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We develop a new estimation technique for recovering depth-of-
field from multiple stereo images. Depth-of-field is estimated by de-
termining the shift in image location resulting from different cam-
era viewpoints. When this shift is not divisible by pixel width, the
multiple stereo images can be combined to form a super-resolution
image. By modeling this super-resolution image as a realization of
a random field, one can view the recovery of depth as a likelihood
estimation problem. We apply these modeling techniques to the re-
covery of cloud height from multiple viewing angles provided by the
MISR instrument on the Terra Satellite. Our efforts are focused on
a two layer cloud ensemble where both layers are relatively planer,
the bottom layer is optically thick and textured, and the top layer
is optically thin. Our results demonstrate that with relative ease, we
get comparable estimates to the M2 stereo matcher which is the same
algorithm used in the current MISR standard product (details can
be found in [10]). Moreover, our techniques provide the possibility
of modeling all of the MISR data in a unified way for cloud height
estimation. Future research is underway to extend this framework for
fast, quality global estimates of cloud height.

1. Introduction. The motivation for this paper comes from the problem of recovering cloud
height from the Multi-Angle Imaging SpectroRadiometer (MISR) instrument, launched in Decem-
ber 1999 on the NASA EOS Terra Satellite. Clouds play a major role in determining the Earth’s
energy budget. As a result, monitoring and characterizing the distribution of clouds becomes im-
portant in global studies of climate. The MISR instrument produces images (275 m resolution) in
the red band over a swath width of 360 km for nine camera angles: 70o, 60o, 45.6o, 26.1o forward
angles, a nadir view at 0o, and aft angles 26.1o, 45.6o, 60o, 70o (referred to as Df, Cf, Bf, Af, An,
Aa, Ba, Ca, and Da respectively). By taking advantage of the image displacement that results
from multi-angle image geometry, one can recover cloud top height and cloud motion (where
cloud motion is determined from wind). Unfortunately, transparency, multiple layers, occlusion
and height discontinuities present challenges for cloud height estimation. In this paper we apply
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new statistical techniques for estimating cloud height and attempt to recover cloud height for a
two layer ensemble: an optically thin top layer over a textured bottom layer.

The image displacement that results from ground registration is, almost always, not divisible
by the pixel width. By taking advantage of this offset one can construct a super-resolution image
from the different viewing angles. It is this super resolution image that we model as a discrete
sample from a realization of a continuous Gaussian random field. Under this paradigm, estimating
height and wind can be viewed as a statistical likelihood estimation problem. There are several
advantages of this approach. First, by changing the model of the latent continuous image, one can
change the matching characteristics of the algorithm and, potentially, optimize the matching for
different cloud ensembles. Second, the super-resolution framework extends naturally when there
are more than two camera angles. Finally, the modeling of the super-resolution image gives a
unified way of estimating sub-grid-scale displacement.

There is a considerable amount of existing literature on both the recovery of three dimensional
structure from multiple stereo images and constructing super-resolution images from multiple
stereo images. The literature on both problems is vast and spans over at least 20 years. We refer
readers to two reviews [2], [5] on the recovery of depth-of-field and two reviews [7], [13] on the
super-resolution problem. To the authors’ knowledge, the two problems have yet to be considered
concurrently for recovery of depth-of-field which is the focus of the current paper.

The rest of the paper is organized as follows. In Section 2 we describe our new technique for
estimating depth-of-field from multiple images taken from different viewpoints. In Section 3 we
show how to use this super-resolution framework for estimating cloud height from the MISR data.
Finally, Section 4 presents our test results for cloud height estimation.

2. The Super-Resolution Likelihood . In this section we describe our technique for re-
covering depth-of-field from multiple stereo images. We start with our notation for non-uniformly
sampled images and finish with a presentation of our new estimation methodology that uses super-
resolution techniques and random field models to define a likelihood for estimating depth-of-field.
This exposition is done as general as possible to avoid letting the details of the cloud height
problem obstruct the general estimation procedure (the details of the cloud height estimation are
then presented in Section 3).

