aroma.affymetrix: A generic framework in R for analyzing
small to very large Affymetrix data sets in bounded memory

Henrik Bengtsson! Ken Simpson', James Bullard’ Kasper Hansen*

February 18, 2008

Abstract

Summary: We have developed a cross-platform open-source framework for ana-
lyzing Affymetrix data sets consisting of 1 to 1,000s of arrays. By working directly
with CDF and CEL files (standard Affymetrix file formats) most chip types are au-
tomatically supported, e.g. expression, SNP, and exon arrays. The package provides
methods for low-level analysis such as background correction of different kinds, allelic
cross-talk calibration, quantile and affine normalization, PCR fragment-length and
GC-content normalization, probe-level summarization such as robust log-additive and
multiplicative modeling, as well as a set of methods for high-level analysis, e.g. chro-
mosomal segmentation and alternative splicing. Results can be exported to dynamical
HTML reports for easy navigation of a large set of arrays both offline and online. All
algorithms have been optimized to run in bounded memory (as low as 500MB of RAM)
by either redesigning the algorithms or by processing data in chunks. Transformed
data and parameter estimates are stored on file in standard file formats, which in turn
minimizes the memory overhead, but also makes them immediately accessible to other
software. Moreover, storing intermediate results in persistent memory makes compu-
tational expensive analyses more robust against system failures and allows for quick
resumes. In addition to making common algorithms readily available, this package
was designed to allow for quicker development of novel models and incorporation of
existing ones, such as Bioconductor methods, and be prepared for future chip types.

Availability: Software, documentation, examples and a user forum are available
at http://www.braju.com/R /aroma.affymetrix/.

Contact: hb@stat.berkeley.edu

1 Introduction

Not only does the density of Affymetrix microarrays grow fast, but also the number of
arrays per experiment. This steady growth in amount of data being produced is likely
to continue for years ahead and is already causing problem for bioinformaticians and
statisticians, because most available software, especially academically available software
used for development of new models, does not handle today’s large data sets. Moreover,

*Department of Statistics, University of California, Berkeley, USA.
"Walter & Eliza Hall Institute of Medical Research, Parkville, Australia.
tDepartment of Biostatistics, University of California, Berkeley, USA.

when new chip types are released, it is not uncommon that there is a substantial latency
before the researcher can start working with the new chip type, which in turn pushes the
delivery of the final statistical methods further into the future.

To overcome these problems, we have developed aroma.affymetrix which can analyze
most chip types with minimal setup efforts as well as virtually any number of arrays on
not only large-memory systems but also systems with modest memory available.

The outline of this report is as follows: In Section 2 we briefly explain how we designed
aroma.affymetrix to handle everything from small to very large data set. In Section 3, we
provide a brief comparison to alternative academic frameworks for analyzing Affymetrix
microarray data. In Section 4 the strict directory and filename structure used by the
package is explained. In Sections 5-7, a minimal example is used to show how to use the
package for low-level as well as high-level analysis and to illustrate how data is stored
persistently on the file system. The report is concluded in Section 8.

2 Bounded-memory algorithms

Several pre-processing methods are based on single-array models, meaning their algorithms
are typically designed to have bounded-memory properties. However, for other methods,
such as the multi-array probe-level summarization methods described in Li and Wong
(2001) and Irizarry et al. (2003), the nature of the underlying models often result in
algorithms with a memory overhead that grows with the number of arrays as well as the
number of units (genes, exons, SNPs, loci etc.) being processed. Fortunately, the above
models are such that they are conditionally independent of unit, meaning they can be fitted
unit by unit in bounded memory without having to turn to approximate algorithms. In
order to optimize the processing time, aroma.affymetrix fits such unit-specific models in
chunks, where only a subset of the units are modelled in each chunk. The amount of
data loaded in each chunk can be scaled so that it utilizes an optimal fraction of the
existing memory. In all cases, output data is stored on file (using standard file formats)
for immediate access to downstream methods but also external software.

In addition, there exist multi-array methods for which the immediate naive algorithm
is not bounded in memory, but that can be redesigned to run in bounded memory without
loss. One example of this is the rank-based quantile normalization which in its original
setup (Irizarry et al., 2003) is non-bounded in memory, but by using a two-pass proce-
dure (Bengtsson et al., 2008) only holds data corresponding to two arrays in memory at
any time.

For a summary of currently existing methods in aroma.affymetrix, see Table 1. Because
all methods are bounded in memory, this means that literally any number of arrays can
be processed by these methods. The only limitation is available disk space. Depending
on chip type, most methods can in practice be run with as little as 0.5GB-1.5GB RAM.
The largest data set known to have been processed by aroma.affymetrix to date consists
of more than 5,000 HG-U133 expression arrays. The memory overhead for this was in
the order of 0.5GB-1.0GB. As another example for the bounded-memory property, copy-
number analysis of all 270 HapMap samples, measured on the latest GenomeWideSNP _6
chip type, can be done using approximately 1.5GB of RAM.

