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Reproducibility is essential to reliable scientific discovery in high-
throughput experiments. In this work, we propose a unified approach
to measure the reproducibility of findings identified from replicate
experiments and identify putative discoveries using reproducibility.
Unlike the usual scalar measures of reproducibility, our approach cre-
ates a curve, which quantitatively assesses when the findings are no
longer consistent across replicates. Our curve is fitted by a copula
mixture model, from which we derive a quantitative reproducibility
score, which we call the ”irreproducible discovery rate” (IDR) anal-
ogous to the FDR. This score can be computed at each set of paired
replicate ranks and permits the principled setting of thresholds both
for assessing reproducibility and combining replicates.

Since our approach permits an arbitrary scale for each replicate,
it provides useful descriptive measures in a wide variety of situations
to be explored. We study the performance of the algorithm using
simulations and give a heuristic analysis of its theoretical proper-
ties. We demonstrate the effectiveness of our method in a ChIP-seq
experiment.

1. introduction. High-throughput profiling technologies play an indis-
pensable role in modern biology. By studying a large number of candidates
in a single experiment and assessing their significance using data analyti-
cal tools, high-throughput technologies allow researchers to effectively select
potential targets for further studies. Despite their ubiquitous presence in
biological research, it is known that any single experimental output from
a high-throughput assay is often subject to substantial variability. The im-
portance of quality control, such as reproducibility between replicate sam-
ples processed by the same experimental or data analytic procedures (i.e.
intra-platform) and consistency between different experimental or data ana-
lytic procedures on the same sample (i.e. inter-platform), has long been rec-
ognized in microarray experiments (e.g. (MAQC consortium, 2006) among
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many others), and recently also addressed in more recent sequencing-based
profiling technology, e.g. ChIP-seq technology (Rozowsky et al., 2009; Park,
2009). Unified metrics and standards that can be used to objectively assess
the reproducibility and consistency of experimental or data analytic meth-
ods are important for producing reliable scientific discoveries and monitoring
the performances of data generating procedures.

An important criterion for assessing the reproducibility and consistency
in high-throughput experiments is how reproducibly the top ranked signals
are reported in intra- or inter-platform replicates. A common approach to
assess this reproducibility is to compute the Spearman’s pairwise rank cor-
relation coefficient between the significance scores for signals that pass a
prespecified significance threshold on each replicate. However, it actually is
not entirely suitable for measuring the correlation between two rankings in
this type of applications. First, this summary depends on the choice of sig-
nificance thresholds and may render false assessment that reflects the effect
of thresholds rather than the data generating procedure to be evaluated.
For instance, with everything else being equal, stringent thresholds gener-
ally produce higher rank correlation than relaxed thresholds when applied
to the same data. Although standardizing thresholds in principle can re-
move this confounding effect, calibration of scoring systems across replicate
samples or different methods is challenging in practice, especially when the
scores or their scales are incomparable on replicate outputs. Though this
difficulty seemingly is only associated with heuristics-based scores, indeed,
it is also present for probabilistic-based scores, such as p-values. For ex-
ample, it has been reported in large-scale systematic analyses that strict
reliance on p-values in reporting differentially expressed genes causes an
apparent lack of inter-platform reproducibility in microarray experiments
(MAQC consortium, 2006). Second, rank correlation treats all ranks equally,
though the differences in the top ranks seem to be more critical for our pur-
poses. Alternative measures of correlation that give more importance to
higher ranks than lower ones, for instance, by weighing the difference of
ranks differently, have been developed in more general settings (e.g. Blest
(2000); Genest and Plante (2003); Da Costa and Soares (2005)) and applied
to this application (Boulesteix and Slawski (2009) for a review). However,
all these measures are also subject to prespecified thresholds and raise the
question of how to select the optimal weighing scheme.

In this work, we take an alternative approach to measure the reproducibil-
ity of replicates. The proposed approach, indeed, is a general method that
can be applied to any ranking systems, though we discuss it in the con-
text of high-throughput experiments. Instead of depending on a prespeci-
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fied threshold, reproducibility is described as the extent to which the ranks
of the signals are no longer consistent across replicates in decreasing sig-
nificance. We propose a copula-based graphical tool to visualize the loss of
consistency and inspect the possible breakdown of consistency empirically,
without prior model assumptions. We further quantify reproducibility by
classifying the signals into a reproducible and an irreproducible group, us-
ing a copula mixture model. By jointly modeling the significance of scores on
individual replicates and their consistency between replicates in this model,
each signal is assigned a reproducibility score, which we refer to as the local

irreproducible discovery rate, to infer its reliability. We then define the irre-
producibility discovery rate (IDR) and a selection procedure, in a fashion
analogous to their counterparts in multiple testing, to rank and select sig-
nals by this score. The overall reproducibility of the replicates is described as
the amount of irreproducibility in the signals selected at various thresholds
using IDR.

This approach not only produces a reproducibility measure that is inde-
pendent of threshold choices and emphasizes the consistency between top
ranks, but also, as we will illustrate, provides the potential for more accurate
classification. In addition, because our approach does not make any para-
metric assumptions on the marginal distributions of scores, it is applicable
to any ranking system that produces scores without ties, regardless if it is
probabilistic- or heuristic-based. As a quality control measure, it is suited
for assessing either reproducibility between replicate samples or consistency
between different procedures. It also provides a principled solution for deter-
mining selection thresholds in scoring systems that are difficult to calibrate.
It is easy to interpret both as a measure of reproducibility and as a criterion
for threshold selection.

In the next section, we present the proposed graphical tool (Section 2.1),
the copula mixture model and the basis of its estimation procedure (Sec-
tion 2.2), and the reproducibility criterion (Section 2.3). In section 3, we
use simulations to evaluate the accuracy of our model in classifying sig-
nals, and compare with some existing methods. In section 4, we apply our
method to a data set that motivated this work. The data set was generated
by the ENCODE consortium (ENCODE Project Consortium, 2004) from a
ChIP-seq assay, a high-throughput technology for studying protein-binding
regions on the genome. The primary interest is to assess the reproducibility
of several commonly used and publicly available algorithms for identifying
the protein-binding regions in ChIP-seq data. Using this data, we compare
the reproducibility of these algorithms, infer the reliability of signals identi-
fied by each algorithm, and demonstrate how to use our method to identify
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suboptimal results. Section 5 is a general discussion. Finally, in Appendix
2, we present a heuristic justifying our algorithm on optimality grounds.

2. Statistical methods. The data that we consider consist of a large
number of putative signals measured on very few replicates of the same
underlying stochastic process, for example, protein binding sites identified
on the genomes of biological replicates in ChIP-seq experiments. We assume
each putative signal has been assigned a score (e.g. p-value or fold ratio)
that relates to the strength of the evidence for the signal to be real on the
corresponding replicate by some data analysis method. We further assume
all the signals are assigned distinct significance scores and the significance
scores reasonably represent the relative ranking of signals. However, the
distribution and the scale of the scores are unknown and can vary on different
replicates. We assume without loss of generality that high scores represent
strong evidence of being genuine signals and are ranked high. By convention,
we take the “highest” rank to be 1 and so on. We shall use the scores as our
data.

We assume n putative signals are measured and reported on each repli-
cate. Then the data consist of n signals on each of the m replicates, with
the corresponding vector of scores for signal i being (xi,1, . . . , xi,m). Here
xi,j is a scalar score for the signal on replicate j. Our goal is to measure
the reproducibility of scores across replicates and select reliable signals by
considering information on the replicates jointly. In what follows, we focus
on the case of two replicates (i.e. m = 2), although the methods in this
paper can be extended to the case with more replicates.

We resort to the scientific principle that real signals should be repro-
ducible across replicates. If replicates measure the same underlying stochas-
tic process, then for a reasonable scoring system, the significance scores of
genuine signals are expected to be ranked not only higher but also more
consistently on the replicates than those of spurious signals. When ranking
signals by their significance scores, a (high) positive association is expected
between the ranks of scores for genuine signals. A degradation or a break-
down of consistency may be observed when getting into the noise level. This
change of concordance provides an internal indicator of the transition from
real signal to noise. We will use this in measuring the reproducibility of
signals.

2.1. Displaying the heterogeneity of association. In this section, we present
our graphical method. As we mentioned, the bivariate association between
the significance scores is expected to be positive for significant signals, then
transits to zero when noise is called. By visualizing how association changes
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in the decreasing order of significance, one may localize the transition of
association and describe reproducibility in terms of how soon consistency
breaks down and how much empirical consistency departs from perfect as-
sociation before the breakdown.