2.1. Image Notation. Even though it is easy to visualize the construction of a super-resolution
image, the mathematical notation to express this construction is somewhat clumsy. The basic
object for our notation is an image, denoted (x,y). The pixel locations are encoded in the ordered
list of spatial coordinates x and the corresponding gray values, or radiances, are encoded in the
vector y. In the regression setting, one might consider x to be a matrix with two columns where
each row is a pixel location. However, we prefer to use the ‘list’ characterization so that, for
example, a function f : R2 → R evaluated at a list of locations x, denoted f(x), will represent
component-wise evaluation of f on each element of the list (rather than row-wise evaluation using
the regression notation). In this way, shifting all the spatial locations in x by the same δ ∈ R2,
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can be written x+ δ.
The pixel locations x allow us to define non-uniformly sampled images. Therefore, when work-

ing with one image, x serves to specify the overall structure of the image. When working with
multiple images, the individual pixel locations may be useful for comparing locations across mul-
tiple images. For example, if one has n images on a square grid of equal size, it may make sense
to set the lower left pixel at the origin, all with the same pixel spacing. Multiple images will be
written with superscripts (x(1),y(1)), . . . , (x(n),y(n)), reserving subscripts to denote the elements
of a list. In particular, xj and yj denotes the jth pixel and the corresponding jth gray value or
radiance. For example, a 2× 2 gray level image could be written x =

(
(0, 0), (0, 1), (1, 0), (1, 1)

)
,

y = (0.4, 0.2, 0.1, 0.7)T so that the second pixel has coordinates x2 = (0, 1) with gray value
y2 = 0.2.

Now the super-resolution image is defined by direct concatenation of the pixel locations and
the gray values. In particular, let (x(1),y(1)) and (x(2),y(2)) be two images which we want to
overlay to construct a super-resolution image. The intuition is that these two images are of the
same physical object but projected on different pixel grids (see Figure 2). The super-resolution

image is defined as

((
x(1)

x(2)

)
,

(
y(1)

y(2)

))
. It may be the situation that the first image (x(1),y(1))

needs to be shifted by some vector δ ∈ R2 before it is overlaid with the second image (x(2),y(2)).
The process of shifting the first image by δ then overlaying the two to construct a super-resolution

image is written

((
x(1) + δ

x(2)

)
,

(
y(1)

y(2)

))
.

2.2. Super-resolution, Random Fields and Depth-of-field. We start with n images, each rep-
resenting different pictures of the same object taken from n different camera viewpoints (see the
first illustration of Figure 1). Since the cameras are from different viewpoints, the object will
appear in different image locations in each camera (see the second illustration of Figure 1). We
define parallax as the difference in image location of the object in each camera. Notice that once
the geometry of the camera configuration is fixed, the parallax is completely characterized by
the distance, d, of the object to one of the cameras. Typical estimation of d (i.e. depth-of-field)
amounts to estimating the parallax of the object between each pair of cameras then using these
parallaxes to solve for d. Our method, on the other hand, estimates d directly, treating it as
an unknown statistical parameter. The advantage is that d completely characterizes the paral-
lax observed between each pair of cameras, thereby reducing the problem to estimating a single
parameter and modeling the observations jointly rather than pairwise.

In more detail, consider a physical object captured in the image patch (x(1),y(1)) and let
d ∈ (0,∞) denote the distance of this object to the first camera. As one varies d, there will
exist different image patches (x(2),y(2)), . . . , (x(n),y(n)), from the subsequent camera angles, all
of which capture the object appearing in (x(1),y(1)). This implies the existence of shifts δ2, . . . , δn
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Fig 1. An illustration of the distance parameter d and parallax. Once the geometry of the camera array is fixed the
parameter d completely determines the parallax.

so that the new super-resolution image, (x,y), given by

(1) x :=


x(1)

x(2) + δ2
...

x(n) + δn

 y :=


y(1)

...
y(n)

 ,

is a picture of the same object captured by (x(1),y(1)) (see Figure 2). Note that the shifts δ2, . . . , δn
and the image patches (x(2),y(2)), . . . , (x(n),y(n)) depend solely on the distance parameter d. We
call the process of combining image patches to construct a super-resolution image, interlacing.

