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DATA SPECTROSCOPY: EIGENSPACE OF
CONVOLUTION OPERATORS AND CLUSTERING

By Tao Shi∗, Mikhail Belkin† and Bin Yu‡

The Ohio State University∗† and University of California, Berkeley‡

This paper focuses on obtaining clustering information in a dis-
tribution when iid data are given. First, we develop theoretical re-
sults for understanding and using clustering information contained in
the eigenvectors of data adjacency matrices based on a radial kernel
function (with a sufficiently fast tail decay). We provide population
analyses to give insights into which eigenvectors should be used and
when the clustering information for the distribution can be recov-
ered from the data. In particular, we learned that top eigenvectors
do not contain all the clustering information. Second, we use heuris-
tics from these analyses to design the Data Spectroscopic clustering
(DaSpec) algorithm that uses properly selected top eigenvectors, de-
termines the number of clusters, gives data labels, and provides a
classification rule for future data, all based on only one eigen decom-
position. Our findings not only extend and go beyond the intuitions
underlying existing spectral techniques (e.g. spectral clustering and
Kernel Principal Components Analysis), but also provide insights
about their usability and modes of failure. Simulation studies and
experiments on real world data are conducted to show the promise
of our proposed data spectroscopy clustering algorithm relative to
k-means and one spectral method. In particular, DaSpec seems to
be able to handle unbalanced groups and recover clusters of different
shapes better than competing methods.

1. Introduction. Data clustering based on eigenvectors of a proxim-
ity/affinity matrix (or its normalized version) has become popular in ma-
chine learning, computer vision and other areas. Given data x1, · · · , xn ∈
R

d, this family of algorithms construct a n × n affinity matrix (Kn)ij =
K(xi, xj)/n based on a kernel function, such as a Gaussian kernel K(x, y) =

e−
‖x−y‖2

2ω2 . Scott and Longuet-Higgins [14] proposed an algorithm that em-
beds data to the space spanned by the top eigenvectors of Kn, normalizes
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the data in that space, and groups data by investigating the block structure
of inner product matrix of normalized data. Perona and Freeman [11] sug-
gested to cluster the data into two groups by directly thresholding the top
eigenvector of Kn.

Eigenvectors of normalized versions of the affinity matrix had also been
used to build clustering algorithms. Shi and Malik [15] connected the affin-
ity matrix to a graph with (Kn)ij as the weight of its edges. They proposed
a normalized cut algorithm that separates data into two groups by thresh-
olding the second smallest generalized eigenvector of the graph Laplacian
Dn −Wn, where Wn = Kn − diag(Kn) and Dn is a diagonal matrix with
(Dn)ii =

∑

j(Wn)ij . Assuming k groups, Ng, et al. [9] suggested to embed
the data in the bottom k normalized eigenvectors of the normalized graph

Laplacian Ln = In−D−1/2
n WnD

−1/2
n then apply k-means algorithm to group

the data. For more discussions on spectral clustering, we refer the reader to
Weiss [19], Dhillon, et al. [3] and Luxburg [18], which provided good surveys
on the scope and the history of these spectral clustering methods.

Similar to spectral clustering methods, Kernel Principal Component Anal-
ysis (Schölkopf, et al. [13]) and spectral dimensionality reduction (Belkin and
Niyogi [1]) seek lower dimensional representations of the data by embedding
them into the space spanned by the top eigenvectors of Kn or the bottom
ones of Ln with the expectation that this embedding keeps non-linear struc-
ture of the data. Empirical observations have also been made that KPCA
can sometimes capture clusters in the data. The concept of using eigenvec-
tors of the kernel matrix is also closely connected to other kernel methods
in the machine learning literature, notably Support Vector Machines, (Vap-
nik [17] and Schölkopf and Smola [12]), which can be viewed as fitting a
linear classifier in the eigenspace of Kn.

A simple example is given here to illustrate the connections between clus-
ters of data and top eigenvectors of the affinity matrix. The histogram of
1000 random samples from a Gaussian mixture 0.5N(2, 12) + 0.5N(−2, 12)
is shown in the top left panel of Figure 1, where the two top eigenvectors of
Kn (Gaussian kernel with ω = 0.3) are plotted in the middle and lower left
panels. It is clear that each eigenvector corresponds to one mixing compo-
nent and it makes sense to threshold the top eigenvector or to run clustering
algorithms based on the top two. Similar to the kernel matrix, its normal-
ized versions (graph Laplacians) also connect to the clustering information
in various ways. To explore these connections, different approaches such as
spectral graph theory (Hagen and Kahny [5], Shi and Malik [15], Chung [2]),
random walks on graphs (Melia and Shi [8]), or perturbation theory (Ng, et
al. [9]) had been taken to draw similarities between the affinity matrix (or
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the graph Laplacian) and a block diagonal matrix that reflects the group
labels. Luxburg [18] provided a good review on these approaches.

Although empirical results and theoretical studies both suggest that those
top eigenvectors are related to clustering information, the effectiveness of
these algorithms heavily hinge on the choices of the kernel (and its param-
eters), the number of the top eigenvectors used, and the number of groups
assumed. As far as we know, there are no explicit theoretical results or prac-
tical guidelines on how to make these choices. More importantly, instead of
tackling these questions regarding to particular data sets, it may be more
fruitful to investigate the problem from a population point of view. Williams
and Seeger [20] illustrated the dependence of the spectrum of Kn on the in-
put density distribution and analyzed this connection in the content of lower
rank approximation to the kernel matrix. Their work inspired our research
presented in this paper.

The goal of this paper is two-fold. First we view these spectral methods
from a statistical perspective, attempting to gain some insight into when
and why these algorithms are expected to work well. These analyses reveal
that the top eigenvectors do not always contain all the clustering informa-
tion. Moreover, when the clusters are not balanced and/or the clusters have
different shapes, the top eigenvectors are inadequate and redundant at the
same time. That is, some top eigenvectors can correspond to the same clus-
ter and a fixed number of top eigenvectors can miss some clusters. Hence our
second goal is to devise a clustering algorithm that intelligently pick some
top eigenvectors to recover more fully the clustering information even when
the clusters are not balanced and possibly have different shapes.

In this paper, we concentrate on exploring the connection between p(x)
and the eigenvalues and eigenfunctions of the distribution-dependent con-
volution operator:

(1.1) Kpf(x) =

∫

Rd
K(x, y)f(y)p(y)dy.

