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Abstract. It is becoming increasingly common to analyze collections of se-

quence reads by first assigning each read to a location on a phylogenetic tree.

In parallel, quantitative methods are being developed to compare samples of
reads using the information provided by such phylogenetic placements: one

example is the phylogenetic Kantorovich-Rubinstein (KR) metric which cal-

culates a distance between pairs of samples using the evolutionary distances
between the assigned positions of the reads on the phylogenetic tree. The KR

distance generalizes the weighted UniFrac metric. Classical, general-purpose

ordination and clustering methods can be applied to KR distances, but we
argue that more interesting and interpretable results are produced by two new

methods that leverage the special structure of phylogenetic placement data.

Edge principal components analysis enables the detection of important differ-
ences between samples containing closely related taxa and allows the visual-

ization of the principal component axes in terms of edges of the phylogenetic
tree. Squash clustering produces informative internal edge lengths for cluster-

ing trees by incorporating distances between averages of samples, rather than

the averages of distances between samples used in general-purpose procedures
such as UPGMA. We present these methods and illustrate their use with data

from the microbiome of the human vagina.

1. Introduction

Microbial sequence data for a given locus are naturally endowed with a some-
what hidden special structure: the phylogenetic relationships between the organ-
isms represented by each sequence. That structure can be inferred by building the
phylogenetic tree of the sampled sequences from scratch or by using phylogenetic
placement techniques to assign to each sampled sequence a location on a previously
constructed reference phylogenetic tree.

In 2005, Lozupone and Knight proposed a way to incorporate this hierarchical
structure when computing distances between samples. Their method, unweighted
UniFrac [5], was followed by weighted UniFrac in 2007 [6]. A key feature of both
distances is that differences in community structure due to closely related organisms
are weighted less heavily than differences arising from distantly related organisms.
The UniFrac methodology has been widely adopted, and the papers describing the
UniFrac variants have hundreds of citations as of the beginning of 2011.

Once distances have been computed between samples using UniFrac, these dis-
tances are typically fed into general-purpose ordination and clustering methods,
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such as classical principal components analysis and UPGMA. Although it is ap-
propriate to apply such techniques to distance matrices of this sort, the classical
methods do not use the fact that the underlying distances were calculated in a
specific manner. Consequently, in an application of principal components analysis,
it is difficult to describe what the axes represent. Similarly, in hierarchical cluster-
ing, it is unclear what is driving a certain agglomeration step; although it can be
explained in terms of an arithmetic operation, a certain amount of interpretability
in terms of the original microbial data is lost.

In this paper, we propose ordination and clustering procedures specifically de-
signed for the comparison of microbial sequence samples that do take advantage of
the underlying phylogenetic structure. The input for these methods are collections
of assignments of sequencing reads to locations on a pre-existing reference phyloge-
netic tree: that is, phylogenetic placements. Our edge principal components analysis
(edge PCA) algorithm applies the standard principal components construction to a
“data matrix” generated from the differences between proportions of phylogenetic
placements on either side of each internal edge of the reference phylogenetic tree.
Our squash clustering algorithm is hierarchical clustering with a novel definition of
distances between clusters that incorporates information concerning how the data
sit on a phylogenetic tree.

The primary advantage of these methods is that of transparency — namely, that
the results of these analyses can be readily visualized and understood. For example,
with edge PCA the principal component axes can be pictured directly in terms of
the reference phylogenetic tree, thereby attaching a clearer interpretation to the
position of a data point along that axis. Edge PCA is also capable of picking up
minor — but consistent — differences in collections of placements between samples:
a feature that will be important in our example application. The squash hierarchical
clustering method has the advantage that each vertex of the clustering tree induces
a certain natural distribution of mass on the phylogenetic tree and the length of an
edge in the clustering tree has a simple interpretation as the distance between the
mass distributions associated with the two incident vertices.

2. Results

2.1. General setting for methods. Phylogenetic placement is a way to analyze
second-generation sequencing applied to DNA extracted in bulk from an environ-
mental sample of microbes. It is simply the assignment of sequencing reads to a
“reference” phylogenetic tree constructed from previously-characterized DNA se-
quences; recent algorithms have focused on doing so according to the phylogenetic
maximum-likelihood criterion [1, 7]. By fixing a reference tree rather than attempt-
ing to build a phylogenetic tree for the sample from scratch, recent algorithms of
this type are able to place tens of thousands of query sequences per hour per pro-
cessor on a reference tree of one thousand taxa (e.g. species), with performance
scaling linearly in the number of reference taxa, the number of query sequences,
and the length of the query sequences.

A collection of reads placed on a phylogenetic tree can be thought of as a dis-
tribution of a unit amount of mass across the tree. In the simplest setting, for a
collection of N placements on a tree each read is given mass 1/N and that mass is
assigned to the most likely position for that read on the tree. Another option is to
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distribute the 1/N mass for a given read across the tree in proportion the posterior
probability of assignment of that read to various positions [7].