To compute a likelihood for estimating the parameter d, we start by supposing there exists
a latent continuous function Y : R2 → R that models the continuous image in the local patch
(x(1),y(1)). In other words, Y

(
x(1)

)
= y(1). Note that Y (x) denotes the list obtained by evaluating

Y at each pixel location in the list x. For the true distance parameter d, the super-resolution
image (x,y) will also satisfy Y (x) = y. The wrong distance parameter will interlace images of
different regions which will result in a ‘noisy’ super-resolution image for which it will be difficult
to find a continuous interpolator that satisfies Y (x) = y. By putting a probability measure P
on the latent continuous image Y , we can estimate the distance of the object by minimizing the
following negative log likelihood:

−`(d) := − log P
(
Y (x) = y

)
,(2)

where the super-resolution image (x,y), depending on d, is constructed as in (1).
An equivalent way to specify the log-likelihood (2) is to simply claim that there exists image

patches (x(2),y(2)), . . . , (x(n),y(n)) and location shifts δ2, . . . , δn, all depending on the parameter
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Super-resolution

(x,y)

parallax(x(1),y(1))

(x(2),y(2))

Image frame from the multiple cameras

Fig 2. An illustration of the construction of the super-resolution image (x, y). The object captured by (x(1), y(1))
shifts to (x(2), y(2)) in the next camera angle. If the parallax is known and is not a multiple of the grid spacing, the
two image patches can be overlaid to create a super-resolution image.

d, such that Y (x(1)) = y(1) and

(3) y(k) = Y (x(k) + δk), k = 2, . . . , n.

Since Y doesn’t depend on k in the above equation, the super-resolution image defined by (1)
satisfies y = Y (x). Therefore, under the model P, the joint distribution of y is the same as that
obtained in (2). This alternative way of expressing the super-resolution likelihood will become
useful in the following sections for introducing nuisance parameters associated with the MISR
cameras.

3. Cloud Height Estimation. This section contains the modeling details for cloud height
estimation from MISR satellite data. In our view, one of the advantages of the estimation tech-
niques outlined in the previous section is the ease in which the technical details of a particular
observation scenario can be incorporated into the recovery of depth-of-field. We demonstrate this
flexibility in our application of this methodology to cloud height estimation. This section starts
with a discussion of the relationship between parallax, cloud height and wind. Section 3.1 presents
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a summary of all the modeling assumptions used to compute the maximum likelihood estima-
tion of height. A more thorough explanation of the modeling assumptions and the techniques for
computing the likelihood can be found in Sections 3.1.1, 3.1.2 and 3.1.3.

For the MISR data, instead of estimating distance to the satellite, we want to estimate cloud
height and wind. Since the parallax of a cloud patch is completely determined by height and
wind, the techniques from Section 2 are easily applicable. Indeed, the one of the main features of
the methodology developed in the last section is that it relates all the observed parallaxes to a
single parameter d. In the MISR data, the parameter d, i.e. distance of the object to the satellite,
is directly related with cloud height (since the height of a cloud determines the distance to the
satellite). However, there is an added complication of cloud movement as a function of wind. Since
wind will also effect the image location of a cloud in each camera, we include it as a parameter
so that now height h and a wind velocity v := (v1, v2) completely determine parallax and the
construction of the super-resolution image (x,y).

For the MISR images there is an approximate linear relationship that relates wind, cloud height
and image parallax. Let t(k) denote the fly-over time delay (in seconds) for the kth camera and
x(k) the along-track image location of a local cloud region in camera image k. When h is in meters,
v is in meters per second, and the pixel locations specified by x(k) all represent the same 275
meter grid, the linear equation that relates wind, height and along-track parallax are

(4) v2(t(i) − t(j)) + h(tan(θ(i))− tan(θ(j))) = x(i) − x(j)

where θ(k) is the angle of each camera. The across-track parallax is given by v1(t(i) − t(j)). For
more details see [6].

3.1. Detailed Summary of the Model. A major obstacle in using the methods in Section 2 for
the MISR data is that different images corresponding to different angles often have different overall
brightness. Therefore it becomes difficult to directly interlace patches from different images. In
what follows we model the brightness change, due to the different angles, as a linear correction
for each camera.