The kernels we consider will be positive (semi-)definite radial kernels. Such
kernels can be written as K(x, y) = k(‖x − y‖), where k : [0,∞) → [0,∞)
is a decreasing function. We will use kernels with sufficiently fast tail decay,

such as the Gaussian kernel or the exponential kernel K(x, y) = e−
‖x−y‖

ω .
We will show that the top eigenfunctions of Kp may contain clustering

information of the probability distribution p. To illustrate this connection (as
well as the connection with the empirical version of Kp), let us consider the
example shown in Figure 1. We plot the histograms of each component and
the top eigenvector of Gaussian kernel matrix defined on samples from each
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component in the right panels. Notice the striking similarity between the
eigenvectors of kernel matrices built on the mixture and on each component.
In our previous paper, Shi, et al. [16], the connection between the spectrum of
the Kp and parameters of a Gaussian mixture distribution was used to build
a “data spectroscopy” algorithm that estimates the distribution parameters
through the top eigenvalues and eigenvectors of Kn. In this paper, we extend
this “data spectroscopy” framework to clustering.

The paper is organized as follows. We start with basic definitions, no-
tations, and mathematical facts of the distribution-dependent convolution
operator and its spectrum in Section 2. We point out the strong connection
between Kp and the kernel matrix Kn, which allows us to have access to the
approximate spectrum of Kp through Kn.

In Section 3, we characterize the dependence of eigenfunctions of Kp on
both the distribution p(x) and the kernel function K(·, ·). We show that the
eigenfunctions of Kp decay to zero at the tails of the distribution p(x) and
how fast they decay depend on both the tail decay rate of p(x) and that of
the kernel K(·, ·). For distributions with only one high density component,
we provide some theoretical analysis and discuss two examples where the
exact form of the eigenfunctions of Kp can be obtained. We also discuss the
case when the distribution is concentrated on or around a curve in R

d.
In Section 4, we consider the case when the distribution p contains several

separate high-density components. Through classical results of the pertur-
bation theory, we show that the top eigenfunctions of Kp are approximated
by the top eigenfunctions of the corresponding operators defined on some of
those components. However, not every component will contribute to the top
few eigenfunctions of Kp as the corresponding eigenvalues are determined
by the size and configuration of the component. Based on this key property,
we show why the top eigenvectors of the kernel matrix may or may not pre-
serve all clustering information, which explains some empirical observations
of certain spectral clustering methods.

In Section 5, we utilize our theoretical results to construct a Data Spectro-
scopic clustering (DaSpec) algorithm that estimates the number of groups
data-dependently, assigns labels to each observation, and provides a classifi-
cation rule for unobserved data, all based on the same eigen decomposition.
Data-dependent choices of algorithm parameters are also discussed. In Sec-
tion 6, the proposed DaSpec algorithm is tested on two simulations and the
USPS post code data against commonly used k-means and spectral clus-
tering algorithms. In all three situations, the DaSpec algorithm provides
favorable results even when other two algorithms are provided with reason-
able group numbers. We conclude the paper in Section 7.
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2. Notations and Mathematical Preliminaries.

2.1. Distribution-dependent Convolution Operator. Given a probability
distribution p(x) on R

d, we define L2
p(R

d) to be the space of square in-

tegrable functions, f ∈ L2
p(R

d) if
∫

Rd f2(x)p(x)dx < ∞, and the space is
equipped with an inner product 〈f, g〉 =

∫

Rd f(x)g(x)p(x)dx. Given a kernel
(symmetric function of two variables) K(x, y) : R

d × R
d → R, Eq. (1.1)

defines the corresponding integral operator Kp. Recall that an eigenfunction
φ : R

d 7→ R and the corresponding eigenvalue λ of Kp are defined by the
following equations:

(2.1) Kpφ = λφ.

If the kernel satisfies the condition

(2.2)

∫ ∫

K2(x, y)p(x)p(y)dxdy <∞,

the corresponding operator Kp is a trace class operator, which, in turn,
implies that it is compact and carries a discrete spectrum.

In this paper we will only consider the case when a positive semi-definite
kernel K(x, y) and p(x) generate a trace class operator Kp, so that it has
only countable non-negative eigenvalues λ0 ≥ λ1 ≥ λ2 ≥ . . . ≥ 0. Moreover,
there is a corresponding orthonormal basis in L2

p of eigenfunctions φi that
satisfies Eq. (2.1). The dependence of the eigenvalues and eigenfunctions of
Kp on p will be one of the main foci of our paper. We want to emphasize
that the eigenfunction φ is uniquely defined not only on the support of p(x),
but on every point x ∈ R

d through φ(x) = 1
λ

∫

K(x, y)p(y)φ(y)dy, assuming
that the kernel function K is defined on R

d × R
d.

2.2. Kernel Matrix. Let x1, . . . , xn be an i.i.d. sample drawn from a
distribution p(x). The corresponding empirical operator Kpn is defined as

Kpnf(x) =
1

n

n
∑

i=1

K(xi, x)f(xi).

This operator is closely related to the n× n kernel matrix Kn, where

(Kn)ij = K(xi, xj)/n.

Specifically, the eigenvalues of Kpn are the same as those of Kn and an
eigenfunction φ, with an eigenvalue λ 6= 0 of Kpn , is connected with the
corresponding eigenvector v = (v(x1), . . . ,v(xn))′ of Kn by

φ(x) =
1

nλ

n
∑

i=1

v(xi)K(xi, x) ∀x ∈ R
d.
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It is easy to verify that Kpnφ = λφ. Thus values of φ at locations x1, . . . , xn

coincide with the corresponding entries of the eigenvector v. However, unlike
v, φ is defined everywhere in R

d. For the spectrum of Kpn and Kn, the only
difference is that the spectrum of Kpn contains 0 with infinite multiplicity.
The corresponding eigenspace includes all functions vanishing on the sample
points.

It is well-known (e.g. Koltchinskii and Giné [6]) that, under mild condi-
tions, the eigenvectors and eigenvalues of Kn converge to eigenfunctions and
eigenvalues of Kp as n→ ∞. Therefore, we expect the properties of the top
eigenfunctions and eigenvalues of Kp to also hold for Kn, assuming that n
is reasonably large.

3. Spectral Properties of a Single Component. In this section we
will give some properties and examples for the case when our distribution p
consists of one (high-density) component. Through a theorem and its corol-
lary, we obtain an important property of the eigenfunctions of Kp showing
a fast decay away from the majority of masses of the component if the tails
of K and p have a fast decay. Another theorem offers the important prop-
erty of the leading eigenfunction that it has no sign change and multiplicity
one. The section ends with detailed examples to illustrate the important
properties from those theorems and corollary.

Theorem 1 (Tail decay property of eigenfunctions). An eigenfunction
φ with the corresponding eigenvalue λ > 0 of Kp satisfies

|φ(x)| ≤ 1

λ

√

∫

K2(x, y)p(y)dy.

Proof: By definition,

λφ(x) =

∫

K(x, y)φ(y)p(y)dy.