Rank-based graphs have been studied previously for displaying associa-
tion between variables, because they are invariant with respect to monotone
transformations of the variables separately and are thus scale free. Ear-
lier papers have proposed rank-based graphical tools, such as the Chi-plot
(Fisher and Switzer, 1985, 2001) and the Kendall plot (Genest, 2003), for
visualizing the presence of association in a sample of continuous bivariate
distributions. Related to nonparametric tests of independence, these graphs
are based on the null hypothesis of independence and primarily are designed
for detecting departures from independence. These plots produce diagrams
that have a definitive pattern under independence, e.g. approximately a
horizontal (Chi-plot) or a diagonal line (Kendall plot); and the presence of
association is shown as a corresponding deviation from the pattern at in-
dependence. The type and the level of simple bivariate association may be
inferred by comparing the patterns of dependence observed in these plots
with the prototypical patterns in Fisher and Switzer (1985, 2001); Genest
(2003). When heterogeneity of association is present, such as the one de-
scribed here, however, these graphs are less informative. See Figure 3 for
an illustration on a real data set with mixed populations, considered by
Kallenberg and Ledwina (1999); Fisher and Switzer (2001); Genest (2003).

We now present our rank-based graph. Its motivation and properties are
different from the plots mentioned.

2.1.1. Correspondence curves. Throughout our discussion, we will sup-
pose, for simplicity, that we are dealing with a sample of iid observations
from a population. Let (X1, Y1), . . . , (Xn, Yn) be a sample of scores of n
signals on a pair of replicates. Though this is in fact unrealistic in many
applications, in particular for the signals from genome-wide profiling (e.g.
ChIP-seq experiments), where observations are often dependent, the de-
scriptive and graphical value of our method remains. Moreover, since we are
concerned with first order effects, stationarity and mixing assumption will
yield the same analysis. Define
(2.1)

Ψn(t, v) =
1

n

n
∑

i=1

1(Xi ≥ x(⌈(1−t)n⌉), Yi ≥ y(⌈(1−v)n⌉)), 0 < t ≤ 1, 0 < v ≤ 1,

where x(⌈(1−t)n⌉) and y(⌈(1−v)n⌉) denote the order statistics. Ψn(t, v) essen-
tially describes the proportion of the pairs that are ranked both on the upper
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t% of X and on the upper v% of Y , i.e. the intersection of upper ranked
identifications. As consistency usually is deemed a symmetric notion, we
will just focus on the special case of t = v and use the shorthand nota-
tion Ψn(t) in what follows. In fact, Ψn(t, v) is an empirical survival copula
(Nelson, 1999), and Ψn(t) is the diagonal section of Ψn(t, v) (Nelson, 1999)
(See section 2.2.1 for a brief introduction). Define the population version
Ψ(t) ≡ limn Ψn(t). Then Ψ(t) and its derivative Ψ′(t), which represent the
change of consistency, have the following properties. The same properties
are approximately followed in the corresponding sample version Ψn and Ψ′

n

with finite differences replacing derivatives.
Let R(X) and R(Y ) be the ranks of X and Y , respectively.

1. If R(X) = R(Y ) on [t0, t] with 0 ≤ t0 ≤ t ≤ 1, Ψ(t) = Ψ(t0) + t − t0
and Ψ′(t) = 1.

2. If R(X) ⊥ R(Y ) on [0, t] with 0 ≤ t ≤ 1, Ψ(t) = t2 and Ψ′(t) = 2t.
3. If R(X) = R(Y ) on [0, t0] and R(X) ⊥ R(Y ) on (t0, 1] with 0 ≤ t0 ≤ 1,

then for t0 ≤ t ≤ 1, Ψ(t) = t2−2tt0+t0
1−t0

and Ψ′(t) = 2(t−t0)
1−t0

.

The last case describes an idealized situation in our applications, where
all the genuine signals are ranked higher than any spurious signals, and
the ranks on the replicates are perfectly correlated for genuine signals but
completely independent for spurious signals.

To visualize the change of consistency with the decrease of significance, a
curve can be constructed by plotting the pairs (t,Ψn(t)) (or (t,Ψ′

n(t))) for
0 ≤ t ≤ 1. The resulting graphs, which we will refer to as a correspondence
curve (or a change of correspondence curve, respectively), depend on X
and Y only through their ranks, and are invariant to both location and
scale transformation on X and Y . Corresponding to the three special cases
described earlier, the curves have the following patterns:

1. When R(X) and R(Y ) are perfectly correlated, all points on the curve
of Ψn will fall on a straight line of slope 1, and all points on the curve
of Ψ′

n will fall on a straight line with slope 0.
2. When R(X) and R(Y ) are independent, all points on the curve of Ψn

will fall on a parabola t2, and all points on the curve of Ψ′
n fall on a

straigt line of slope of 2t.
3. When R(X) and R(Y ) are perfectly correlated for the top t0 and

independent for the rest 1 − t0, top t0 points fall into a straight line
of slope 1 on the curve of Ψn and slope 0 on the curve of Ψ′

n, and the

rest 1 − t0 points fall into a parabola Ψn(t) = t2−2tt0+t0
1−t0

(t > t0) on

the curve of Ψn and a straight line of slope 2(t−t0)
1−t0

on the curve of Ψ′
n.
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Fig 1. An illustration of the correspondence profile in an idealized case, where top 50%
are genuine signals and bottom 50% are noise. In this case, all signals are called before
noise; two calling outputs have perfect correspondence for signals and no correspondence
for noise. a. Correspondence curve; b. Change of correspondence curve.

These properties show that the level of positive association and the possi-
ble change of association can be read off these types of curves. For the curve
of Ψn, strong association translates into a nearly straight line of slope 1,
and lack of association shows as departures from the diagonal line, such as
curvature bending towards x-axis (i.e. Ψn(t) < t); if almost no association
is present, the curve shows a parabolic shape. Similarly, for the curve of
Ψ′

n, strong association translates into a nearly straight line of slope 0, and
lack of association shows as a line with a positive slope. The transition of
the shape of the curves, if present, indicates the breakdown of consistency,
which provides guidance on when the signals should not be called any more.

2.1.2. Illustration of the correspondence curves. We first demonstrate
the curves using an idealized case (Figure 1), where R(X) and R(Y ) agree
perfectly for the top 50% of observations and are independent for the rest
50% of observations. The curves display the pattern described in case 3
above. The transition of the shape of the curves occurs at 50%, which corre-
sponds to the occurence of the breakdown of consistency. Transition can be
seen more visibly on the curve of Ψ′

n, as shown by the gap between the dis-
joint lines with 0 and positive slopes, which represent segments before and
after the transition, respectively. This more distinct difference at the tran-
sition makes Ψ′

n a better choice for inspecting and localizing the transition
than Ψn, especially when the transition is less sharp.

To show more realistic cases, we use simulated data to compare and con-
trast the curves in presence and absence of the aforementioned transition
(Figure 2). The case where no transition occurs is illustrated using two
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single-component bivariate Gaussian distributions with homogeneous asso-
ciation, ρ = 0 (Figure 2a) and ρ = 0.8 (Figure 2b), respectively. The presence
of the transition is illustrated using two two-component bivariate Gaussian
mixtures, whose lower ranked component has independent coordinates (i.e.
ρ0 = 0) and the higher ranked component has positively correlated coordi-
nates with ρ1 = 1 (Figure 2c) and ρ1 = 0.8 (Figure 2d), respectively.

As in the idealized example (Figure 1), the characteristic transition of
curves is observed when the transition of association is present (Figure 2c,
d), but not seen when the data consists of only one component with homo-
geneous association. This shows that the transition of the shape of the curve
may be used as an indicator for the presence of the transition of association.

We now compare the Ψ′
n plot with the Chi-plot and the K-plot using a real

example considered by (Kallenberg and Ledwina, 1999; Fisher and Switzer,
2001; Genest, 2003). This dataset consists of 28 measurements of size of
the annual spawning stock of salmon and corresponding production of new
catachable-sized fish in the Skeena River. It was speculated by (Fisher and Switzer,
2001) to contain a mixed populations with heterogeneous association. Though
the dissimilarity of Chi-plot or K-plot to their prototypical plots (c.f. (Fisher and Switzer,
2001; Genest, 2003)) suggests the data may involve more than simple mono-
tone association (Fisher and Switzer, 2001; Genest, 2003), neither of these
plots manifest heterogeneity of association. In the Ψ′

n curve (Figure 3(d)),
the characteristic pattern of transition is observed at about t = 0.5, which
indicates that the data is likely to consist of two groups, with roughly the top
50% from a strongly associated group and the bottom 50% from a weakly as-
sociated group. It agrees with the speculation in (Fisher and Switzer, 2001).