Suppose the image patch (x(1),y(1)) captures a small cloud region and let Y be the continuous
representation of this image so that Y (x(1)) = y(1). The true height and wind, (h,v), allow us to
retrieve patches (x(2),y(2)), . . . , (x(n),y(n)) from the subsequent camera angles, each capturing
the same cloud region projected on potentially shifted grids. For the remainder of the paper, n
denotes the number of cameras and m denotes the number of pixels in each patch (x(k),y(k)),
k = 1, . . . , n. Our model for the gray values y(k) is summarized by

(5) y(k) = σkY (x(k) + δk) +Akx
(k) + bk

for cameras k = 2, . . . , n, where

• Y is the latent continuous cloud image, modeled by a Gaussian random field with Matérn
covariance function K with parameters (σ, ρ, ν) = (1, 4, 4/3) (see Section 3.1.1) so that

cov(Y (t), Y (s)) = K(|t− s|),
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for all t, s ∈ R2 where | · | denotes Euclidean distance;
• σk is a multiplicative brightness correction for each camera;
• δk is a two dimensional shift vector which is completely determined by (h,v) and plays the

role of shifting the pixel locations x(1), . . . ,x(n) so that they are interlaced;
• Ak is a 2× 1 matrix which represents an affine brightness correction for each patch;
• bk is an overall constant additive correction.

Notice that Y models the latent cloud image for each camera so we obtain a joint model for the
full super-resolution vector y := (y(1)T , . . . ,y(n)T )T . By the Gaussian assumption on Y we have

(6) y(k) ∼ N(Akx(k) + bk, σ
2
kΣk)

where Σk :=
(
K(|x(k)

i − x
(k)
j |)

)
ij

.
Since we have introduced an additive and multiplicative brightness correction on each patch,

it is no longer true that the super-resolution image satisfies y = Y (x), where x is defined by (1).
What is true, however, is that y = diag(σ1Im, . . . , σnIm)Y (x) + µ, where µ is a vector with kth

block Akx
(k) + bk and Im is the m × m identity matrix. The main difficulty for estimation of

(h,v) now becomes devising techniques for dispensing with the nuisance parameters σk, Ak, bk.
This is the main contribution of Sections 3.1.2 and 3.1.3. Both sections use REML techniques (see
[15]) to filter out the additive brightness corrections Akx(k) + bk. Dealing with the multiplicative
nuisance parameters σk is more difficult and requires separate treatments for high and low clouds.
For high clouds, a brightness stabilization allows us to marginalize out σk. For low clouds, there
is no closed form solution for the marginalized likelihood and we resort to an approximate profile
likelihood.

3.1.1. Gaussian Random Field model for P. In (5) we use a Matérn autocovariance function K

(with parameters (σ, ρ, ν) = (1, 4, 4/3)) to model the covariance structure of the latent continuous
cloud image Y . This section outlines our motivation for our choice of the Matérn autocovariance
function and the specific parameter values. The basic idea is to use the observed fractal behavior
of clouds (see [3], [1], [16], [12], [4] from the atmospheric science literature) to model the fractal
nature of Y after adjusting for pixel averaging. Indeed, one of the advantages of the the Matérn
autocovariance function is the flexibility it provides for modeling the fractal behavior of Y .

The Matérn autocovariance function K is defined by

K(r) =
σ

2ν−1Γ(ν)

(
2ν1/2r

ρ

)ν
Kν

(
2ν1/2r

ρ

)
,

where Kν is the modified Bessel function (see [15]). We model Y , the continuous cloud image, as
a two dimensional Gaussian random field with covariance structure given by cov(Y (s), Y (t)) =
K(|s− t|) for all s, t ∈ R2 with parameters (σ, ρ, ν) = (1, 4, 4/3) . The parameter σ is the variance
var[Y (t)] at any fixed point t ∈ R2. The parameter ρ serves as the range where the correlation
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of the random field effectively becomes zero. The ν parameter controls the smoothness of the
process.

In our analysis the range parameter ρ is set to 1100 meters (4 pixel widths) and the variance
parameter σ is 1. Different values of ρ, σ don’t severely effect our height estimates with the
exception of either very small or very large ρ. In the case of very large ρ it seems that the local
patch size becomes too small, compared to the range, for appropriate modeling. When ρ is very
small, the estimation of height and wind becomes ineffective since most of the interlaced images
are modeled as nearly uncorrelated.