For simplicity, we assume that the density exists, but the same argument
can be made for a general probability distribution. By the Cauchy-Schwartz
inequality, we see that

λ|φ(x)| ≤
∫

K(x, y)|φ(y)|p(y)dy =

∫

[

K(x, y)p1/2(y)
] [

|φ(y)|p1/2(y)
]

dy

≤
√

∫

K2(x, y)p(y)dy

√

∫

φ2(y)p(y)dy =

√

∫

K2(x, y)p(y)dy.
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The conclusion follows. �

We see that the “tails” of eigenfunctions of Kp decay to zero and that
the decay rate depends on the tail behaviors of both the kernel K and the
distribution p. This observation will be useful to separate high-density areas
in the case of p having several components. Actually, we have the following
corollary immediately:

Corollary 1. Let K(x, y) = k(‖x − y‖). Assume that p is supported
on a compact set D ⊂ R

d. Then

|φ(x)| ≤ k (dist(x,D))

λ

where dist(x,D) = infy∈D ‖x− y‖.

Proof: Follows from Theorem 1 and the fact that k(·) is a decreasing func-
tion. �

Next we give an important property of the top (corresponding to the
largest eigenvalue) eigenfunction.

Theorem 2 (Top eigenfunction). Let K(x, y) be a positive semi-definite
kernel with full support on R

d,. The top eigenfunction φ0(x) of the convolu-
tion operator Kp

1. is the only eigenfunction with no sign change on R
d;

2. has multiplicity one;
3. is non-zero on the support of p.

The proof is given in the appendix and these properties will be used later
when we propose our data spectroscopic clustering algorithm in Section 6.
To illustrate these theoretical results we now study some concrete examples.

Example 1: Gaussian kernel, Gaussian density
Let us start with the univariate Gaussian case where both the proba-

bility distribution p is N(µ, σ2) and the kernel function is also Gaussian.
The following proposition (Shi, et al. [16]) about the Gaussian Convolution
Operator Kp, is a slightly refined version of a result in Zhu, et al. [21].

Proposition 1. For p ∼ N(µ, σ2) and a Gaussian kernel K(x, y) =

e−
(x−y)2

2ω2 , let β = 2σ2/ω2 and let Hi(x) be the i-th order Hermite polynomial.
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Then eigenvalues and eigenfunctions of Kp for i = 0, 1, · · · are given by

(3.1) λi =

√

2

(1 + β +
√

1 + 2β)

(

β

1 + β +
√

1 + 2β

)i

,

(3.2)

φi(x) =
(1 + 2β)1/8

√
2ii!

exp

(

−(x− µ)2

2σ2

√
1 + 2β − 1

2

)

Hi

(

(

1

4
+
β

2

)
1
4 x− µ

σ

)

.

Here Hk is the k-th order Hermite Polynomial:

H0(x) = 1, H1(x) = 2x,

H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x.

Clearly from the explicit expression and expected from Theorem 2, φ0 is
the only positive eigenfunction of Kp. We note that each eigenfunction φi

decays quickly (as it is a Gaussian multiplied by a polynomial) away from
the mean µ of the probability distribution p. We also see that the eigenvalues
of Kp decay exponentially with the rate dependent on the bandwidth of the
Gaussian kernel ω and the variance of the probability distribution σ2. These
observations can be easily generalized to the multivariate case, see Shi, et
al. [16].

Example 2: Exponential kernel, uniform distribution on an inter-
val.

To give another concrete example, consider the exponential kernelK(x, y) =

exp(− |x−y|
ω ) for the uniform distribution on the interval [−1, 1] ⊂ R. In Di-

aconis, et al. [4] it was shown that the eigenfunctions of this kernel can be
written as cos(bx) or sin(bx) inside the interval [−1, 1] for appropriately cho-
sen values of b and decay exponentially away from it. The top eigenfunction
can be written explicitly as follows:

φ(x) =
1

λ

∫

[−1,1]
e−

|x−y|
ω cos(by) dy, ∀x ∈ R,

where λ is the corresponding eigenvalue. Figure 2 illustrates an example of
this behavior, for ω = 0.5.

Example 3: A curve in R
d. We now give a brief informal discussion of

the important case when our probability distribution is concentrated on or
around a low-dimensional submanifold of an (potentially high-dimensional)
ambient space. The simplest example of this setting is a Gaussian distribu-
tion, which can be viewed as a zero-dimensional manifold (the mean of the
distribution) plus noise.
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A more interesting example of a manifold is a curve in R
d. We observe that

such data is generated by any time-dependent smooth deterministic process,
whose parameters depend continuously on time t. Let ψ(t) : [0, 1] → R

d be
such a curve. Consider a restriction of the kernel Kp to ψ. Let x, y ∈ ψ and
let d(x, y) be the geodesic distance along the curve. It can be shown that
d(x, y) = ‖x − y‖ + O(‖x − y‖3), when x, y are close, with the remainder
term depending on how the curve is embedded in R

d. Therefore, we see that
if the kernel Kp is a sufficiently local radial basis kernel, the restriction of Kp

to ψ is a perturbation of Kp in a one-dimensional case. For the exponential
kernel, the one-dimensional kernel can be written explicitly (see Example
2) and we have an approximation to the kernel on the manifold with a
decay off the manifold (assuming that the kernel is a decreasing function of
the distance). For the Gaussian kernel similar extension holds, although no
explicit formula can be easily obtained.

The behaviors of the top eigenfunction of the Gaussian and exponential
kernel respectively are demonstrated in Figure 3. The exponential kernel
is the bottom left panel. We see that the behavior of the eigenfunction is
generally consistent with the top eigenfunction of the exponential kernel on
[−1, 1] shown in Figure 2. We see that the Gaussian kernel (top left panel)
has similar behaviors but produces level lines more consistent with the data
distribution, which may be preferable in practice. Finally we observe that the
addition of small noise (right top and bottom panels) does not significantly
change the eigenfunctions.

4. Spectral Properties of Mixture Distributions. In this section,
we study the spectrum of Kp defined on a mixture distribution

p(x) =
G
∑

g=1

πgpg(x),

which is a commonly used model in clustering and classification. The main
result is that, if the kernel has a sufficiently fast tail decay, each of the
top eigenfunctions of Kp connects directly to one of the separable mixing
components. However, some top eigenfunctions can correspond to the same
component and a fixed number of top eigenfunctions may miss some com-
ponents.

We start by revisiting the mixture Gaussian example given in Figure 1. For
Gaussian kernel matrices Kn, K1

n, and K2
n (ω = 0.3) constructed on samples

from 0.5N(2, 12) + 0.5N(−2, 12), N(2, 12) and N(−2, 12) respectively, the
top eigenvectors of Kn are nearly identical to the top eigenvectors of K1

n or
K2

n. From the point of view of the operator theory, it is easy to understand
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this phenomenon: the top eigenfunctions of an operator defined on each
mixing component are approximate eigenfunctions of the operator defined
on the mixture distribution. To be explicit, let us consider the Gaussian
convolution operator Kp defined by p(x) = π1p1 + π2p2, with Gaussian
components p1 = N(µ1, (σ1)2) and p2 = N(µ2, (σ2)2) and the Gaussian
kernel K(x, y) with bandwidth ω. The corresponding convolution operators
are Kp1 and Kp2 and Kp = π1Kp1 + π2Kp2 respectively.