2.2. Inferring the reproducibility of signals. In this section, we present
a statistical model that quantifies the dependence structure and infers the
reliability of signals by using information on both the significance of the
scores and the consistency between replicates.

In general, genuine signals tend to be more reproducible and scored higher
than spurious ones. The scores on replicates may be viewed as a mixture of
two groups, which differ in both the strength of association and the level
of significance. Recall that in these applications, the distributions and the
scales of scores are usually unknown and may vary across data sets. To
model such data, a semiparametric copula model is appropriate, in which
the associations among the variables are represented by a simple parametric
model but the marginal distributions are estimated nonparametrically using
their ranks. Though using ranks, instead of the raw values of scores, generally
causes some loss of information, the rank transformation is commonly used in
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Fig 2. Behavior of correspondence curves when data consists of homogeneous and hetero-
geneous association. From left to right, the three columns are the plot of ranks, the curve
of Ψ and the curve of Ψ′. a. Bivariate Gaussian distribution with ρ = 0; b. Bivariate
Gaussian distribution with ρ = 0.8; c. A mixture of two bivariate Gaussian distributions
with marginals on both coordinates as f0 = N(0, 1) and f1 = N(3, 1), ρ0 = 0 and ρ1 = 1
and mixing proportion π1 = 0.5; d. A mixture of two bivariate Gaussian distributions with
marginals on both coordinates as f0 = N(0, 1) and f1 = N(2, 1), ρ0 = 0 and ρ1 = 0.8 and
mixing proportion π1 = 0.5. The curve of Ψ′

n is produced by taking derivative on the spline
that fits Ψn with df=6.4.
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Fig 3. Rank scatterplot (a), chi-plot (b), k-plot (c) and the change of correspondence curve
(d) for 28 measurements of size of the annual spawning stock of salmon and corresponding
production of new catchable-sized fish in the Skeena River. The curve of Ψ′

n is produced
by taking derivative on the spline that fit Ψn with df=6.4.
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genomic data because scales are unknown and incomparable across replicates
from many measurements. In view of the heterogeneous association in the
genuine and spurious signals, we further model the heterogeneity of the
dependence structure in the copula model using a mixture model framework.

Before proceeding to our model, we first provide a brief review of copula
models, and refer to (Joe, 1997) and (Nelson, 1999) for a modern treatment
of copula theory.

2.2.1. Copulas. The multivariate function C = C(u1, . . . , up) is called
a copula if it is a continuous distribution function and each marginal is a
uniform distribution function on [0, 1]. That is, C : [0, 1]p → [0, 1], with
C(u) = P (U1 ≤ u1, ..., Up ≤ up), in which each Uj ∼ Unif [0, 1] and
u = (u1, ..., up). By Sklar’s theorem (Sklar, 1959), every continuous multi-
variate probability distribution can be represented by its univariate marginal
distributions and a copula, described using a bivariate case as follows.

Let X1 and X2 be two random variables with continuous CDFs F1 and
F2. The copula C of X1 and X2 can be found by making the marginal
probability integral transforms on X1 and X2 so that

(2.2) C(u1, u2) = F (F−1
1 (u1), F

−1
2 (u2)), u1, u2 ∈ [0, 1]

where F is the joint distribution function of (X1,X2), F1 and F2 are the
marginal distribution functions of X1 and X2, respectively, and F−1

1 and F−1
2

are the right-continuous inverses of F1 and F2, defined as F−1
j (u) = inf{z :

Fj(z) ≥ u}. That is, the copula is the joint distribution of F1(X1), F2(X2).
These variables are unobservable but estimable by the normalized ranks
Fn1(X1), Fn2(X2) where Fn1, Fn2 are the empirical distribution functions
of the sample. The function δC(t, t) = C(t, t) is usually referred to as the
diagonal section of a copula C. We will use the survival function of the copula
C, C̄(u1, u2) = P (U1 > 1−u1, U2 > 1−u2), which describes the relationship
between the joint survival function (F̄ (x1, x2) = P (X1 > x1,X2 > x2)) and
its univariate margins (F̄j = 1 − Fj) in a manner completely analogous
to the relationship between univariate and joint functions, as C̄(u1, u2) =

F̄ (F̄1
−1

(u1), F̄2
−1

(u2)). The sample version of (2.2) is called an empirical

copula (Deheuvels, 1979; Nelson, 1999), defined as

(2.3) Cn(
i

n
,
j

n
) =

1

n

n
∑

k=1

1(xk,1 ≤ x(i),1, xk,2 ≤ x(j),2), 1 ≤ i, j ≤ n

for a sample of size n, where x(i),1 and x(j),2 denotes order statistics on each
coordinate from the sample. The sample version of survival copulas follows
similarly.



12 LI, BROWN, HUANG AND BICKEL

This representation provides a way to parametrize the dependence struc-
ture between random variables separately from the marginal distributions,
for example, a parametric model for the joint distribution of u1 and u2

and a nonparametric model for marginals. Copula-based models are natu-
ral in situations where learning about the association between the variables
is important, but the marginal distributions are assumably unknown. For
example, the 2-dimensional Gaussian copula C is defined as

(2.4) C(u1, u2|ρ) = Φ2(Φ
−1(u1),Φ

−1(u2)|ρ)

where Φ is the standard normal cumulative distribution function, Φ2(·, ·|ρ) is
the cumulative distribution function for a bivariate normal vector (z1, z2) ∼
N(
(0
0

)

,
( 1 ρ

ρ 1

)

), and ρ is the correlation coefficient. Modeling dependence with
arbitrary marginals F1 and F2 using the Gaussian copula (2.4) amounts to
assuming data is generated from latent variables (z1, z2) by setting x1 =
F−1

1 (Φ(z1)) and x2 = F−1
2 (Φ(z2)). Note that if F1 and F2 are not continuous,

u1 and u2 are not uniform. For convenience, we assume that F1 and F2 are
continuous throughout the text.

2.2.2. A copula mixture model. We now present our model for quanti-
fying the dependence structure and inferring the reproducibility of signals.
We assume throughout this part that our data is a sample of independent
identically distributed bivariate vectors (xi,1, xi,2).

We assume the data consists of genuine signals and spurious signals, which
in general correspond to a more reproducible group and a less reproducible
group. We use the indicator Ki to represent whether a signal i is genuine
(Ki = 1) or spurious (Ki = 0). Let π1 and π0 = 1 − π1 denote the pro-
portion of genuine and spurious signals, respectively. Given K = 1, we as-
sume the pairs of scores for genuine (respectively, spurious) signals are inde-
pendent draws from a continuous bivariate distribution with density f1(·, ·)
(respectively, f0(·, ·), given K = 0) with joint distribution F1(·, ·) (respec-
tively, F0(·, ·)). Note, however, that even if the marginal scales are known,
Ki would be unobservable so that the copula is generated by the marginal
mixture (with respect to K), Fj = π0F

0
j + π1F

1
j , where Fj is the marginal

distribution of the jth coordinate and F k
j is the marginal distribution of the

corresponding kth component.
Because genuine signals are more reproducible than spurious signals, we

expect the two groups to have different dependence structures between repli-
cates. We assume that, given the indicator Ki, the dependence between
replicates for genuine (respectively, spurious) signals is induced by a bivari-
ate Gaussian distribution z1 = (z1,1, z1,2) (or respectively, z0 = (z0,1, z0,2)).
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The choice of Gaussian distribution for inducing the dependence structure
in each component is made based on the observation that the dependence
within a component in the data we consider generally is symmetric and that
an association parameter with a simple interpretation, such as the correla-
tion coefficient for a Gaussian distribution, is natural.

Since spurious signals are presumably less reproducible, we assume cor-
responding signals on the replicates to be independent, i.e. ρ0 = 0; whereas,
since we expect genuine signals be positively associated between replicates,
we assume ρ1 > 0. We expect that a pair of scores from F1(·, ·) should tend
to be larger than under F0(·, ·). It also seems natural to assume that the
underlying latent variables, reflecting biological replicates, have the same
marginal distributions. Finally we note that if the marginal scales are un-
known we can only identify the difference in means of the two latent variables
and the ratio of their variances. Thus, the parametric model generating our
copula can be described as follows:

Let Ki ∼ Bernoulli(π1) and (zi,1, zi,2) be distributed as

(

zi,1

zi,2

)

| Ki = k ∼ N

((

µk

µk

)

,

(

σ2
k ρkσ

2
k

ρkσ
2
k σ2

k

))

, k = 0, 1(2.5a)

where µ0 = 0, µ1 > 0, ρ0 = 0, 0 < ρ1 ≤ 1.
Let

ui,1 ≡ G(zi,1) =
π1

σ1
Φ(

zi,1 − µ1

σ1
) + π0Φ(zi,1)(2.5b)

ui,2 ≡ G(zi,2) =
π1

σ1
Φ(

zi,2 − µ1

σ1
) + π0Φ(zi,2)

Our actual observations are

xi,1 = F−1
1 (ui,1)(2.5c)

xi,2 = F−1
2 (ui,2)

where F1 and F2 are the marginal distributions of the two coordinates, which
are assumed continuous but otherwise unknown.