Here we derive our justification for ν = 4/3 as a plausible value for the smoothness parameter.
In our analysis, the vector y(k) represents log of registered bidirectional reflectance factor (BRF)
values from the kth camera. Let IBRF denote the latent continuous BRF image so that Y =
log(ϕ ∗ IBRF), where the pixelation is represented by the convolution kernel ϕ = I[−1/2,1/2]2 for
the indicator function I. Let KBRF be the autocovariance function for the continuous BRF image
IBRF . The two dimensional Fourier transform of KBRF gives the spectral density

fIBRF
(ω) :=

1
(2π)2

∫
R2

exp(−ixTω)KBRF(x)dx,

where x = (x1, x2) and ω = (ω1, ω2) are both two dimensional vectors. There is evidence to
suggest that Kolmogorov’s 5/3 scaling law holds for fIBRF

(see [3], [1], [16], [12], [4]). Under the
additional assumption of isotropy, the scaling law implies the two dimensional spectral density
satisfies fIBRF

(ω) � 1
|ω|5/3+1 as |ω| → ∞. Therefore, the spectral density of the pixelated process

ϕ ∗ IBRF is given by

(7) fϕ∗IBRF
(ω) = |ϕ̂(ω)|2fIBRF

(ω) � sinc2
(
ω1

2

)
sinc2

(
ω2

2

)
1

|ω|5/3+1
,

as |ω| → ∞. Let fY denote the spectral density for the Matérn autocovariance model for Y . We
believe a plausible value for the parameter ν, for the random field Y = log(ϕ∗IBRF) corresponds to
matching the power-law decay of fY to that of fϕ∗IBRF

, in the coordinate directions. In particular,
by (7) and the properties of the Matérn spectral density,

fϕ∗IBRF
(ω) � sin2(ω1/2)

|ω1|5/3+3
, fY (ω) � 1

|ω1|2ν+2
,

fixing ω2 and letting ω1 → ∞. Therefore, to match the decay, we set the smoothness parameter
ν to (5/3 + 1)/2 = 4/3.

3.1.2. Low cloud likelihood. Here we give some of the computational techniques for dealing
with the nuisance parameters when estimating the height of low textured clouds. We start by
constructing a matrix L (‘L’ for low) which filters out the dependence of the observations on Ak
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and bk. Then we construct an approximate profile likelihood to handle the multiplicative nuisance
parameters σk.

For low textured clouds we begin by constructing n matrices L1, . . . , Ln which annihilate mono-
mials of order at most 1 so that Lky(k) ∼ N(0, σ2

kΣk). In particular, Lk is a (m−3)×m matrix with
rows composed of linearly independent vectors in the kernel space {v : [φ0(x(k)) φ1(x(k)) φ2(x(k))]T vT =
0}, where φ0, φ1 and φ2 are the the monomials of order at most 1. Now define the matrix
L = diag(L1, . . . , Ln) so that Ly ∼ N(0,∆σΣ̃∆σ), where Σ̃ := LΣLT , Σ :=

(
K(|xi − xj |)

)
ij

and ∆σ := diag(σ1Im−3, . . . , σnIm−3). Therefore the likelihood of the observation vector Ly, as
it depends on (h,v) and σ := (σ1, . . . , σn)T , can be written

L(h,v,σ|Ly) =
1

|2πΣ̃|1/2
1
|∆σ|

exp
[
−1

2
(Ly)T∆−1

σ Σ̃−1∆−1
σ (Ly)

]
.

At this point there are a few options to dispense with the dependence of the above likeli-
hood on the nuisance parameters σ. The most desirable option would be to marginalize out
σ by integrating

∫
Rn

+
L(h,v,σ|Ly)dσ. For even moderate block size m and n = 2, this be-

comes computationally formidable. The second option would be to maximize a profile likelihood
L(h,v|Ly) := maxσ∈Rn

+
{L(h,v,σ|Ly)}. This option is somewhat more computationally tractable

but still problematic since there is no closed form for the profile likelihood. The easiest option is to
estimate σk on each patch separately, σ̂2

k := (Lky(k))T (LkΣkL
T
k )−1(Lky(k))/n, then maximizing

a plug-in version of the likelihood L(h,v, σ̂|Ly), where σ̂ := (σ̂1, . . . , σ̂n)T . Notice, however, that
under the correct (h,v) the patches y(1), . . . ,y(n) are highly correlated, and therefore information
is lost by estimating σk separately on each patch. In an attempt to alleviate this problem, we
explore a compromise between the full profile likelihood and the overly simplistic case of the
plug-in likelihood with σ̂.