Method References Multiarray | Bounded
model? in memory
Pre-summarization calibration & normalization
Optical background correction Wu et al. (2004) single yes
GCRMA background correction Wu et al. (2004) single yes
RMA background correction Irizarry et al. (2003) single yes
Rank-based quantile normalization*® Bolstad et al. (2003) multi yes
Function-based quantile normalization Bengtsson et al. (2008) multi yes
Allelic crosstalk calibration Bengtsson et al. (2008) single yes
Probe-level summarization
Averaging model (to be published) single yes
Log-additive model* Irizarry et al. (2003) multi yes
Multiplicative model* Li and Wong (2001) multi yes
Affine (multiplicative) model Bengtsson et al. (2004) multi yes
Post-summarization calibration & normalization
PCR fragment-length normalization Bengtsson et al. (2008) multi yes
GC-content normalization Bengtsson et al. (2008) multi yes
Equivalent fragment class normalization (to be published) multi yes
Copy-number segmentation
(Fast) CBS segmentation Venkatraman and Olshen (2007) single yes
GLAD segmentation Hupé et al. (2004) single yes
Alternative splicing
FIRMA model ‘ Purdom et al. (2008) multi yes

Table 1: List of low-level and high-level methods together with their memory properties as
implemented in aroma.affymetrix. Methods that are adapted from other R packages are
implemented such that the difference in output compared with the original implementation
is minimal, if any. This is done by utilizing the original implementations as far as possible.
*) Algorithm redesigned to be bounded in memory, i.e. to run with a constant memory
overhead, but are otherwise giving the same results.

3 Brief comparison to other software

aroma.affymetrix | Affymetrix pack- | dChip
ages in Biocon-
ductor
Chip types normalized All All Expression, SNP,
exon
Chip types summarized All with a CDF All with existing | Expression, SNP,
CDF annotation | exon
packages
Bounded-memory design Yes No, with some | Yes
exceptions
Maximum number of arrays | Unlimited Limited Unlimited*
Persistent memory Yes No Yes
Data handling File system Memory File system
Read & writes CEL files Yes Read only, with | Yes**
some exceptions
Third-party extensions Yes Yes No
Operating system Linux, Windows, | Linux, Windows, | Windows
OSX 0OsX (Linux**¥)
License LGPL v2 Artistic License | Freeware
v2, LGPL v2, ...
Programming language R R CH++
Open source Yes Yes On request
Active user forum Yes Yes Yes

Table 2: Comparison with other freely available software that implement similar func-
tionalities as aroma.affymetrix. *) Because dChip provides bounded-memory algorithms,
theoretically there should be no upper limit in the number of arrays it can process. How-
ever, there seems to be a limit hardwired to 2000 arrays (http://www.dchip.org/). **)
dChip writes CEL files in the ASCII format only, and for some chip types data is spatially
rotated before being exported. ***) There is also an initiative to port dChip to Linux,
but we have not investigated that project further.

The aroma.affymetrix framework was created in order to provide a user-friendly and
memory-efficient framework that allows statisticians and bioinformaticians to setup and
implement new statistical models (for Affymetrix analysis) with minimal effort, as well
as end-users to use such models. This is also one of the main goals of the Bioconductor
project (Gentleman et al., 2004), but we note that there has only been little emphasize
on providing bounded-memory algorithms. The Bioconductor project consists of a steady
growing repository of packages covering a variety of fields and it is hard to generalize
across packages and developers. There exist many Bioconductor packages for analyzing
Affymetrix data, e.g. affy, affycoretools, exonmap, affyPLM and oligo to mention a few.
For simplicitly we choose to do a brief comparison by putting such packages under the
same umbrella. Another popular application for Affymetrix low-level analysis is the dChip
software (http://www.dchip.org/; Li and Wong (2001)). Because it is freely available and
widely used, we choose to compare the features of aroma.affymetrix to that software.

For a brief overview of the properties of aroma.affymetrix, Bioconductor packages for

Affymetrix analysis, and dChip, see Table 2.

4 Strict directory structure

The package enforces a strict directory structure assumed to be located in the current
directory, making absolute pathnames obsolete. Because no absolute paths need to (should
not) be specified, the same script can immediately be executed on a different platform
with a different file system, simplifying collaboration but also allow for batch processing
across hosts sharing the same file system. Furthermore, by using a standardized directory
structure additional validation can be done by the software which further decrease the
risk for incorrect analysis due to misplaced annotation and data files. We also hope that
it will simplify troubleshooting both for the single user but also between collaborators.