Thus, our model, which we shall call a copula mixture model, is a semi-
parametric model parametrized by θ = (π1, µ1, σ

2
1 , ρ1) and (F1, F2). The
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corresponding mixture likelihood for the data is

L(θ) =
n
∏

i=1

[π0h0(G
−1(F1(xi,1)), G

−1(F2(xi,2))) + π1h1(G
−1(F1(xi,1)), G

−1(F2(xi,2)))]

(2.6a)

=
n
∏

i=1

[c(F1(xi,1), F2(xi,2))g(G−1(F1(xi,1)))g(G−1(F2(xi,2)))]

(2.6b)

where

(2.7) c(u1, u2) =
π0h0(G

−1(u1), G
−1(u2)) + π1h1(G

−1(u1), G
−1(u2))

g(G−1(u1))g(G−1(u2))

is a copula density function with h0 ∼ N
(

(0
0

)

,
(

1 0
0 1

)

)

and h1 ∼ N

(

(µ1

µ1

)

,
( σ2

1
ρ1σ2

1

ρ1σ2

1
σ2

1

)

)

G is defined in (2.5b) and g is the density function of G. Note that G depends
on θ.

Given the parameters θ, the posterior probability that a signal i is in the
irreproducible group can be computed as
(2.8)

Pr(Ki = 0 | (xi1, xi2); θ) =
π1h0(G

−1(F1(xi,1), G
−1(F2(xi,2))))

∑

k=0,1 πkhk(G−1(F1(xi,1), G−1(F2(xi,2))))

We estimate values for these classification probabilities by estimating the
parameters θ using an estimation procedure described in section 2.2.3, and
substituting these estimates into the above formulas.

The idea of using a mixture of copulas to describe complex dependence
structures is not entirely new. For example, the mixed copula model (Hu,
2006) in economics uses a mixture of copulas (Cmix(u1, u2 | (θ1, . . . , θk)) =
∑k

i=1 C(u1, u2 | θi)) to generate flexible fits to the dependence structures
that do not follow any standard copula families. All the copulas in Cmix are
induced from latent variables with the same marginal distribution. In con-
trast, the copula in our model is induced from latent variables with different

marginal distributions; and our modeling goal is to cluster the observations
into groups with homogeneous associations. A nonstandard estimation pro-
cedure turns out to be convenient and we expect to be efficient, as we shall
see in section 2.2.3.

2.2.3. Estimation of the copula mixture model. In this section, we de-
scribe an estimation procedure that estimates the parameters θ in (2.6) and
the membership Ki of each observation.



REPRODUCIBILITY OF HIGH-THROUGHPUT EXPERIMENTS 15

A common strategy to estimate the association parameters in semipara-
metric copula model is a ”pseudo-likelihood” approach, which is described
in broad, nontechnical terms by (Oakes, 1994). In this approach, the em-
pirical marginal distribution functions F̂j , after rescaling by multiplying by
( n

n+1 ) to avoid infinities, are plugged into the copula density in (2.6b), ignor-
ing the terms involving g. The association parameters are then estimated
by maximizing the pseudo copula likelihood. Genest, Ghoudi and Rivest
(Genest et al., 1995) showed, without specifying the algorithms to compute
them, that under certain technical conditions, the estimators obtained from
this approach are consistent, asymptotically normal and fully efficient only
if the coordinates of the copula are independent.

We adopt a different approach which, in principle, leads to efficient esti-
mators under any choice of parameters and F1, F2. Note that the estimation
of the association parameter ρ1 depends on the estimation of µ1, σ

2
1 and π1

due to the presence of the mixture structure, which make the log-likelihood
(2.6) difficult to maximize directly. Our approach is to estimate the parame-
ters θ̂ by maximizing the log-likelihood (2.6) of pseudo-data G−1( n

n+1 F̂i,j ; θ),

where F̂i,j ≡ F̂j(xi,j).
As the latent variables z0,j and z1,j in our model form a mixture distri-

bution, it is natural to use an expectation-maximization (EM) algorithm
(Dempster et al., 1977) to estimate the parameters θ̂ and infer the status of
each putative signal for pseudo-data. In our approach, we first compute the
pseudo-data G−1( n

n+1 F̂i,j ; θ0) from some initialization parameters θ(0), then
iterate between two stages: (1) maximizing θ based on the pseudo-data us-
ing EM and (2) updating the pseudo data. The detailed procedure is given
in Appendix 1. The EM stage may be trapped in local maxima, and the
stage of updating pseudo data may not converge from all starting points.
However, in the simulations we performed (Section 3), it behaves well and
finds the global maxima, when started from a number of initial points.

We sketch in Appendix 2, a heuristic argument that a limit point of our
algorithm close to the true value satisfies an equation whose solution is
asymptotically efficient. Although our algorithm converges in practice, we
have yet to show its convergence in theory. However, a modification which
we are investigating does converge to the fixed point mentioned above. This
work will appear elsewhere.

2.3. Irreproducible identification rate. In this section, we derive a repro-
ducibility criterion from the copula mixture model in section 2.2.2 based
on an analogy between our method and the multiple hypothesis testing
problem. The reproducibility criterion can be used to assess the individual
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reliable level and measure the overall reproducibility of the replicate outputs.
In the multiple hypothesis testing literature, the false discovery rate (FDR)

and its variants, including positive false discovery rate (pFDR) and marginal
false discovery rate (mFDR), are introduced to control the number of false
positives in the rejected hypotheses (Benjamini and Hochberg, 1995; Storey,
2002; Genovese and Wasserman, 2002). In the FDR context, when hypothe-
ses are independent and identical, the test statistics can be viewed as fol-
lowing a mixture distribution of two classes, corresponding to whether or
not the statistic is generated according to the null hypothesis (e.g. (Efron,
2004b; Storey, 2002)). Based on this mixture model, the local false discov-
ery rate, which is the posterior probability of being in the null component
Lfdr(·) = (1−π)f0(·)/f(·), was introduced to compute the individual signif-
icance level (Efron, 2004b). Sun and Cai (2007) show, again for the iid case,
that Lfdr is also an optimal statistic in the sense that the thresholding rule
based on Lfdr controls the marginal false discovery rate with the minimum
marginal false nondiscovery rate.

As in multiple hypothesis testing, we also build our approach on a mix-
ture model and classify the observations into two classes, though the two
classes have different interpretation and representation. In our model, the
two classes represent irreproducible measurements and reproducible mea-
surements, in contrast to nulls and nonnulls in the multiple testing context,
respectively.

In analogy to the local false discovery rate, we define a quantity, which
we call the local irreproducible discovery rate, to be

(2.9) idr(xi,1, xi,2) =
π0h0(G

−1(F1(xi,1)), G
−1(F2(xi,2)))

∑

k=0,1 πkhk(G−1(F1(xi,1)), G−1(F2(xi,2)))
.

This quantity can be thought as the a posteriori probability that a signal
is not reproducible on a pair of replicates (i.e. (2.8)), and can be estimated
from the copula mixture model.

Similarly, we define the irreproducible discovery rate (IDR) in analogy to
the mFDR,
(2.10)

IDR(γ) = P (irreproducible | i ∈ Iγ) =
π0
∫

Iγ
dH0(G

−1(F1(xi,1)), G
−1(F2(xi,2)))

∫

Iγ
dH(G−1(F1(xi,1)), G−1(F2(xi,2)))

where Iγ = {(xi,1, xi,2) : idr(xi,1, xi,2) < γ}, H0 and H are the CDF of
density functions h0 and h = π0h0 +π1h1, respectively. For a desired control
level α, if (x(i),1, x(i),2) are the pairs ranked by idr values, define l = max{i :
1
i

∑i
j=1 idrj ≤ α}. By selecting all (x(i),1, x(i),2) (i = 1, . . . , l), we can think



REPRODUCIBILITY OF HIGH-THROUGHPUT EXPERIMENTS 17

of this procedure as giving an expected rate of irreproducible discoveries
no greater than α. It is analogous to the adaptive step-up procedure of
Sun and Cai (2007) for the multiple testing case.

This procedure essentially amounts to re-ranking the identifications ac-
cording to the likelihood ratio of the joint distribution of the two replicates.
The resulting rankings are generally different from the ranking of the original
significance scores on either replicate.