Notice that the quadratic term (Ly)T∆−1
σ Σ̃−1∆−1

σ (Ly) can be written

‖Σ̃−1/2∆−1
σ Ly‖2 =

∥∥∥∥∥R1L1y
(1)

σ1
+ · · ·+ RnLny

(n)

σn

∥∥∥∥∥
2

= σ−T R̃σ−1,

where the matrices R1, . . . , Rn decompose Σ̃−1/2 into block form so that Σ̃−1/2 = (R1, · · · , Rn)
and R̃ is the matrix of inner products

(〈
RiLiy

(i), RjLjy
(j)
〉)

ij
. Therefore the log likelihood can

be written

`(h,v,σ|Ly) = c1 −
1
2

log |Σ̃| − (m− 3)
n∑
k=1

log σk −
1
2
σ−T R̃σ−1,

where c1 is a constant. For a fixed (h,v), maximizing ` over σ is a convex problem whose stationary
point is characterized by

(8) R̃σ−1 − (m− 3)σ = 0.
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This equation defines the profile likelihood but unfortunately has no closed form solution for
general n. However, there is considerable research on investigating iterative algorithms for solv-
ing (8) (see [9],[8], [11] for example). The problem with iterative algorithms is that the like-
lihood computation will be done many times while searching through height and wind over
sliding blocks. Therefore, including an iterative algorithm in the likelihood calculation presents
some computational problems. As a compromise we define a “one Newton step” estimate of
the stationary point of (8) with an initial starting point σ̂, the maximum likelihood estimate√

(Lky(k))T (LkΣkL
T
k )−1(Lky(k))/n from each camera separately.

The Newton step is constructed as in [8] and defined for σ−1 rather than σ. In particular,
define F (σ−1) = R̃σ−1 − (m − 3)σ and ∆̃σ := diag(σ1, . . . , σn). Now F (σ−1 + τ ) = F (σ−1) +
R̃τ + (m − 3)∆̃2

στ plus higher order terms in τ . Setting this linear approximation to zero and
solving for τ gives the Newton step σ−1 + τ . We use the initial starting point σ̂−1. Notice the
Newton step may result in a negative variance. In which case, the original estimate σ̂ is used
instead of the Newton step. In summary, to estimate (h,v) we define the “one Newton step”

(σ̂newton)−1 :=

{
σ̂−1 + (R̃+ (m− 3)∆̃2

σ̂)−1((m− 3)∆̃2
σ̂ − R̃)σ̂−1, if positive;

σ̂−1, otherwise,

and maximize the plug-in log-likelihood

(̂h,v) := arg max
(h,v)

`
(
h,v, σ̂newton

∣∣∣Ly).
3.1.3. High cloud likelihood. Here we give some of the computational techniques for dealing

with the nuisance parameters when estimating the height of high thin clouds. Since these heights
are notoriously hard to estimate, we attempt a brightness stabilization on the whole cloud image
which allows more local information for estimating cloud height. After this stabilization, we
construct a matrix H (‘H’ is for high) which filters out the common value of the stabilized
nuisance parameters Ak and bk. For the brightness corrections σk, our stabilization allows us to
marginalize out the common value of σk under a uniform prior which is far more desirable than
the approximate profile likelihood techniques needed for low clouds.