Consider an eigenfunction φ1(x) of Kp1 with the corresponding eigenvalue
λ1, Kp1φ1(x) = λ1φ1(x). We have

Kpφ
1(x) = π1λ1φ1(x) + π2

∞
∫

−∞

K(x, y)φ1(y)p2(y)dy.

As we have shown in Proposition 1 in Section 3, any eigenfunction φ1(x)
of Kp1 is centered at µ1 and decays exponentially away from µ1. Therefore,
assuming the separation |µ1 − µ2| is large enough, the second summand
π2
∫

K(x, y)φ1(x)p2(x)dx is close to 0 everywhere and hence φ1(x) is an
approximate eigenfunction of Kp. Shi et al. [16] utilized these findings to
construct a data spectroscopic algorithm to estimate mixture Gaussian dis-
tributions. In the next section, we will show that this approximation result
holds for general mixture distributions beyond Gaussian components, and
this leads to a Data Spectroscopic clustering algorithm described in Sec-
tion 5.

4.1. Perturbation Analysis. For a positive semi-definite kernel K(· , ·)
and p(x) =

∑G
g=1 π

gpg(x) on R
d, we now study the connection between

the top eigenvalues and eigenfunctions of Kp to those of each Kpg . We note
that the results shown here only require the operator Kp possessing a dis-
crete spectrum. Without loss of generality, let us start with a mixture of two
components, e.g. p = π1p1 + π2p2 and π1 + π2 = 1. We have the following
theorem regarding the top eigenvalue λ0 of Kp.

Theorem 3 (Top eigenvalue of mixture distribution). Let p1 and p2 be
probability distributions on R

d and define their mixture as p = π1p1 + π2p2

with π1 + π2 = 1. Given a positive semi-definite kernel K, denote the top
eigenvalue of Kp, Kp1 and Kp2 as λ0, λ

1
0 and λ2

0 respectively. Then λ0 satisfies

max(π1λ1
0, π

2λ2
0) ≤ λ0 ≤ max(π1λ1

0, π
2λ2

0) + r,

where

(4.1) r =

(

π1π2
∫∫

[K(x, y)]2p1(x)p2(y)dxdy

)1/2

.
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The proof is given in the appendix. As illustrated in Figure 4, the value
of r in Eq [4.1] is small when p1 and p2 do not overlap much. Meanwhile,
the size of r is also affected by how fast K(x, y) approaches zero as ‖x− y‖
increases. When the separation condition is satisfied, the top eigenvalue of
Kp is close to the larger one of π1λ1

0 and π2λ2
0. Without loss of generality,

we assume π1λ1
0 > π2λ2

0 in the rest of this section.
The next lemma is a general perturbation result that deals with eigen-

functions of Kp. The empirical (matrix) version of this lemma appeared in
Diaconis et al. [4] and more general results can be traced back to Parlett [10].

Lemma 1. Consider an operator Kp with a discrete spectrum λ0 ≥ λ1 ≥
λ2 ≥ · · · . If

‖Kpf − λf‖L2
p
≤ ǫ

for some λ, ǫ > 0, and f ∈ L2
p, then Kp has an eigenvalue λk such that

|λk − λ| ≤ ǫ.
If we further assume that

s = min
i:λi 6=λk

|λi − λk| > ǫ

then Kp has an eigenfunction fk such that Kpfk = λkfk and ‖f − fk‖L2
p
≤

ǫ
s−ǫ .

This lemma shows that a constant λ must be “close” to an eigenvalue λk

of Kp if the operator “almost” projects a function f to λf . Moreover, the
function f must be “close” to an eigenfunction of Kp if the distance between
Kpf and λf is smaller than the eigen-gaps between λk and other eigenvalues
of Kp. The reader is referred to Diaconis et al. [4] for a detailed proof, and
more refined results may be found in Parlett [10].

We are now ready to state the perturbation result for the top eigenfunction
of Kp defined on the mixture. Given the facts that |λ0 − π1λ1

0| ≤ r and

Kpφ
1
0 = π1Kp1φ1

0 + π2Kp2φ1
0 = (π1λ1

0)φ
1
0 + π2 Kp2φ1

0,

Lemma 1 indicates that φ1
0 is close to φ0 if ‖π2Kp2φ1

0‖L2
p

is small enough. To
be explicit, we have the following corollary.

Corollary 2 (Top eigenfunction of mixture distribution). For a given
semi-positive definite kernel K(·, ·), consider a convolution operator defined
as Kp(·) =

∫

K(x, ·)f(x)p(x)dx. Let p1 and p2 be two probability distributions
and p = π1p1 + π2p2. Denote the top eigenvalues of Kp1 and Kp2 as λ1

0 and
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λ2
0 respectively (assuming π1λ1

0 > π2λ2
0) and define t = λ0−λ1, the eigen-gap

of Kp. If the constant r defined in Eq.(4.1) satisfies r < t, and

(4.2)

w

w

w

w

π2
∫

Rd
K(x, y)φ1

0(y)p
2(y)dy

w

w

w

w

L2
p

≤ ǫ

such that ǫ+ r < t, then λ1
0 is close to the top eigenvalue (λ0) of Kp,

|π1λ1
0 − λ0| ≤ ǫ,

and φ1φ1
0 is close to the top eigenfunction (φ0) of Kp in the sense:

(4.3) ‖φ1
0 − φ0‖L2

p
≤ ǫ

t− ǫ
.

Since Theorem 3 leads to |λ1
0−λ0| ≤ r and Lemma 1 suggests |λ1

0−λk| ≤ ǫ
for some k, the condition r+ ǫ < t = λ0 −λ1 guarantees that φ0 as the only
possible choice for φ1

0 to be close to. Therefore, φ1
0 is approximately the

top eigenfunction of Kp. Therefore, condition (4.2) is another separation
condition required to connect the top eigenfunction of Kp to the top ones of
Kpg .

4.2. Top Spectrum of Kp on Mixture Distributions. For the Kp defined on
the mixture distribution (p = π1p1 +π2p2), we now extend the perturbation
results on the top eigenfunction to other top ones. We know from Theorem 1
that |φ1

0(x)| decay exponentially as x get away from the majority mass of
p1(x). In the case that p2(x) has little overlap with φ1

0(x), |φ1
0(x)|p2(x) will

be close to zero everywhere, which makes condition (4.2) satisfied. This
condition also holds for other top eigenfunctions of Kp1 since they also decay
to zero quickly as x moves away from the majority mass of p1. The same
argument applies to the top eigenfunctions of Kp2 as well.