Replication of directories and files existing elsewhere can be avoided by using soft
links (Unix) or Windows Shortcut links (Windows). As explained next, a minimal setup
consists of one directory tree for annotation data and one for raw data. Processed results
are stored in similar directory structures as illustrated further in Section 5.

4.1 Annotation data

The annotationData directory tree holds all data that is not specific to a data set, e.g. CDF
files. For further structuring, this directory contains a subdirectory named chipTypes,
which in turn has one subdirectory for each chip type that contains annotation files from
Affymetrix and other application, as illustrated below:

annotationData/
chipTypes/
Mapping250K_Nsp/
Mapping250K_Nsp.CDF Mapping250K_Nsp_annot.csv
Mapping250K_Sty/
Mapping250K_Sty.CDF Mapping250K_Sty_annot.csv

With a strict directory structure for annotation data, there exist no ambigiouity to where
to put files and less decisions to be made by the user.

4.2 Raw data

The rawData directory tree holds all data files specific to particular experiments. The
data sets are structured in subdirectories, which in turn consists of subdirectories named
exactly as the chip types hybridized. CEL files go into the latter, as illustrated below:

rawData/
HapMap270,CEU/
Mapping250K_Nsp/

NA06985,B5,3005533.CEL ... ©NA12892,H5,4000092.CEL
Mapping250K_Sty/
NA06985,B5,3005533.CEL ... ©NA12892,H5,4000092.CEL

By enforcing that the subdirectories should have names corresponding to chip types, there
is less room for mistakes and it is possible for aroma.affymetrix to further validate the
correctness, which in turn increases the overall credibility of any analysis.

4.3 Format of file and directory name

File and directory names are interpreted such that for instance CEL files for the same
sample on multiple chip types can be tupled, but also such that user-interpreted name
tags can be used. File and directory names are parsed by the following grammar:

<filename> := <name>(,<tag>)*.<extension>
<dirname> <name> (,<tag>)*

For instance, from the above raw data directory, aroma.affymetrix knows that for data set
"HapMap270’ (with tag 'CEU’), sample 'NA06985’ has been hybridized to both Nsp and
Sty. In addition to this, the above design makes it possible to locate data sets without
having to specify paths to files and directories. For example,

cs <- AffymetrixCelSet$byName ("HapMap270,CEU", chipType="Mapping250K_Nsp")

sets up the Nsp CEL set (without loading the actual data).

5 Low-level analysis

In this section will use a minimal example to show how data is analyzed in aroma.affymetrix.
As shown in Table 1, there are many different pre-processing methods and here we will
focus on two of the most common and generic ones namely quantile normalization and
the log-additive model.

Given the setup outlined in previous section, rank-based quantile normalization (Bol-
stad et al., 2003) can be done as:

gn <- QuantileNormalization(cs)
csN <- process(qn)

Note that the normalization is not performed until process() is called. The normalized
data is stored as CEL files in:

probeData/
HapMap270 , CEU, QN/
Mapping250K_Nsp/
NA06985,B5,3005533.CEL ... NA12892,H5,4000092.CEL

By default, the above method adds a ’"QN’ tag to indicate that the outputted CEL files have
been quantile normalized. Since the output is stored as standard binary CEL files, these
can directly be used by other Bioconductor package, dChip, and all other software reading
CEL files. Moreover, several methods exist for importing, into similar directory structures,
data that has been exported by external applications such as CNAG, CNAT, and dChip,
which makes it easy to also utilize other preprocessing software in the aroma.affymetrix
pipeline.

Continuing, in order to fit a log-additive probe-level model (PLM) (Irizarry et al.,
2003), we first set up the model and then fit it as follows:

plm <- RmaPlm(csN)
fit(plm)
ces <- getChipEffectSet (plm)

P2
apiz
3p1iz
'3p11.1

Q114
aqiiz
aqiz
aq13
aq21.1

[212
aq@1.3

.

R
aq4.1
aqpe.2
Bq4.3

Mapping2 80K Mg + Sty

25302

Figure 1: Left: The ArrayExplorer displaying falsely colored PLM residuals in the lower
region of an HapMap 100K Hind240 array. Right: The main figure panel of a Chromo-
someExplorer displaying raw copy numbers together with GLAD segmentation estimates
on chromosome 8 in a tumor 500K sample. Using these “explorers”, it is possible to zoom
in on a spatial plot or along the chromosome, scroll, browse samples, chromosomes, chip
types, color maps etc.

the estimated “chip effect” set, which contains the summarized data, is outputted un-
der plmData/HapMap270,CEU,QN,RMA /Mapping250K_Nsp/, where the data set tag
'"RMA’ was append by the RmaP1lm method.