One of the difficulties of high clouds is that they are frequently optically thin or partially
transparent. This makes estimating parallax difficult because the dominant signal is frequently
the background rather than the cloud itself. In an attempt to overcome this difficulty we estimate
a linear transformation on y(k) for each camera k = 1 . . . , n to stabilize the brightness corrections
modeled by σk, Ak and bk. A more in-depth discussion on this issue is presented in Section 4.
Once stabilization is achieved we have y ∼ N(Ax + b, σ2Σ), where σ,A and b are the common
values of σk, Ak and bk respectively and Σ :=

(
K(|xi − xj |)

)
ij

. This allows us to find a matrix
H for which Hy ∼ N(0, σHΣHT ). H is defined as the matrix with rows composed of linearly
independent vectors in the kernel space {v : [φ0(x) φ1(x) φ2(x)]T vT = 0, }. Notice that now H
is not block diagonal as it was for L. As a consequence Hy is a vector of length nm − 3 versus
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(m− 3)n (for the low cloud estimates) where n and m denote the number of cameras and patch
size respectively. This provides more information for matching in an attempt at recovering the
high cloud heights.

The likelihood of h,v and σ, given the observation vector Hy, has the following form

L(h,v, σ|Hy) =
1

σnm−3|2πΣ̃|1/2
exp

[
−y

THT Σ̃−1Hy

2σ2

]
,

where Σ̃ := HΣHT . In contrast with the low cloud likelihood, we can remove the dependence on
the unknown parameter σ by marginalizing out under a uniform improper prior

L(h,v|Hy) ∝
∫

R+

L(h,v, σ|Hy) dσ =
2(nm−4)/2

2|2πΣ̃|1/2
Γ
(
nm−4

2

)
[
yTHT Σ̃−1Hy

]nm−4
2

.

The integral is obtained by the change of variables x = σ2
k and recognizing an un-normalized

inverse gamma density. Therefore the log-likelihood which is maximized over (h,v) is

(9) `(h,v|Hy) = c2 −
1
2

log |Σ̃| − nm− 4
2

log
[
yTHT Σ̃−1Hy

]
,

for some constant c2.
Remark: Instead of marginalizing out the unknown σ one could instead maximize a profile

log-likelihood as a function of (h,v), where the profiling is over the unknown σ. The resulting
profile log-likelihood is c3 − 1

2 log |Σ̃| − nm−3
2 log

[
yTHT Σ̃−1Hy

]
which, it appears, fails to take

into account the loss of degrees of freedom associated with the unknown σ.

4. Test Results for Cloud Height Retrieval. This section shows some test results for
estimating cloud height in a multi-layer cloud region. The test region is a cropped image from
a MISR swath corresponding to orbit number 029145, path 031, and MISR blocks 56-67. Using
the conventional grid, the upper left corner is located (row, column)=(801,1701) and the lower
right corner is located (row, column)=(1400,2100) for a total image size of 600 × 400. Figure 3
shows the cloud images from the Bf and Cf cameras. This particular region was selected because
of the clear nature of the two layer cloud ensemble. Near the right edge of the image, the region
is dominated by optically thin, high clouds. The left edge contains mostly low, textured clouds.
As one moves from left to right, the high clouds become more optically thick and the low clouds
become sparse. This makes the region particularly useful for testing the ability to estimate the
height of two distinct cloud layers.

In addition to the two layer structure, there is evidence to suggest minimal wind in both the
along-track and across-track direction. This allows one to only estimate the height parameter and
set the wind vectors to zero. In all of the test cases, the interlacing likelihood is maximized over
a grid with resolution 100 meters over the interval (0, 3×104) meters. All of the following height
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Fig 3. Log BRF from the the Bf camera (left) and Cf camera (right).

estimates are based on 15-by-16 sliding local patches, with the exception of the 15-by-15 patch
size used in the MISR software estimates and the likelihood profiles found in Figure 7. The MISR
estimates use an implementation of the M2 stereo matcher which is the same algorithm used in
the current MISR standard product (details can be found in [10]).

Figure 4 shows the cloud height estimates based on the low cloud likelihood (top row) and
the high cloud likelihood (bottom row) using two cameras (left column) and three cameras (right
column). Figure 5 shows two of our best estimates of height along with the estimates from
MISR’s M2 algorithm. The left plot in Figure 5 shows the high cloud estimates based on the
three cameras Bf, Cf and Df. The middle plot shows the low cloud estimates based on the three
cameras Aa, An and Af. The right plot shows the MISR’s M2 estimates based on two cameras Bf
and Cf. Compared with MISR’s M2 software one can see that the coverage (in other words, the
percentage of good height estimates) is comparable. It is also apparent that the three estimates
recover different components of the cloud layers. The most striking difference is the amount of
high clouds recovered in the left plot compared to the other two. Presumably, a major factor in
this recovery is the brightness stabilization across cameras.