Unlike the multiple testing procedure, our procedure does not require xi,j

to be p-values; instead, xi,j can be any scores with continuous marginal
distributions. When p-values are used as scores, our method can also be
viewed as a method to combine p-values. We compare our method and two
commonly-used p-value combinations through simulations in Section 3.

3. Simulation studies. We first use simulation studies to examine the
performance of our approach. In particular, we aim to assess the accuracy of
our classification, to evaluate the benefit of combining information between
replicates over using only information on one replicate, and to compare
with two existing methods for combining information across replicates. Our
simulations are generated from a model commonly used for modeling high-
throughput data (e.g. (Lee et al., 2000; Efron, 2004a)). As the model in
fact is also a reparameterization of our model (2.5), the comparison with
other combination methods is not to provide evidence that our approach is
actually superior in practice, but rather, to provide insight into the kind of
gains in performance that might be achievable in practice. In addition, they
provide a helpful check on the convergence of our estimation procedure.

In the simulation studies, a sample of n pairs of signals is generated on
two replicates. Each pair of observed signal (Zi1, Zi,2) (i = 1, . . . , n) is a
noisy realization of a latent signal Zi, which is independently and identically
generated from the following normal mixture model:

Ki ∼ Bernoulli(π1)(3.1)

Zi | Ki = k ∼ N(µk, τ
2
k ), k = 0, 1

Zij | Ki = k,Zi = Zi + ǫijk, j = 1, 2

ǫijk ∼ N(0, ω2
k)

where µ0 = 0 and µ1 > 0. As can easily be seen from the joint distribution
of (Zi,1, Zi,2) | Ki,

(

Zi,1

Zi,2

)

| Ki = k ∼ N

((

µk

µk

)

,

(

τ2
k + ω2

k ρk(τ
2
k + ω2

k)
ρk(τ

2
k + ω2

k) τ2
k + ω2

k

))

, k = 0, 1
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where ρ0 = 0 and ρ1 =
τ2

1

τ2

1
+ω2

1

, τ2
k + ω2

k = σ2
k in (2.5a). Thus by setting

τ2
k +ω2

k = 1, (Zi,1, Zi,2) directly corresponds to the latent Gaussian variables
in (2.5a). We use the significance score in this setting to be the p-value from
a one-sided z-test for H0 : µ = 0 vs H1 : µ > 0. Using p-values as the scores
Xi,j is equivalent to letting Fj = 1 − Φ(G−1(·)) in (2.5c).

With this choice, a multiple hypothesis testing procedure for independent
hypotheses is a natural approach for selecting signals on a single replicate. In
the multiple hypothesis testing literature, selecting signals can be done either
by ranking individual p-values and choosing a cutoff along the rankings, such
as (Benjamini and Hochberg, 1995, 2000; Genovese and Wasserman, 2004;
Storey, 2003), or by converting p-values to z-values and thresholding based
on the likelihood ratio of z-values, such as (Sun and Cai, 2007). In the given
setting of our simulations (i.e. one-sided test with σ2

0 = σ2
1), both types of

methods rank the signals in the same order. For operational simplicity, we
select signals on individual replicates by thresholding p-values, though our
approach is conceptually closer to the z-value thresholding method.

With the p-value as the significance score, our method can also be viewed
as a way to combine p-values for ranking signals by their consensus. The two
most commonly-used methods for combining p-values of a set of indepen-
dent tests are Fisher’s combined test (Fisher, 1932) and Stouffer’s z method
(Stouffer et al., 1949). In Fisher’s combination for the given one-sided test,
the test statistic Qi = −2

∑m
j=1 log(pi,j) for each pair of signal has the χ2

2m

distribution under H0, where pi,j is the p-value for the ith signal on the jth

replicate, m is the number of studies and m = 2 here. In Stouffer’s method,
the test statistic Si = 1√

m

∑m
j=1 Φ−1(1 − pi,j) has N(0, 1) under H0, where

Φ is the standard normal CDF.
In our setting, the classification results from our method and from the

three hypothesis testing methods are directly comparable: the reproducible
signals correspond to genuine signals and the irreproducible signals corre-
spond to spurious signals. For a given threshold, we classify a call as correct
(or incorrect), when a genuine (or spurious) signal is assigned an idr value
smaller than an idr threshold for our method. Correspondingly, for a call
from individual replicates, Fisher’s method or Stouffer’s method, the same
classification applies, when its p-value is smaller than the threshold, or a
value of the test statistic in Fisher’s method or Stouffer’s method exceeds
their respective thresholds. We compare the discriminative power of these
methods by assessing the tradeoff between the number of correct and incor-
rect calls made at various thresholds.

We simulated data from three sets of parameters with different levels
of association between replicates for genuine signals (Table 1). For each
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Table 1

Simulation parameters and parameter estimation in the simulation studies of 100
datasets. Each data set consists of 10000 pairs of observations. The simulation

parameters are estimated from a ChIP-seq dataset. In all simulations, µ0 = 0, σ2

0 = 1
and ρ0 = 0. The table shows the mean and the standard deviation of the estimated

parameters over the 100 data sets.

π1 ρ1 µ1 σ2

1

S1 True parameter 0.650 0.840 2.500 1.000
Estimated values 0.648 (0.005) 0.839 (0.005) 2.524 (0.033) 1.003 (0.024)

S2 True parameter 0.300 0.400 2.500 1.000
Estimated values 0.302 (0.004) 0.398 (0.024) 2.549 (0.037) 1.048 (0.032)

S3 True parameter 0.050 0.840 2.500 1.000
Estimated values 0.047 (0.004) 0.824 (0.026) 2.536 (0.110) 0.876 (0.087)

parameter set, we simulated 100 datasets, each of which consists of two
replicates with 10000 signals on each replicate. In an attempt to generate
realistic simulations, we first estimated parameters from a ChIP-seq dataset
(described in section 4) using the model in section 2.2, then simulated the
signals on a pair of replicates from similar parameters using the sampling
model (3.1). To illustrate the behavior of our method when genuine signals
have low correlation, we include a simulation with ρ = 0.4. We also consider
a simulation with π = 0.05 and ρ = 0.90 to illustrate the case when only
a small proportion of real but highly correlated signals are present. In each
simulation, we ran the estimation procedure from 10 random initializations,
and stopped the procedure when the increment of log-likelihood is < 0.01
in an iteration or the number of iterations exceeds 100. The results that
converges to the highest likelihood are reported.

3.1. Parameter Estimation and calibration of IDR. As shown in Table
1, the parameters θ ≡ (π1, ρ1, µ1, σ

2
1) are estimated with reasonable accu-

racy in most of the cases studied here. The only exception is that σ1 was
underestimated when the proportion of true signals is small, π1 = 0.05, a
case hard to distinguish from that of a single component. All the simulations
converge, when starting points are close to the true parameters.

The irreproducible discovery rate as a guide for the selection of the signals
needs to be well-calibrated. To check the calibration of our method, we
compare the estimated IDR with the empirical FDR (Figure 4 Left column).
As shown in Figure 4, our method is reasonably well calibrated for all the
situations studied. When correlation between genuine signals is weak (ρ =
0.4), estimated IDR slightly underestimates FDR. However, the correlation
usually are stronger than this case in practice for reasonable replicates.
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3.2. Comparison of discriminative power. To assess the benefit of com-
bining information on replicates and compare with existing methods of com-
bining p-values, we compared our method with the p-value thresholding
method, Fisher’s method and Stouffer’s method, by assessing the tradeoff
between the numbers of correct and incorrect calls made at various thresh-
olds. As a small number of false calls is desired in practice, the comparison
focuses on the performance in this region.

As shown in Figure 4, our method and the two combination methods con-
sistently identify substantially more true signals than using only information
on one replicate in all the simulations we experimented. Though our method
only uses the rank of p-values, it consistently outperforms the two p-value
combination methods, when genuine signals in replicates are moderately or
highly correlated. When replicates are weakly correlated (Figure 4b), our
method still outperforms Fisher’s method and performs similarly as Stouf-
fer’s method. This gain illustrates that combining information on replicates
using our method improves accuracy of identification. The superiority over
the other two combinations is not surprising since the simulations are gen-
erated from our own model. However, the simulations provide insight into
the kind of gains in performance that might be achievable in practice.

4. Applications on real data.

4.1. Comparing the reproducibility of multiple peak callers for ChIP-seq

experiments. We now consider an application arising from a collabora-
tive project with the ENCODE consortium (ENCODE Project Consortium,
2004). This project has three primary goals: comparing the performance of
multiple algorithms for identifying protein-binding regions in ChIP-seq data
(described below), selecting reliable binding regions using a uniform criterion
for data from different sources, and identifying inconsistent experiments. A
detailed analyses of a large ENCODE data set will appear elsewhere. Here
we only use one subset of the data to illustrate how our method is used for
assessing and comparing the reproducibility of algorithms between biologi-
cal replicates, setting a uniform criterion for selecting binding regions, and
identifying suboptimal results.