With a high quality agreement between (λ0, φ0) and (π1λ1
0, φ

1
0), we can

also derive the conditions under which the second eigenvalue of Kp is approx-
imately max(π1λ1

1, π
2λ2

0) by working with a new kernel Knew = K(x, y) −
λ0φ0(x)φ0(y). Then we can show that φ1 of Kp is close to φ1

1 or φ2
0, depend-

ing on which one corresponds to max(π1λ1
1, π

2λ2
0). By sequentially applying

the same argument, we arrive at the following important property:

Mixture property of top spectrum: For a convolution operator Kp with
a fast tail decay kernel and enough separations between components of a
mixture distribution p(x) =

∑G
g=1 π

gpg(x), the top eigenfunctions φj of Kp

are approximately chosen from the top ones (φg
i ) of Kpg , i = 0, 1, · · · , and
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DATA SPECTROSCOPIC CLUSTERING 13

g = 1, · · · , G. The ordering of the eigenfunctions are determined by mixture
magnitudes πgλg

i .

Along with the mixture property, we note the following useful facts about
the top spectrum of Kp defined on mixture distributions:

1. We gain access to approximate the top eigenfunctions of Kpg through
those of Kp when enough separations among components of p exist.

2. The sizes of the mixture magnitudes πgλg
i determine the ordering of

(πgλg
i , φ

g
i ) in the top spectrum of Kp. In other words, the top eigen-

function of Kpg with a small mixing weight πg or small λ’s may come
into the spectrum of Kp far below the top eigenvalues.

3. We point out that the separable conditions in Theorem 3 and Corol-
lary 2 are mainly based on the overlap of the mixture components, but
not on their shapes or parametric forms. Therefore, clustering meth-
ods based on spectral information are able to deal with more general
problems beyond the traditional mixture models based on a parametric
family, such as mixture Gaussians or mixture of exponential families.

4. The separation between components pgi and pgj does not need to be
as perfect as none-overlapping. A good separation is achieved as long

as
(

πiπj
∫∫

[K(x, y)]2pi(x)pj(y)dxdy
)1/2

is small relative to the eigen-
gap (Corollary 2). As demonstrated in the example given in Figure 1,
the approximations of eigenfunctions hold well even if the components
have significant overlaps.

When data are collected i.i.d. from the mixture distribution, we expect
the top eigenvalues and eigenfunctions of Kp are well approximated by those
of the empirical operator Kpn . As we also discussed in Section 2.2, the eigen-
values of Kpn is the same as those of the kernel matrix Kn and the eigenfunc-
tions of Kpn coincident with the eigenvectors of Kn on the sampled points.
Therefore, assuming good approximation of Kpn to Kp, the eigenvalues and
eigenvectors of Kn provide us with access to the spectrum of Kp.

This understanding sheds light on the algorithms proposed in Scott and
Longuet-Higgins [14] and Perona and Freeman [11], in which the top (sev-
eral) eigenvectors of Kn are used for clustering. Given good approximation
of Kn to Kp, we see from Fact 2 that while top eigenvectors may contain
clustering information, smaller or less compact groups may not be identi-
fied using just the very top part of the spectrum, More eigenvectors need
to be investigated to see those clusters. On the other hand, information in
the top few eigenvectors may also be redundant for clustering, as some of
these eigenvectors may represent the same group. This observation is also
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supported by our experimental results in Section 6.

5. A Data Spectroscopic Clustering (DaSpec) Algorithm. In
this section, we propose a Data Spectroscopic clustering (DaSpec) algorithm
based on our theoretical analyses on the spectrum of Kp relative to that of
the clustering components of a distribution. We chose the commonly used
Gaussian kernel in the proposed algorithm, but it may be replaced by other
positive semi-definite radial kernels with a fast tail decay rate.

5.1. Justification and the DaSpec Algorithm. Because of the Mixture
property of top spectrum of Kp defined on mixture distributions, we have
access to approximate eigenfunctions of Kpg through those of Kp when each
mixing component has enough separation from others. Among the eigenfunc-
tions of each Kpg , we know from Theorem 2 that the top one is the only one
with no sign changes. Given the nature of the approximation of spectrum of
Kpg to that of Kp, we expect that there is one and only one eigenfunction
with no sign changes over a certain small threshold ǫ on |φ(x)|. Therefore,
the number of separable components of p is indicated by the number of eigen-
functions φ(x)’s of Kp with no sign changes after thresholding on |φ(x)|.

Meanwhile, the eigenfunctions of each component decay quickly to zeros
at the tail of its distribution. At a given location x in the high density area
of a particular component, which is at the tails of other components, we
expect the eigenfunctions from all other components to be close to zero.
Among the top eigenfunction |φg

0(x)| of Kpg defined on each component pg,
g = 1, . . . , G, the group identity of x is tied to the eigenfunction that has the
largest absolute value in |φg

0(x)|. Combining this observation with previous
discussions on the approximation of Kn to Kp, we propose the following
clustering algorithm.

Data Spectroscopic clustering (DaSpec) Algorithm
Input: Data x1, . . . , xn ∈ R

d.
Parameters: Gaussian kernel bandwith ω > 0, thresholds ǫj > 0 for j =
1, 2, . . . , n
Output: Estimated Number Ĝ of clustering components and a cluster label
for each data point.
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Step 1. Constructing the Gaussian kernel matrix Kn:

(Kn)ij = 1
n e

−
‖xi−xj‖

2

2ω2 , i, j = 1, . . . , n
Compute its (top) eigenvalues λ1, λ2, . . . and eigenvectors v1,v2, . . .

Step 2. Estimating the number of clusters Ĝ:
Identify all eigenvectors vj that have no sign changes up to precision ǫj
(We say that a vector e = (e1, . . . , en) has no sign changes up to ǫ
if either ∀i ei > −ǫ or ∀i ei < ǫ)

Estimate the number of groups by Ĝ, the number of such eigenvectors.
Denote these eigenvectors and the corresponding eigenvalues by

v
1
0,v

2
0, . . . ,v

Ĝ
0 and λ1

0, λ
2
0, . . . , λ

Ĝ
0 respectively.

Step 3. Assigning a cluster label to each data point:
For a data point xi, assign its label as

argmaxg{abs(vg
0(xi)) : g = 1, 2, · · · , Ĝ}

One important feature of our algorithm is that little adjustment is needed
to classify an unobserved data point x. Thanks to the connection between
the eigenvector v of Kn and the eigenfunction φ of the empirical operator
Kpn , we can compute the eigenfunction φg

0 corresponding to v
g
0 by

φg
0(x) =

1

λ

n
∑

i=1

v
g
0(xi)K(xi, x) ∀x ∈ R

d.

Therefore, Step 3 of the algorithm can be readily applied to any x by replac-
ing v

g
0(xi) with φg

0(x). So the algorithm output can server as a clustering rule
that separates not only the data, but also the underline distribution, which
is aligned with the motivation behind our Data Spectroscopy framework:
learning properties of a distribution though the spectrum of Kpn .

5.2. Data-dependent Parameter Specification. Following the justification
of our DaSpec algorithm, we provide some guidelines for choosing algorithm
parameters in practice.