Figure 6 shows the mean and variance, taken over each column of the transformed images,
from cameras Bf, Cf and Df. The stabilizing transformations are found by visually matching the
means and variances of the high clouds near the right edge of the test image. From these plots it
seems that, at least for the test region, the high cloud region can indeed be stabilized as seen by
similarity of the first two moments near the right edge, where the high clouds dominate. There is
some reason to believe that such a stabilizing transformation exists for general cloud images. The
radiance contribution from the high clouds is almost exclusively due to initial scattering, whereas
the radiance contribution from the low clouds must pass though the high cloud region getting a
reduction in both mean and variance depending on the optical thickness of the top layer. It is
not so clear, however, whether the stabilizing transformation can be estimated from a multi-layer
scene. In our test case we can take advantage of the fact that high clouds dominate the right
hand edge and therefore the overall change in mean and variance can be estimated.
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Remark: One possible way to automate the estimation of the stabilizing transformation is
to use classification algorithms to find regions dominated mostly by high clouds, estimate the
transformation on these regions, then extrapolate to the whole multi-layer scene. Indeed, there is
existing literature on cloud detection which could potentially be adapted for finding these high
cloud dominated regions in a multi-layer scene (see [14]).

To investigate the difference between the the low cloud likelihood and the high cloud likelihood,
Figure 7 shows the log likelihood profiles as a function of cloud height for two patches from our
test scene (both patches constitute a 15× 15 pixel region). The first patch is centered at row 500
and column 100 and is dominated by low textured clouds. The second patch is centered at row 400
and column 275 and constitutes a region with a two layer cloud ensemble. In Figure 7 the top row
shows plots of the low cloud likelihood (left/right plot corresponds to the low/multi-layer cloud
patch). The bottom row corresponds to the high cloud likelihood (left/right plot corresponds
to the low/multi-layer cloud patch). The discontinuous nature of the graphs is due to the fact
that a fixed interlacing was used and therefore sub-grid-scale displacement can not be detected.
The significance of these plots is that the likelihood profile changes significantly when using the
likelihood for the high clouds (bottom row). The result is that the bottom layer height is estimated
when using the low cloud likelihood and the top layer height is estimated when using the high
cloud likelihood. One other interesting feature of these likelihood profiles is multi-modality. One
explanation could be the presence of more than two cloud layers in the test region.

Summary. We present a new depth-of-field algorithm which uses random field models and the
concept of super-resolution. By viewing the multi-angle cloud images as discrete sub-samples of a
continuous random random field, one can view depth-of-field estimation as a statistical parameter
estimation problem. Under this paradigm new tools become available for recovering depth-of-field
from multiple stereo images and, in some cases, improve sensitivity and allow fine tuning for dif-
ferent observation scenarios. We apply these techniques to the recovery of cloud height using the
MISR instrument on the Terra spacecraft. In our application, we attempted to demonstrate the
ease in which technical details of the stereo cameras and the scientific properties of the observa-
tions can be incorporated in the estimates. The main focus of the test case was to use the special
nature of our new estimator to recover the heights of a two layer cloud ensemble: an optically
thin high cloud layer and an optically thick, textured low cloud. We have shown that the recovery
of two separate layers is indeed possible and could potentially be automated for cloud height
estimates on a global scale. These results lay the foundation for future research on extending
this framework for cloud height estimation on a global scale using all nine MISR cameras. In-
deed current research is underway to speed up the likelihood estimates and to incorporate more
information on the observational properties of the MISR cameras.
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the three cameras Aa, An and Af. Right: Height estimates based on the MISR’s M2 stereo matcher using cameras
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Fig 7. Profiles of the log likelihood as a function of height. Rows correspond to different likelihood models (top: low
cloud model, bottom: high cloud model) and the columns correspond to different patches (left: low cloud patch, right:
multi-layer cloud patch).
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