir

∗
i /n is a.s tight.

Proof. As we did above, we consider the first moment of the spectral distribution of R∗
nRn, which is equal

to M1, with M1 = 1/ntrace (
∑

rir
∗
i /p). Its mean is trace (Σ) /p. As we just saw, r∗i ri/p is strongly

concentrated around trace (Σ) /p(= E (M1)) and this property transfers to M1 using the fact that P (|M1−
E (M1) | > t) ≤ nP (|r∗i ri/p−E (r∗i ri/p) | > t). A.s tightness of the sequence of measure follows easily.

We note that these last inequalities are the equivalent of the result of Lemma 7, which is the key to the
rest of the analysis in the case of vectors uniformly distributed on the sphere. The same subsequent analysis
can therefore be carried out for all family of random vectors that satisfy the conditions of the preceding
Lemmas. Note however that we need the spectral distribution of Σ to be asymptotically non-degenerate
and have a finite first moment. In particular, when these conditions are satisfied here are a few examples,
to which Theorem 2 applies, with the modification that

Bn =
d

p

1
n

∑
λ2

i viv
∗
i

Example of distributions for vi for which Theorem 2 applies

• Gaussian random variables, with covariance having uniformly bounded 1st moment.

• Vectors of the type
√

pr where r is uniformly distributed on the 1-sphere is dimension p, i.e vectors
uniformly distributed on the p-sphere in Rp.

• Vectors Γ
√

pr, with r uniformly distributed on the 1-sphere in Rp and with Σ having the character-
istics explained in Theorem 2. This is actually Theorem 2

• Vectors of the type p1/br, 1 ≤ b ≤ 2, where r is uniformly distributed in the 1-`b ball or sphere in Rp.
(See Ledoux (2001), Theorem 4.21, which refers to Schechtman and Zinn (2000) as the source of the
theorem.)

• Vectors with log-concave density of the type e−U(x), with the Hessian of U satisfying, for all x,
Hess(U) ≥ cIdp, where c > 0 has the characteristics of c(p) in the previous two lemmas: see Ledoux
(2001), Theorem 2.7. Here we might also need |||Σ|||2 to not grow too fast with d since we cannot
use truncation arguments.

• Vectors with i.i.d entries with a second moment. We note that it is essentially enough in this case to
deal with entries bounded by log(p) as seen in Silverstein and Bai (1995) and Silverstein (1995). See
Corollary 4.10 in Ledoux (2001) for the concentration part. In this case, the analysis of concentration
of quadratic forms above can be carried out for vectors of the type Σ1/2r. Hence we obtain a
strengthening of Lemma 3.1 in Silverstein and Bai (1995). We note that the fact the functional is
convex is crucial here, whereas it would not matter for the two previous examples. In particular, a
look at the proof in Silverstein and Bai (1995) shows that the strong result there of convergence of
spectral distribution under the existence of only 2 moments for the random variables of interest is
derived after thresholding the entries of the vectors at level log(p) and giving an argument justifying
the fact that this did not change anything as far as limiting spectral distributions were concerned.
If the entries are bounded by log(p), Corollary 4.10 in Ledoux (2001) gives c(p) = K/ log(p)2, and
hence we still have strong concentration.

Theorem 2 extends to all these distributions and our approach is one answer to the question of knowing
how to handle dependence within the vectors v (see also Pajor and Pastur (2007) for related questions).
We also note that using Theorem 2.4 and 3.1 in Ledoux (2001), we could, with a bit of geometric work,
extend our analysis of random vectors uniformly distributed on the sphere in Rp to certain more general
smooth Riemannian submanifolds of Rp, answering a question which is sometimes of interest in Statistics.

Finally, let us note that the previous list contains most known results in the literature on models of
the type T

1/2
p X∗LnXT

1/2
p , except that we limit ourselves here to the case of diagonal Ln, and it appears

that the case of Ln non-diagonal, but requiring X to have i.i.d entries is known.
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4 Conclusion

We have seen that the concentration of measure phenomenon can be seen as an essential tool in the
understanding of the behavior of the limiting spectral distributions of a number of random matrix models.

Motivated by applications, we have used one flavor of it to deduce from spectral properties of sample
covariance matrices the corresponding properties for sample correlation matrices. On the other hand,
for more complicated models, we have generalized known results about random covariance-type matrices
to sample covariance matrices computed from elliptically distributed data, a type of assumptions that is
popular in financial modeling. We have done it from first principles highlighting the role of concentration
properties in this specific example. We have also explained that the same computations allow us to recover
pretty much all known results and to obtain new results for data coming from distributions for which the
dependence between entries cannot be broken up.

Very strikingly, in all the models considered the results tell us that only the covariance or the correlation
between the entries of the data vector matter, and the more complicated dependence or moment structure
is irrelevant as far as limiting distributions of eigenvalues are concerned.
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