We now state the background of the data in more detail and refer to (Park,
2009) for a recent review. A ChIP-seq experiment is a high-throughput assay
to study the protein binding sites on DNA sequences in the genome. In a
typical ChIP-seq experiment, the DNA regions that are specifically bound
by the protein of interest are first enriched by immunoprecipitation, and
then the enriched DNA regions are sequenced by high-throughput sequenc-
ing, which generates a genome-wide scan of tag counts that correspond to
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Fig 4. The number of correct and incorrect calls made at various thresholds in simulation
studies. Incorrect calls: the number of spurious signals assigned idr value smaller than the
thresholds (our method) or with p-values smaller than the cutoffs (individual replicates)
or with Q (Fisher’s method) or S (Stouffer’s method) values exceeding thresholds. Correct
calls: the number of genuine signals assigned idr value smaller than the thresholds (our
method) or with p-values smaller than the cutoffs (individual replicates) or with Q (Fisher’s
method) or S (Stouffer’s method) values exceeding thresholds.



22 LI, BROWN, HUANG AND BICKEL

the level of enrichment at each region. The relative significance of the re-
gions are determined by a computational algorithm (usually referred to as a
peak caller) largely according to the local tag counts, based on either heuris-
tics or some probabilistic models. The regions whose significance are above
some prespecified threshold then are identified for downstream analyses. To
date, more than a dozen of peak callers have been published. Some common
measures of significance are fold of enrichment, p-value or q-value (Storey,
2003).

As no genome-wide ground truth is available for comparing the identified
regions, direct assessment of the accuracy of the peak callers is not possible.
We assess the reproducibility between biological replicates for each peak
caller using the proposed approach on the CTCF ChIP-seq data described
below.

4.1.1. Description of the data. In this comparison, the ChIP-seq ex-
periments of a transcription factor CTCF from two biological replicates
were generated from the Berstein Laboratory at the Broad Institute on hu-
man K526 cells. Peaks were identified using nine commonly used and pub-
licly available peak callers, namely, Peakseq (Rozowsky et al., 2009), MACS
(Zhang et al., 2008), SPP (Kharchenko et al., 2008), Fseq (Boyle et al., 2008),
Hotspot (Thurman et al., In preparation), Erange (Mortazavi et al., 2008),
Cisgenome (Ji et al., 2008), Quest (Valouev et al., 2008), and SISSRS (Jothi et al.,
2008), using their default significance measures and default parameter set-
tings with either default thresholds or more relaxed thresholds. Among them,
Peakseq and SPP use q-value, MACS, HotSpot and SISSRS use p-value,
and the rest use fold of enrichment, as their significance measures. The
peaks generated from different algorithms have substantially different peak
widths. SPP and SISSRS generate peaks with fixed width of 100bp and
40bp, respectively; all other algorithms generate peaks with varying peak
width (median=130bp-760bp).

To standardize the comparison, the peak width were normalized by trun-
cating the peaks wider than 40bp down to intervals of 40bp centered at the
reported summits of peaks. Prior to applying our method, peaks on different
replicates are paired up if their coverage regions overlap ≥ 1bp. Only paired
peaks are kept for assessing reproducibility.

4.2. Results.

4.2.1. Correspondence profiles. Figure 5 shows the correspondence pro-
files for the nine peak callers. By referring to the prototypical plots in Figure
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2, five peak callers (Peakseq, MACS, SPP, Fseq and Hotspot) show the char-
acteristic transition from strong association to near independence (Figure
5b). As described in Section 2.1, a high reproducibility translates to late
occurence of the transition to a segment with a positive slope. According to
how much down the rank list the transition is observed, the three peak callers
that show the highest reproducibility on this dataset are Peakseq, MACS
and SPP (Figure 5). For the other four peak callers (Erange, Cisgenome,
Quest and SISSRS), the presence of components with distinct association
seems to be less clear and low consistency is shown. It later became known
that the default thresholds were overly stringent for three of these peak
callers (Cisgenome, Quest and SISSRS) on this data, which caused too few
peaks to be reported and prevented us from seeing the possibility of two
components.

4.2.2. Inference from the copula mixture model. We applied the copula
mixture model to the peaks identified on the replicates for each peak caller.
As data may consist of only one group with homogeneous association, we also
estimated the fit using a one-component model that corresponds to setting
π1 = 1, µ1 = 0 and σ2

1 = 1 in (2.5). We then tested for the smallest number of
components compatible with the data, using a likelihood ratio test statistic
(λ = L2

L1
), where L2 and L1 are the likelihood of two-component and single-

component models, respectively. With mixture models, it is well known that
the regularity conditions do not hold for 2 log(λ) to have its usual asymp-
totic Chi-square null distribution. We therefore used a parametric bootstrap
procedure to obtain appropriate p-values (McLachlan, 1987). In our proce-
dure, 100 bootstrap samples were sampled from the null distribution under
the one component hypothesis using the parametric bootstrap, where the
parameter estimate was obtained by maximizing the pseudo-likelihood of
the data under the null hypothesis of the one-component model. Then p-
values were obtained by referring to the distribution of the likelihood ratio
computed from the bootstrap samples. Table 2 summarizes the parameter
estimation from both models and the bootstrap results.

Based on the likelihood ratio test, it seems that the one-component model
fits the results from SISSRS, Quest and Cisgenome better, and the two-
component model fits the results from other peak callers. This is consistent
with the correspondence profile (Figure 5b).

We compute the irreproducible discovery rate (IDR) for peaks selected at
various local idr cutoffs for all the peak callers using (2.10) and illustrate
it in Figure 6. For a given IDR level, one can call peaks by the values of
local idr and determine the number of peaks to be called from this plot, as
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Table 2

Parameters estimated from the copula mixture model and the single-component model,
and model selection for determining the number of components. (π1, ρ1, µ1, σ1) are

parameters estimated from the copula mixture model; ρ is estimated from the
single-component model. The number of components is selected using a likelihood ratio
test and the p-value of the test statistics is determined using a parametric bootstrap

approach based on 100 bootstrap samples.

Peakseq MACS SPP Fseq HotSpot cisgenome erange quest sissrs

π1 0.69 0.84 0.77 0.74 0.69 0.85 0.72 0.72 1
ρ1 0.89 0.89 0.88 0.82 0.88 0.65 0.81 0.67 0.24
µ1 2.27 2.07 2.28 2.12 1.62 2.05 2.04 2.01 7.27
σ1 0.87 1.34 1.05 0.86 0.64 1.35 0.90 1.39 0.03

ρ 0.87 0.87 0.86 0.83 0.78 0.66 0.80 0.66 0.23

p value 0 0 0 0 0 1 0 1 1

described in Section 2.3. For example, at 5% IDR, the top 27500 peaks can
be called using MACS. It can also be used to compare the overall repro-
ducibility of different peak callers. For example, while Peakseq, MACS and
SPP on average have about 3% irreproducible peaks when selecting the top
25000 peaks, most of other peak callers have already reached a much higher
IDR before identifying the top 10000 peaks. On the basis of the number of
peaks before reaching high IDR, the three most reproducible peak callers
on this dataset are Peakseq, MACS and SPP, then followed by Fseq, then
others. This result is consistent with the reproducibility comparison from
the correspondence profile (Figure 5). Note that though reproducbility can
be compared using Figure 5, it does not provide clear information on how
many peaks should be selected.

4.2.3. Evaluating the biological relevance of the reproducibility assessment.

The results of our method have shown that four peak callers produced peak
calls with low reproducibility on the examined data set. To evaluate if the
reproducibility analysis correctly identifies suboptimal results, we check the
accuracy of of peak identifications by comparing the identified peaks with the
regions predicted by a motif prediction method (Kheradpour et al., 2007),
which is a computational method not based on ChIP-seq experiments. Al-
though the computational prediction is not ground truth, it serves as an
independent source for a crude evaluation of the accuracy of peak callers.
A common strategy to evaluate accuracy in this type of high-throughput
experiments using an external standard, is to compute the proportion of
identified signals that overlap with the external standard as a function of
decreasing significance. We adopt this strategy to verify the reproducibility
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Fig 5. The correspondence profiles along the decreasing order of significance, plotted for
9 peak callers on a CTCF Chip-seq experiment from ENCODE. a. Correspondence curve
(Ψn). X-axis: the number of peaks identified on a replicate. Y-axis: the number of peaks
that are commonly identified on both replicates. b. Change of correspondence curve (Ψ′

n).
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Fig 6. Irreproducible discovery rate (IDR) at different numbers of selected peaks, plotted at
various idr cutoffs for eight peak callers on a CTCF Chip-seq experiment from ENCODE.
Peaks are selected using local idr. X-axis: the number of selected significant peaks, Y-axis:
Irreproducible discovery rate (IDR). SISSRS is not shown because its results are highly
inconsistent and all peaks are grouped into a low correlation group.
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Fig 7. The proportion of identified peaks that are overlapped with the binding regions
predicted by a computational method, plotted for peaks identified from the nine peak callers
in the decreasing order of significance.

assessment.
As shown in Figure 7, though in principle reproducibility by no means

implies accuracy, the reproducibility assessment empirically agrees with the
accuracy assessment reasonably well: the three peak calling results with the
highest reproducibility in Figure 6 also show the highest accuracy; the ones
that are reported to be less reproducible do show unsatisfactory accuracy,
as was later confirmed by hand curation. This illustrates the potential of
our method as a quality measure.