This mass distribution can then be used to produce distances between collections
of phylogenetic placements. Given two samples for a given locus, each sample is
placed individually on the phylogenetic tree, and then each sample is thought of as
a distribution of mass on the tree. The Kantorovich-Rubinstein or “earth-mover’s”
distance can then be used to quantify the difference between those two samples.
This distance is defined rigorously in [4], but the idea is simply explained. Imagine
that the phylogenetic tree is a road network, and each sample is represented by the
distribution of a unit of mass into piles of dirt along this road network. The distance
between two samples is then defined to be the minimal amount of “work” required
to move the dirt in the first configuration to that in the second configuration (in this
context the amount of work to move an infinitesimal mass δ a distance x is defined
to be δ ·x). Thus, similar collections of phylogenetic placements result in similar dirt
pile configurations that don’t require much mass movement from one to the other,
while quite different collections of placements require that significant amounts of
mass must move long distances across the tree. This distance is classical, having
roots in 18th century mathematics, and is a generalization of the weighted UniFrac
distance [4, 6]. One can perform PCA and clustering on distance matrices derived
from these distances, or, as presented next, develop algorithms that work directly
on the underlying data.

2.2. Edge principal components analysis. Suppose that each of S samples is
encoded by a mass distribution on a reference tree with E internal edges. We distin-
guish an arbitrary vertex of the tree as the root and map each mass distribution to
an E-dimensional vector by recording for each internal edge the difference between
the total mass on the root side of the edge and the total mass on the non-root side
of the edge. This results in an S × E “data matrix”.

Edge principal components analysis (edge PCA) applies the usual principal com-
ponents procedure of constructing the E×E covariance matrix of this data matrix
and then calculating its eigenvalues and their corresponding eigenvectors.

Each eigenvector can be displayed on the tree, because the coordinates of the
eigenvector correspond to internal edges of the tree. A large entry in an eigen-
vector corresponding to one of the bigger eigenvalues identifies an edge for which
there is substantial heterogeneity among the associated set of mass differences (see
Methods). In our visualization tool, each eigenvector is represented by a single
colored and thickened reference tree: the thickness of an edge is proportional to the
magnitude of the corresponding entry of the eigenvector and the color specifies the
sign of that entry (Figures 1 and 2). Moreover, we can project each sample onto an
eigenvector to visualize how the sample is spread out with respect to that “axis”
(Figure 3 (a))

2.3. Squash clustering. Squash clustering is hierarchical clustering with a novel
way of calculating distances between clusters. Rather than taking averages of dis-
tances as is done in average-linkage clustering (also known as UPGMA), in squash
clustering we take distances between averages of samples. That is, given a collec-
tion of mass distributions on the phylogenetic tree that each correspond to a cluster
that has been built at some stage of the procedure, when the procedure merges two
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clusters we simply take a weighted average of the two corresponding mass distri-
butions to get the mass distribution that corresponds to the new, larger cluster
(see Methods). The “squash” terminology describes this averaging procedure: the
original mass distributions for a given cluster are stacked on top of one another and
then “squashed” down to produce a new object with unit total mass. That is, if we
merge two clusters that correspond to sets of m and n original mass distributions
and represented by averaged mass distributions µ and ν, then the new cluster is
represented by the mass distribution

m

m+ n
µ+

n

m+ n
ν.

Equivalently, if the points in the two clusters were originally represented by the
mass distributions µ1, . . . , µm and ν1, . . . , νn, respectively, then the two clusters are
now represented by the mass distributions

µ =
µ1 + · · ·+ µm

m

and
ν =

ν1 + · · ·+ νn

n
,

respectively, and the new cluster obtained by merging them is represented by the
mass distribution

(µ1 + · · ·+ µm) + (ν1 + · · ·+ νn)
m+ n

.

Apart from that difference, the sequence of steps in the algorithm is identical
to that which would occur in the usual agglomerative hierarchical clustering pro-
cedure applied with the Kantorovich-Rubinstein distances between the initial mass
distributions (i.e. those representing the individual samples) as input. Each step of
agglomerative hierarchical clustering is associated with a pairwise distance matrix
and the algorithm proceeds by merging the pair of clusters that have the smallest
distance between them. As described above, we take the distance between two
clusters A and B to be the earth-mover’s distance from the average of the mass dis-
tributions in A to the corresponding average for those in B. The series of merges in
the clustering algorithm determines the topology of the rooted clustering tree that
the algorithm produces. Leaves of the tree correspond to individual samples. Ev-
ery internal vertex is associated with a cluster (the collection of samples below that
vertex) and thus with a distribution of mass on the phylogenetic tree. The length
an edge between two arbitrary adjacent vertices on the tree can be computed by
using the earth-movers distance between the distributions of mass corresponding to
those vertices. This edge length calculation gives the resulting trees an appearance
that differs from that of UPGMA trees (Figure 4).