Gaussian kernel bandwidth ω: The Gaussian kernel bandwidth ω con-
trols the gaps of between eigenvalues and the tail decay rate of the eigen-
functions. When ω is too large, the tails of eigenfunctions may not decay fast
enough to make condition (4.2) in Corollary 2 hold. In principle, we want
to have ω small enough to keep eigenfunctions decaying fast at the tail. On
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the other side, if ω is too small, the eigen-gaps may vanish, in which case
each data point will end up as a separate group.

In practice, we suggest to select ω as the smallest value that keeps most
data points (say 95% of them) having a certain number (5% of sample size)
of neighbors within the “range” of the kernel. For a d-dimensional Gaussian
kernel with a bandwidth ω, we define the range of the kernel as the length
l that makes P (‖X‖ < l) = 95%, where X ∈ R

d follows N(0, ω2I). In

this case, the range l = ω
√

95% quantile of χ2
d, since ‖X‖2/ω2 follows a χ2

distribution with d degrees of freedom.
Given data x1, . . . , xn or their pairwise L2 distance d(xi, xj), we may find

ω that satisfies the above criteria by first calculating qi = 5% quantile of
{d(xi, xj), j = 1, . . . , n} for each i = 1, . . . , n, then taking

(5.1) ω =
95% quantile of {q1, . . . , qn}

√

95% quantile of χ2
d

.

As shown in the simulation studies in Section 6, this particular choice of
ω works well in low dimensional case. For high dimensional data generated
from a lower dimensional structure, such as an m-manifold, our procedure
usually leads to an ω that is too small, since the quantile of χ2

d is larger than
the corresponding quantile of χ2

m that should be used in (5.1). Therefore, we
suggest starting with ω defined in (5.1) and trying some neighboring ones to
see if the results get improved, which may be based on some labeled data,
expert opinions, data visualization or trade-off of the between and within
cluster distances.

Threshold ǫj: When identifying the eigenvectors with no sign changes of
each group in Step 2, a threshold ǫj is included to deal with the per-
turbation introduced by other groups. For the top eigenvector v(x) of a
particular group, The values (|v(x)|) at x’s of this group are much larger
than those of other groups, even after the perturbation. Given ‖vj‖2 =
∑

i vj(xi)
2 = 1 and the absolute values of its entries decrease quickly (ex-

ponentially) away from maxi(|vj(xi)|), we suggest to set the threshold for
vj as ǫj = maxi(|vj(xi)|)/n (n as the sample size) to accommodate the
perturbation.

6. Experimental Results on Simulations and USPS Data Set.

6.1. Simulation: Gaussian Type Components. In this simulation, we ex-
amine the effectiveness of the proposed DaSpec algorithm on datasets gen-
erated from Gaussian mixture models. Each data set (size of 400) is sampled
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from a mixture of six bivariate Gaussians, while the size of each group fol-
lows a Multinomial distribution (n = 400, and p1 = · · · = p6 = 1/6). The
mean and standard deviation of each Gaussian are randomly drawn from a
Uniform on (−5, 5) and a Uniform on (0, 0.8) respectively. Four data sets
generated from this distribution are plotted in the left column of Figure 5.
It is clear that the groups may be highly unbalanced and overlap each other.
Therefore, rather than trying to separate all six components, we expect good
clustering algorithms to identify groups with reasonable separation between
high density areas.

The DaSpec algorithm is applied with parameters ω and ǫj data-adaptively
chosen by the criteria described in Section 5.2. Taking the number of groups
identified by our Daspec algorithm, the commonly used k-means algorithm
and the spectral clustering algorithms proposed in Ng, et al. [9] (using the
same ω as the DaSpec) are also tested to serve as baselines for comparison.
As a common practice with k-means algorithm, fifty random initializations
are carried out and the final results are from the one that minimizes the
optimization criterion

∑n
i=1(xi − yk(i))

2, where xi is assigned to group k(i)
and yk =

∑n
i=1 xiI(k(i) = k)/

∑n
i=1 I(k(i) = k).

Shown in the second column of Figure 5, the proposed DaSpec algorithm
(with data-dependent parameter choice) identifies the number of separable
groups, isolates potential outliers and groups data accordingly. The results
are similar to the k-means algorithm results (the third column) when the
groups are balanced and their shapes are close to round. In those cases, the
k-means algorithm is expected to work well given that the the data in each
group are well represented by their averages. The last column shows the
results of Ng’s spectral clustering algorithm, which sometimes assign data
to one group even when they are actually far away.

In summary, for this simulated example, we find that the proposed DaSpec
algorithm with data-adaptively chosen parameters identifies the number of
separable groups reasonably well and produces good clustering results when
the separations are enough. It is also interesting to note that the algorithm
also isolates possible “outliers” into a separate group, so they do not affect
the clustering results on the majority data. The proposed algorithm also
competes well against the commonly used k-means and spectral clustering
algorithms.

6.2. Simulation: Beyond Gaussian Components. We now compare the
performance of the aforementioned clustering algorithms on data sets that
contain non-Gaussian groups, various levels of noise, and possible outliers.
Data set D1 contains three well-separable groups and an outlier in R

2. The
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first group of data are generated by adding independent Gaussian noise
N((0, 0)T , 0.152I) to 200 uniform samples from three fourth of a ring with
radius 3, which is from the same distribution as those plotted the right
panel of Figure 3. The second group includes 100 data points sampled from
a bivariate Gaussian N((3,−3)T , 0.52I) and the last group has only 5 data
points sampled from a bivariate Gaussian N((0, 0)T , 0.32I). Finally, one out-
lier is located at (5, 5)T . Given D1, three more data sets (D2, D3, and D4) are
created by gradually adding independent Gaussian noise (with standard de-
viations 0.3, 0.6, 0.9 respectively). The scatter plots of the four datasets are
shown in the left column of Figure 6. It is clear that the degree of separation
decreases from top to bottom.

Similar to the previous simulation, we examine the DaSpec algorithm with
data-adaptively chosen parameters, the k-means and Ng’s spectral clustering
algorithms on these data sets. the later two algorithms are tested under two
different assumptions on the number of groups: the number (G) identified
by the DaSpec algorithm or one group less (G − 1). Note that the DaSpec
algorithm claims only one group for D4, so the other two algorithms are
skipped.

The DaSpec algorithm (the second column in the right panel of Figure 6)
produces reasonable number of groups and clustering results. For the per-
fectly separable case in D1, three groups are identified and the one outlier is
isolated out. It is worth to note that the incomplete ring is separated from
other groups, which is not a simple task for algorithms based on group cen-
troids. We also see that the DaSpec algorithm starts to combine inseparable
groups as the components become less separable.

Not surprisingly, the k-means algorithms (the third and fourth columns)
do not perform well because of the presence of the non-Gaussian component,
unbalanced groups and outliers. Given enough separations, the spectral clus-
tering algorithm reports reasonable results (the fifth and sixth columns).
However, it is sensitive to outliers and the specification of the number of
groups.