5. Discussion. We have presented a new statistical method for mea-
suring the reproducibility of high-throughput experiments and improving
signal identification using replicates. Using simulated and real data, we have
illustrated the potential of our method for improving the accuracy of sig-
nal identification and demonstrated its use as a quality measure to identify
suboptimal results.

As no assumption is made on the scale of the scores, this model offers great
flexibility both as a reproducibility measure and as a method for pooling
replicate experiments. It is applicable for any scoring system that produces
continuous ranking to reflect the relative ordering of the signals, including
both probabilistic-based scores, such as p-values, and nonprobabilistic-based
scores, such as fold of enrichment. In addition, this flexibility provides a
principled way to make calls for signals that are scored on nonprobabilistic
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measures, where arbitrary judgment often is involved for setting thresholds
because signal selection can not be done using classical multiple testing
methods. Moreover, because consistency between replicates is an internal
standard that is independent of the scoring schemes and is comparable across
datasets, the proposed reproducibility criterion is suited for setting uniform
standards for selecting signals for data from multiple sources. Because our
measure of consistency is not confounded by platform-dependent thresholds,
inter-platform consistency can be objectively assessed.

As a method for selecting signals, our method uses the reproducibility
between replicates, in conjunction with the significance of the scores, to
classify the signals. Of course, reproducibility is only a necessary but not
sufficient condition to accuracy. If the replicates are generated in presence
of a systematic bias that introduces false association, the selection from this
procedure, as in any other methods for pooling information, can be mislead-
ing. On the other hand, lack of reproducibility on replicates indeed is a flag
on the quality of data or data processing procedure. We have demonstrated
that the proposed graphical and quantitative reproducibility measures can
be used for identifying inconsistent results and monitoring the performance
of the experimental and data analytical procedures.
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6. Appendix 1: Estimation algorithm for the copula mixture

model. Here we describe the iterative procedure to estimate the parameter
θ = (π1, µ1, σ

2
1 , ρ1) in detail.

1. Compute the empirical marginal CDF F̂j(xi,j) =
ri,j

n where ri,j is the
rank of xi,j on replicate j and n is the number of pairs.

2. Rescale F̂j(xi,j) by ui,j ≡ n
n+1 F̂j(xi,j) to avoid potential unbounded-

ness of G−1(ui,j) if ui,j ’s tend to one.
3. Initialize θ = θ0.
4. Compute the pseudo-data zi,j = G−1(ui,j | θ). As G−1 does not

have a closed form, G is first computed on a grid of 1000 points for
u ∈ [min(−3, µ1 − 3),max(3, µ1 + 3)], then zi,j is obtained by linear
interpolation on the grid.
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5. Run EM to maximize the log-likelihood of pseudo data,

l(θ) =
n
∑

i=1

log((1 − π1)h0(zi,1, zi,2) + π1h1(zi,1, zi,2;µ1, σ
2
1 , ρ1)),

to get θ(t) = argmaxθl. The E-step and M-step are described below.
6. Set θ = θ(t) and go to step 4 until convergence.

Here we describe the EM algorithm in step 5 above. To proceed, we denote
Ki as the latent variable, then the complete pseudo log-likelihood for the
augmented data Yi ≡ (Zi,Ki) is

lc =
n
∑

i=1

[(1 − Ki)(log(1 − π1) + log(h0(zi,1, zi,2))) + Ki(log π1 + log(h1(zi,1, zi,2;µ1, σ
2
1 , ρ1)))]

(6.1)

E-step:

Q(θ, θ(t)) ≡ E(lC(Ψ) | z, θ(t))(6.2)

=
n
∑

i=1

{P (Ki = 0)[log(1 − π
(t)
1 ) + log(h0(z

(t)
i,1 , z

(t)
i,2))]

+ P (Ki = 1)[log π
(t)
1 + log(h1(z

(t)
i,1 , z

(t)
i,2 ;µ

(t)
1 , (σ2

1)
(t), ρ

(t)
1 ))]}

Then

K
(t+1)
i ≡ E(Ki | zi, θ

(t))(6.3)

=
P (Ki = 1, zi | θ(t))

P (zi | θ(t))

=
π

(t)
1 h0(z

(t)
i,1 , z

(t)
i,2 )

(1 − π
(t)
1 )h0(z

(t)
i,1 , z

(t)
i,2) + π

(t)
1 h1(z

(t)
i,1 , z

(t)
i,2 ;µ

(t)
1 , (σ2

1)
(t), ρ

(t)
1 )

M-step:
Now we need maximize Q(θ, θ(t)). The MLE of the mixing proportion is:

(6.4) π
(t+1)
1 =

∑n
i=1 K

(t+1)
i

n
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Only the 2nd term of Q(θ, θ(t)) is relevant to (µ1, σ
2
1 , ρ1), so this is equiv-

alent to maximizing the following:

Elz =
n
∑

i=1

EKi

{

log(
1

2πσ2
1

√

1 − ρ2
1

)

(6.5)

−
1

2(1 − ρ2
1)

[

(zi,1 − µ1)
2 − 2ρ1(zi,1 − µ1)(zi,2 − µ1) + (zi,2 − µ1)

2

σ2
1

]

}

Taking derivatives w.r.t. each term, we have the following:

(6.6)

∂lz
∂µ1

=
n
∑

i=1

K
(t+1)
i

2(1 − ρ2
1)

2(zi,1 − µ1) + 2(zi,2 − µ1) − 2ρ(zi,1 + zi,2 − 2µ1)

σ2
1

So

(6.7) µ
(t+1)
1 =

∑n
i=1 K

(t+1)
i (zi,1 + zi,2)

2
∑n

i=1 Ki

(6.8)

∂lz
∂σ2

1

=
n
∑

i=1

K(t+1)

[

−
1

σ2
1

+
(zi,1 − µ1)

2 − 2ρ(zi,1 − µ1)(zi,2 − µ1) + (zi,2 − µ1)
2

2σ4
1(1 − ρ2

1)

]

and

∂lz
∂ρ1

=
n
∑

i=1

K(t+1)[ ρ1

1 − ρ2
1

+
1

1 − ρ2
1

(zi,1 − µ1)(zi,2 − µ1)

σ2
1

(6.9)

−
ρ1

(1 − ρ2
1)

2

(zi,1 − µ1)
2 − 2ρ(zi,1 − µ1)(zi,2 − µ1) + (zi,2 − µ1)

2

σ2
1

]

Solving the above together, we get

(σ2
1)

(t+1) =

∑n
i=1 Ki((zi,1 − µ1)

2 + (zi,2 − µ1)
2)

2
∑n

i=1 Ki
(6.10)

ρ
(t+1)
1 =

2
∑n

i=1 Ki(zi,1 − µ1)(zi,2 − µ1)
∑n

i=1 Ki[(zi,1 − µ1)2 + (zi,2 − µ1)2]
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7. Appendix 2: Behavior of the limit of algorithm for n large.

We give a heuristic argument for the asymptotic behavior of the limit of our
algorithm when it converges. In another paper, we shall fill in the details of
this argument. Although we are unable to prove convergence of our present
algorithm with probability tending to 1, we shall exhibit another algorithm
converging with probability tending to 1 to the same limit as the present
one when the latter converges.

We begin with some notation. Let (U, V ) be distributed according to the
copula density,

(7.1) c(u, v, θ) =
h(F−1(u, θ), G−1(v, θ), θ)

f(F−1(u, θ))g(G−1(v, θ))

where h(x, y, θ) is a parametric family in θ ∈ Θ ⊂ Rp open, F (·, θ), G(·, θ)
are the cdf of X ′, Y ′, respectively under h(·, ·, θ), and f(·, θ), g(·, θ) are the
marginal densities, if (X ′, Y ′) ∼ h(·, ·, θ).