Next, depending on chip type, summarized data may be normalized further. For
options, see Table 1. In order to load a the data into memory for further processing, say
by other packages, there exist a variety of support methods. For example, to extract the
summarized probe signals across all arrays for a small set of units, do:

theta <- extractDataFrame(ces, units=c(1:100,800:812))

6 Dynamic reports

In addition to the above low-level methods, the aroma.affymetrix package can also gener-
ate dynamic HTML reports for easy navigator of data and model fits. For instance,

rs <- calculateResidualSet (plm)
ae <- ArrayExplorer(rs)
process(ae)

display(ae)

outputs images of PLM residuals and displays them in a web browser. The user interface
is such that the residuals in regions of interested can quickly be zoomed into and browsed
across arrays. See right panel of Figure 1 for an example.

7 High-level analysis

The aroma.affymetrix package also implements a small set of high-level analysis methods.
Due to the field of research of the main developer, these methods are mainly for copy
number analysis but there are also methods for alternative splicing.

As an example, below is a complete set of commands for normalizing Affymetrix SNP
chip data, estimating raw copy numbers, identifying copy-number aberrations, and then
displaying the raw copy numbers with identified regions as a dynamic HTML report in a
web browser:

cs <- AffymetrixCelSet$byName ("HapMap270,CEU", chipType="GenomeWideSNP_6")
acc <- AllelicCrosstalkCalibration(cs)

csC <- process(acc)

plm <- RmaCnPlm(csC, combineAlleles=TRUE, mergeStrands=TRUE)

ces <- fit(plm)

fln <- FragmentLengthNormalization(ces)

cesN <- process(fln)

seg <- CbsModel(ces)

ce <- ChromosomeExplorer(seg)

process(ce)

For an example of the output, see right panel of Figure 1. For details of each of the
pre-processing steps in the above script, please see Bengtsson et al. (2008) as well as the
online vignettes.

8 Conclusions

By storing intermediate results on file, not only is it possible to process 1,000s (and likely
also 10,000s) of arrays, but we are also secured against system failures. When restarting
an interrupted analysis script, possibly on a different machine on the same file system, it
will quickly skip already processed data and proceed to the latest step.

Aroma.affymetrix is robust, memory efficient, and can easily be extended with new
methods and algorithms. Currently, there are several background, pre-processing, probe-
level modeling, post-processing, as well as some alternative splicing and copy-number
methods implemented. All algorithms have been designed to run in bounded memory,
which means that virtually all analyses can be conducted even on limited systems such as
a regular notebook, something which is not possible with current Bioconductor implemen-
tations. If more powerful systems are available, aroma.affymetrix can scale its analysis
accordingly.

Acknowledgement

Thanks to B. Bolstad (Affymetrix) for packages affyPLM and preprocessCore, which
is heavily used in several of the summarization models. HB was supported by grants
from the Wenner-Gren Foundation (Stockholm), the American-Scandinavian Foundation
(Stockholm & New York), and the Solander Foundation (Lund University).

References

Bengtsson, H., Jonsson, G., and Vallon-Christersson, J. (2004). Calibration and assessment of channel-specific biases in
microarray data with extended dynamical range. BMC Bioinfo., 5, 177.

Bengtsson, H., Irizarry, R., Carvalho, B., and Speed, T. P. (2008). Estimation and assessment of raw copy numbers at the
single locus level. Bioinformatics.

Bolstad, B., Irizarry, R., Astrand, M., and Speed, T. (2003). A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-93.

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry,
J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Li, F. L. C., Maechler, M., Rossini, A. J., Sawitzki, G.,
Smith, C., Smyth, G., Tierney, L., Yang, J. Y. H., and Zhang, J. (2004). Bioconductor: Open software development
for computational biology and bioinformatics. Genome Bio., 5, R80.

Hupé, P., Stransky, N., Thiery, J.-P., FranoisRadvanyi, and Barillot, E. (2004). Analysis of array CGH data: from signal
ratio to gain and loss of DNA regions. Bioinformatics, 20(18), 3413-3422.

Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., and Speed, T. P. (2003). Summaries of Affymetrix
GeneChip probe level data. Nucleic Acids Res., 31(4), el5.

Li, C. and Wong, W. (2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier
detection. Proc. Natl. Acad. Sci. USA, 98(1), 31-6. dchip.

Purdom, E., Simpson, K., Robinson, M., Conboy, J., Lapuk, A., and Speed, T. (2008). FIRMA: a method for detection of
alternative splicing from exon array data. Submitted.

Venkatraman, E. S. and Olshen, A. B. (2007). A faster circular binary segmentation algorithm for the analysis of array
CGH data. Bioinformatics.

Wu, Z., Irizarry, R., Gentleman, R., Murillo, F. M., and Spencer, F. (2004). A model based background
adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc., 99(1001), 909-917. available at
http://ideas.repec.org/p/bep/jhubio/1001.html.