6.3. Application: USPS Zip Code Data. In addition to the simulation
studies, we use a high-dimensional U.S. Postal Service (USPS) digit data set
to test the DaSpec algorithm and the rational behind it. The data set con-
tains normalized handwritten digits, automatically scanned from envelopes
by the USPS. The images here have been rescaled and size normalized, re-
sulting in 16× 16 grayscale images (see Le Cun, et al., [7] for details). Each
image is treated as a vector in R

256. In this experiment, 658 “3”s, 652 “4”s,
and 556 “5”s in the training data are pooled together as our sample (size
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1866).
To apply the DaSpec algorithm on this high-dimensional data set, we

try to chose the kernel bandwidth either data-adaptively or manually by
maximizing the accuracy of the clustering results compared to the known
group labels. As we expected, the data-adaptively chosen bandwidth (ω =
0.82) is too small and the algorithm claims more than three groups. By
comparing the results to the know labels using different bandwidths, we
chose ω = 2 and use ǫj = max(|vj|)/n.

With this manually selected bandwidth, three eigenvectors v1, v16 and
v49 are identified as no sign changes up to ǫj. To visualize the results, the
digits are first ranked by an decreasing order of a given |vj|, j = 1, . . . , 50,
and the 1st, 36th, 71st, · · · , 316th digits according to that order are shown
in each row of Figure 7. Beside visualizing the images, we show the scatter
plot of the data embedded in the top three eigenvectors in the left panel of
Figure 8 and that of the 1st, 16th and 49th eigenvectors in the middle panel.

The results strongly support our rationale of skipping certain top eigen-
vectors in our algorithm. As shown in Figure 7 and the right panel of Fig-
ure 8, the digits with large absolute values of the top three eigenvectors all
represent number “4”. Hence, the space spanned by the top three eigenvec-
tors of Kn does not provide much information about “3” and “5”, which
is suggested by our theoretical analysis (Mixture property of top spectrum
in Section 4.2). Actually, the digits with large absolute values of the top 15
eigenvectors all represent number “4”, which lead to the failure of clustering
algorithms only using the top eigenvectors of Kn. As shown in the right
panel of Figure 8, the k-means algorithm based on top eigenvectors (nor-
malized as suggested in Scott and Longuet-Higgins [14] ) reports accuracies
below 80% and it reaches the best performance as the 49th eigenvector is
included.

On the other hand, the three eigenvectors identified by our algorithm
do present the three groups of digits “3”, “4” and “5” nearly perfectly. As
we also expected, the digits corresponding to large absolute values of an
eigenvector are from the same group. The scatter plot of embedded data in
the three identified eigenvectors shown in the right panel of Figure 8 perfectly
agrees with what the theoretical results suggested. The overall accuracy of
the DaSpec algorithm stands at 93.57%, the same as the k-means using
only the 1st, 16th and 49th eigenvectors. Assuming three groups, k-means
using the original input vector reports a 93.3% accuracy and Ng’s spectral
clustering with a manually selected Gaussian bandwidth (ω = 6.7) stands
at 92.93%, both works relatively well since the groups are balanced and the
separations between groups are relatively large.
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7. Conclusions and Discussion. Motivated by recent developments
in kernel and spectral methods, we study the connection between a probabil-
ity distribution and the associated convolution operator. For a convolution
operator defined by a radial kernel with a fast tail decay, we show that the
top eigenfunctions of the operator defined on a mixture distribution is ap-
proximately a combination of the top eigenfunctions of each component. The
separation condition is mainly based on the overlap between high-density
components, instead of their explicit parametric forms, and thus is quite
general. These theoretical results explain why the top eigenvectors of kernel
matrix may preserve the clustering information but not always do so. More
importantly, our results reveal that not every component will contribute to
the top few eigenfunctions of convolution operator Kp because the size and
configuration of a component decide the corresponding eigenvalues. Hence
the top eigenvectors of the kernel matrix may or may not preserve all clus-
tering information, which explains some empirical observations of certain
spectral clustering methods.

Following the theoretical analyses, a Data Spectroscopic clustering al-
gorithm, DaSpec, is proposed, based on finding eigenvectors with no sign
changes (not necessarily the top ones). Comparing to commonly used k-
means and spectral clustering algorithms, DaSpec is very simple to imple-
ment, naturally provides an estimator of the number of separate groups,
and handles the unbalancing weight and outliers well. More importantly,
unlike k-means and certain spectral clustering algorithms, DaSpec does not
require random initialization, which is a potentially significant advantage
in practice. Simulations and an application to high-dimensional digit clus-
tering show favorable results compared to k-means and spectral clustering
algorithms. For practical applications, we also provide some guidelines for
choosing the algorithm parameters.

Our analyses and discussions on connection to other spectral or kernel
methods shed light on why radial kernels, such as a Gaussian kernel, perform
well in many classification and clustering algorithms. We expect that this
line of investigation would also prove fruitful in understanding other kernel
algorithms, such as Support Vector Machines.

APPENDIX

Proof of Theorem 2: For a semi-positive definite kernel K(x, y) > 0, we
first show the top eigenfunction φ0 of Kp has no sign change on the support
of the distribution. We define R+ = {x ∈ R

d : φ0(x) > 0}, R− = {x ∈
R

d : φ0(x) < 0} and φ∗0(x) = |φ0(x)|. It is clear that
∫

[φ∗0(x)]
2p(x)dx =

∫

[φ0(x)]
2p(x)dx.
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Assume that P (R+) > 0 and P (R−) > 0, we will show that
(A.1)
∫ ∫

K(x, y)φ∗0(x)φ
∗
0(y)p(x)p(y)dxdy >

∫ ∫

K(x, y)φ0(x)φ0(y)p(x)p(y)dxdy,

which contradicts with the assumption that φ0(·) is the eigenfunction associ-
ated with the largest eigenvalue. Denoting g(x, y) = K(x, y)φ0(x)φ0(y)p(x)p(y)
and g∗(x, y) = K(x, y)φ∗0(x)φ

∗
0(y)p(x)p(y), we have

∫

R+(x)

∫

R+(y)
g∗(x, y)dxdy =

∫

R+(x)

∫

R+(y)
g(x, y)dxdy,

and the equation also holds on region R−(x) × R−(y). However, over the
region {(x, y) : x ∈ R+ and y ∈ R−}, we have

∫

R+(x)

∫

R−(y)
g∗(x, y)dxdy >

∫

R+(x)

∫

R−(y)
g(x, y)dxdy,

sinceK(x, y) > 0, φ0(x) > 0, and φ0(y) < 0. The inequality holds on {(x, y) :
x ∈ R− and y ∈ R+}. Putting four integration regions together, we arrive
inequality (A.1). Therefore, the assumptions P (R+) > 0 and P (R−) > 0 can
not be true at the same time, which implies that φ0(·) has no sign changes
on the support of the distribution.