In our case, θ = (ǫ, µ, σ, ρ),

(7.2) h(x, y, θ) = (1 − ǫ)φ(x, y, µ, µ, σ2, σ2, ρ) + ǫφ(x, y, 0, 0, 1, 1, 0)

where φ(·, ·, µ, σ2, ρ) is the density of bivariate normal with mean µ, variance
σ2 and correlation coefficient ρ.

Let xi, yi, i = 1, . . . , n be iid with density f where

(7.3) h(x, y) ≡ h(x, y, θ, F,G) ≡ c(F (x), G(y), θ)f(x)g(y),

where F , G are absolutely continuous marginal cdfs and f(·), g(·) are the
corresponding densities. Let θ0 denote the true value of θ and F and G
be as above. Let F̂n, Ĝn be the empirical distribution functions of X, Y ,
respectively.

The ranks we use are (F̂n(Xi), Ĝn(Yi)), i = 1, . . . , n, where F̂n, Ĝn are
the empirical cdfs of (X,Y ).

Our algorithm for finding θ is,

1. Initialize θ1 = θ̂0

2. Let Xi(θ) ≡ F−1(F̂n(Xi), θ) and Yi(θ) ≡ G−1(Ĝn(Yi), θ)
3. Run EM to get, assuming the initial point is close enough to the arg

max below,

(7.4) θ̂1 = argmaxθ

∫

log h(x, y, θ)dPn(x, y, θ1)

where Pn(x, y, θ) ≡ 1
n

∑n
i=1 1(Xi(θ) ≤ x, Yi(θ) ≤ y).
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4. Set θ1 = θ̂1 and return to (2).

Define

(7.5) Tn(t) ≡ argmaxθ

∫

log h(x, y, θ)dPn(x, y, t)

It is clear that if our algorithm converges to θ̂, then θ̂ is a fixed point of Tn,
i.e. Tn(θ̂) = θ̂.

Let

T (t) = argmaxθ

∫

log h(x, y, θ)dP (x, y, t)

where P (x, y, t) is the cdf of X(t), Y (t). Evidently, θ0 is the unique fixed
point of T since dP (x, y, θ0) = f(x, y, θ0)dxdy.

Define Wn(t) as the solution of

Sn(θ, t) ≡

∫

∇θ log h(x, y, θ)dPn(x, y, t) = 0

which is nearest to t and a local maximum. Then, θ̂1 = Wn(θ̂0) and θ̂ is a
fixed point of Wn.

Similarly, define W (t) as the solution of the population version of Sn

S(θ, t) ≡

∫

∇θ log h(x, y, θ)dP (x, y, t) = 0

which is closest to t and a local maximum. Clearly θ0 is a fixed point of W .
Let Ĥn(·, ·) be the empirical distribution function of (Xi, Yi). We can

rewrite,

(7.6) Sn(θ, t) =

∫

l̇(F−1(F̂n(x), t), G−1(Ĝn(y), t), θ)dĤn(x, y)

where l̇ = ∇θ log f , and similarly

S(θ, t) =

∫

l̇(F−1(F (x), t), G−1(G(y), t), θ)dH(x, y)(7.7)

=

∫

l̇(x, y, θ)h(x, y, t)dxdy

It is easy to see that θ0 is a fixed point of W and is unique.
We will now study θ̂n. We assume that

1. θ̂n exists
2. θ̂n corresponds to the unique fixed point of (7.5)
3. θ̂n is in {θ : |θ − θ0| < ǫ} for ǫ > 0 to be specified.
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For simplicity, we take p = 1 but this is inessential. As usual our point of
departure is the equation

(7.8) − S(θ0, θ̂n) = Sn(θ̂n, θ̂n) − S(θ0, θ̂n)

We suppose that, as we shall show, under suitable conditions elsewhere,
we can expand the right hand side of (7.8) as

(7.9) −
∂

∂θ
S(θ0, θ0)(θ̂n − θ0) + Op(|θ̂n − θ0|

2)

where

∂S(θ0, θ0)

∂t
|t=θ0

=

∫

l̇(x, y, θ0)
∂h(x, y, θ0)

∂t
|t=θ0

dxdy

=

∫

l̇2(x, y, θ0)h(x, y, θ0)dxdy

We now analyze the second term in (7.8). Expand formally the integrand
in (7.6),

l̇(F−1(F̂n(x), θ̂n), G−1(Ĝn(y), θ̂n), θ̂n)

(7.10)

= l̇(F−1(F (x), θ̂n), G−1(G(y), θ̂n), θ̂n)

+
1

f(F−1(F (x), θ̂n))

∂l̇

∂x
(F−1(F (x), θ̂n), G−1(G(y), θ̂n), θ̂n)(F̂n(x) − F (x))

+
1

g(G−1(G(y), θ̂n))

∂l̇

∂y
(F−1(F (x), θ̂n), G−1(G(y), θ̂n), θ̂n)(Ĝn(y) − G(y)) + Op(n

−1)

Further, formally

1

f(F−1(F (x), θ̂n))

∂l̇

∂x
(F−1(F (x), θ̂n), G−1(G(y), θ̂n), θ̂n)(F̂n(x) − F (x))

(7.11)

=
1

f(F−1(F (x), θ0))

∂l̇

∂x
(F−1(F (x), θ0), G

−1(G(y), θ0), θ0)(F̂n(x) − F (x)) + Op(|θ̂n − θ0|n
−1/2)

and a similar approximation holds for the third term in (7.10). Next note
that,

l̇(F−1(F (x), θ̂n), G−1(G(y), θ̂n), θn)(7.12)

= l̇(F−1(F (x), θ0), G
−1(G(y), θ0), θ0) + Op(|θ̂n − θ0|)
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Now expand

l̇(F−1(F (x), θ̂n), G−1(G(y), θ̂n), θ0)

(7.13)

=l̇(F−1(F (x), θ0), G
−1(G(y), θ0), θ0) +

∂l̇

∂t
(F−1(F (x), t), G−1(G(y), t), θ0) |t=θ0

(θ̂n − θ0)

+ Op(|θ̂n − θ0|
2)

Combining (7.10), (7.11), (7.12), and (7.13) we get,

Sn(θ̂n, θ̂n) − S(θ0, θ̂n)

(7.14)

=

∫

Q1(x, θ0)(F̂n(x) − F (x))dĤn(x, y) +

∫

Q2(y, θ0)(Ĝn(y) − G(y))dĤn(x, y)

+

∫

∂l̇

∂t
(F−1(F (x), t), G−1(G(y), t), θ0) |t=θ0

dH(x, y)(θ̂n − θ0)

+

∫

l̇(F−1(F (x), θ0), G
−1(G(y), θ0), θ0)d(Ĥn − H)(x, y) + Op(n

−1 + |θ̂n − θ0|
2)

where Q1(x, θ0) is given in (7.10) and (7.11), and similarly for Q2(y, θ0). All
terms but the last come from the expansions (7.11), (7.13) of l̇ integrated
with respect to H. The last comes from the difference between Sn as given
and the expression in which the measure Ĥn(x, y) is replaced by H(x, y).

Combining (7.14) and (7.9), we get finally,

M(θ0)(θ̂n − θ0) =

∫

l̇(x, y, θ0)dĤ(x, y) +

∫

α(x, θ0)dF̂n(x) +

∫

β(y, θ0)dĜn(y) + op(n
−1/2)

(7.15)

for suitable M,α, β, depending on F (·), G(·) as well as θ0. The heuristics
yield asymptotic normality for θ̂n. More than that θ̂n is asymptotically lin-
ear and its influence function is of the form ( ∂l

∂θ (x, y, θ0) + a(x, θ0, F,G) +
b(y, θ0, F,G))M(θ0, F,G). By Proposition 1B (cf Bickel et al. (1993) pp. 65-
66) it follows that θ̂n is always efficient, since its influence function lies in
the targent space of the model h(·, ·, θ, F,G), where θ ∈ Θ, F , G are positive
densities, and f , g arbitrary.

Thus in principle, these estimates are preferable to those of Genest et al
(Genest et al., 1995). In a paper making these heuristics rigorous and con-
structing an algorithm for θ̂n which will converge with probability tending
to 1 under suitable conditions, we will also do further extensive simulations
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for our Gaussian mixture and other models, comparing this procedure with
that of Genest et al. We note that, in fact, no algorithm is given for the real-
ization of their procedure except in a special case quite different from ours.
We also note that our algorithm, just as that of Genest et al, depends on
finding the “correct” local maximum of a multimodal function and thus de-
pends crucially on finding appropriate starting points, in particular, running
from a number of possible starting points.
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