Now consider ∀x ∈ R
d. we have

λ0φ0(x) =

∫

K(x, y)φ0(y)p(y)dy.

Given the facts that λ0 > 0, K(x, y) > 0, and φ0(y) have the same sign on
the support, it is straightforward to see that φ0(x) has sign changes and has
full support in R

d. Finally, the isolation of (λ0, φ0) follows. If there exist
another φ that shares the same eigenvalue λ0 with φ0, they both have no
sign change and have full support on R

d. Therefore
∫

φ0(x)φ(x)p(x)dx > 0
and it contradicts with the orthogonality between eigenfunctions. �

Proof of Theorem 3: By definition, the top eigenvalue of Kp satisfies:

λ0 = max
f :
∫

f2dP=1

∫∫

K(x, y)f(x)f(y)p(x)p(y)dxdy

= max
f

∫∫

K(x, y)f(x)f(y)p(x)p(y)dxdy
∫

[f(x)]2p(x)dx
.
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For any function f ,
∫∫

K(x, y)f(x)f(y)p(x)p(y)dxdy

= (π1)2
∫∫

K(x, y)f(x)f(y)p1(x)p1(y)dxdy

+ (π2)2
∫∫

K(x, y)f(x)f(y)p2(x)p2(y)dxdy

+ 2π1π2
∫∫

K(x, y)f(x)f(y)p1(x)p2(y)dxdy

≤ (π1)2λ1
0

∫

[f(x)]2p1(x)dx+ (π2)2λ2
0

∫

[f(x)]2p2(x)dx

+ 2π1π2
∫∫

K(x, y)f(x)f(y)p1(x)p2(y)dxdy

Now we concentrate on the last term:

2π1π2
∫∫

K(x, y)f(x)f(y)p1(x)p2(y)dxdy

= 2π1π2
∫∫

[

K(x, y)[p1(x)]1/2[p2(y)]1/2
] [

f(x)f(y)[p1(x)]1/2[p2(y)]1/2
]

dxdy

≤ 2π1π2

√

∫∫

[K(x, y)]2p1(x)p2(y)dxdy

√

∫∫

[f(x)]2[f(y)]2p1(x)p2(y)dxdy

≤ 2π1π2

√

∫∫

[K(x, y)]2p1(x)p2(y)dxdy

√

∫∫

[f(x)]2[f(y)]2p1(x)p2(y)dxdy

= 2

√

π1π2

∫∫

[K(x, y)]2p1(x)p2(y)dxdy

√

π1

∫

[f(x)]2p1(x)dx

√

π2

∫

[f(y)]2p2(y)dy

≤
√

π1π2

∫∫

[K(x, y)]2p1(x)p2(y)dxdy

(
∫

[f(x)]2π1p1(x)dx +

∫

[f(x)]2π2p2(x)dx

)

= r

∫

[f(x)]2p(x)dx

where r = (π1π2
∫∫

[K(x, y)]2p1(x)p2(y)dxdy)1/2. Thus,

λ0 = max
f :
∫

[f(x)]2p(x)dx=1

∫∫

K(x, y)f(x)f(y)p(x)p(y)dxdy

≤ max
f :
∫

[f(x)]2p(x)dx=1

[

π1λ1
0

∫

[f(x)]2π1p1(x)dx+ π2λ2
0

∫

[f(x)]2π2p2(x)dx+ r

]

≤ max(π1λ1
0, π

2λ2
0) + r

The other side of the equality is easier to prove. Assuming π1λ1
0 > π2λ2

0

and taking the top eigenfunction φ1
0 of Kp1 as f , we derive the following re-

sults by using the same decomposition on
∫∫

K(x, y)φ1
0(x)φ

1
0(y)p(x)p(y)dxdy
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and the facts that
∫

K(x, y)φ1
0(x)p

1(x)dx = λ1
0φ

1
0(y) and

∫

[φ1
0(x)]

2p1(x)dx =
1.

λ0 ≥
∫∫

K(x, y)φ1
0(x)φ

1
0(y)p(x)p(y)dxdy

∫

[φ1
0(x)]

2p(x)dx

=
(π1)2λ1

0 + (π2)2
∫∫

K(x, y)φ1
0(x)φ

1
0(y)p

2(x)p2(y)dxdy + 2π1π2λ1
0

∫

[φ1
0(x)]

2p2(x)dx

π1 + π2
∫

[φ1
0(x)]

2p2(x)dx

= π1λ1
0

(

π1 + 2π2
∫

[φ1
0(x)]

2p2(x)dx

π1 + π2
∫

[φ1
0(x)]

2p2(x)dx

)

+
(π2)2

∫∫

K(x, y)φ1
0(x)φ

1
0(y)p

2(x)p2(y)dxdy

π1 + π2
∫

[φ1
0(x)]

2p2(x)dx

≥ πλ1
0.

This completes the proof. �
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Fig 1. Eigenvectors of a Gaussian kernel matrix (ω = 0.3) of 1000 data sampled from a
Mixture Gaussian distribution 0.5N(2, 12) + 0.5N(−2, 12). Left panels: Histogram of the
data (top), first eigenvector of Kn (middle), and second eigenvector of Kn (bottom). Right
panels: Histograms of data from each component (top), first eigenvector of K1

n (middle),
and first eigenvector of K2

n (bottom).
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Fig 2. Top two eigenfunctions of the exponential kernel with bandwidth ω = 0.5 and the
uniform distribution on [−1, 1].
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Fig 3. Contours of the top eigenfunction of Kp for Gaussian (upper panels) and exponen-
tial kernels (lower panels) with bandwidth 0.7. The curve is 3/4 of a ring with radius 3
and independent noise of standard deviation 0.15 added in the right panels.
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Fig 4. Illustration of separation condition (4.1) in Theorem 3.
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Fig 5. Clustering results on four simulated data sets described in Section 6.1. First col-
umn: scatter plots of data; Second column: results the proposed spectroscopic clustering
algorithm; Third column: results of the k-means algorithm; Fourth column: results of the
spectral clustering algorithm (Ng, et al. [9]).
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Fig 6. Clustering results on four simulated data sets described in Section 6.2. First column:
scatter plots of data; Second column: labels of the G identified groups by the proposed
spectroscopic clustering algorithm; Third and forth columns: k-means algorithm assuming
G−1 and G groups respectively; Fifth and sixth columns: spectral clustering algorithm (Ng
et al. [9]) assuming G − 1 and G groups respectively.
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Fig 7. Digits ranked by the absolute value of eigenvectors v1, v2, . . ., v50. The digits in
each row correspond to the 1st, 36th, 71st, · · · , 316th largest absolute value of the selected
eigenvector. Three eigenvectors, v1, v16, and, v49, are identified by our DaSpec algorithm.
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Fig 8. Left: Scatter plots of digits embedded in the top three eigenvectors; Middle: Digits
embedded in the 1st, 16th and 49th eigenvectors; Right: Accuracy of kmeans algorithms
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