2.4. Example application: the vaginal microbiome. In this section we apply
our clustering and ordination methods to pyrosequencing data from the vaginal
microbiome. For this study, swabs were taken from 242 women from the Public
Health, Seattle and King County Sexually Transmitted Diseases Clinic (STD clinic)
between September 2006 and June 2010 (of which 222 samples resulted in enough
material to analyze) [12]. DNA was extracted and the 16s gene was amplified in the
V3-V4 hypervariable region using broad-range primers and sequenced using a 454
sequencer with FLX chemistry. Sequences were pre-processed using the R / Biocon-
ductor package microbiome. A custom maximum likelihood reference tree consisting
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Figure 1. The first principal component for the vaginal data set,
with eigenvalue≈ 11.57. The edges across which maximal between-
sample heterogeneity is found are those leading to the Lactobacillus
clade and those leading to the Sneathia and Prevotella clade. This
axis appears to represent the bacterial vaginosis axis, as Sneathia
and Prevotella are associated with bacterial vaginosis, while Lac-
tobacillus is associated with its absence.

of sequences from RDP [3] and our local collection was built using RAxML 7.2.7
[13] using GTR+4Γ. Sequences were placed into this tree using pplacer [7] with the
default parameter choices. The methods presented here are implemented as part
of the pplacer package, available at http://matsen.fhcrc.org/pplacer/.

The principal components for the vaginal samples independently recover previous
knowledge about the contribution of certain microbial species to distinct types of
vaginal microbial environment. In a medical setting, the diagnosis of bacterial
vaginosis is often done by looking for rod-shaped bacteria that have a positive Gram
stain; these are typically Lactobacillus. The edge principal component algorithm
indicates the importance of this genus: the first principal component for the vaginal
data set picks out the presence of Lactobacillus versus Sneathia and Prevotella
(Figure 1). The second principal component reveals that important differences
between samples exist at the species level. Indeed, it highlights the substantial
amount of heterogeneity between the amount of two Lactobacillus species observed:
L. iners and L. crispatus (Figure 2).
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Figure 2. The second principal component for the vaginal data
set, with eigenvalue ≈ 3.17 (low-weight regions of the tree excluded
from the figure). The edges across which maximal between-sample
heterogeneity is found are those between two different Lactobacillus
clades: L. iners and L. crispatus. Thus, the second important
“axis” appears to correspond to the presence or absence of these
two species.

The samples form an interesting pattern when plotted on these axes with their
diagnostic score (Figure 3 (a)). As described above, samples on the left side have
Lactobacillus and lack Sneathia and Prevotella, while those on the right side have
the opposite. Samples on the bottom have lots of L. crispatus and a small amount
of L. iners, while those on the top have the opposite. A continuum of samples
exists from the lower left to the upper left (mixes of the two prominent Lacto-
bacillus species) and from the upper left to the right (from L. iners-dominant to
Sneathia and Prevotella), but there is no continuum from lower left to the right
(from L. crispatus-dominant to Sneathia and Prevotella). Reviewing the data from
[12] confirms that this pattern can be observed from taxonomically classified reads.

The features detected by the edge PCA algorithm correspond to ones that are
pertinent to clinical laboratory diagnosis. As part of the bacterial vaginosis study,
these samples were also processed according to traditional diagnostic criteria. Vagi-
nal samples were classified in the clinical laboratory according to the Nugent score,
which quantifies the presence of various morphotypes (i.e. shapes of bacteria) under
a microscope after gram staining. The Nugent score is considered to be a rigorous
standard for the diagnosis of bacterial vaginosis (BV); it ranges from 0 (healthy)
to 10 (severe BV). Swabs were also evaluated for pH.

In general, Lactobacillus is associated with a low Nugent score and thus a nega-
tive BV diagnosis. More specifically, L. crispatus dominated samples are not found
to have a high Nugent score (indicating BV), while L. iners sometimes are, and
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(a) Edge principal components (b) Classical principal components

Figure 3. A comparison of edge principal components analysis
(edge PCA) and classical PCA on the vaginal data set. The axes
for the edge principal components plot are described in Figures 1
(x-axis) and 2 (y-axis). The Nugent score is a diagnostic score for
bacterial vaginosis, with high score indicating bacterial vaginosis.

those on the right side always are. Coloring the samples according to pH (Fig-
ure S2) shows a similar pattern. These plots indicate the possibility of a medically
relevant difference between these two Lactobacillus species. We emphasize that the
PCA was not informed of the Nugent score, pH, or the taxonomic classifications.

Applying classical PCA to the pairwise distance matrix does reproduce some of
the same features (Figure 3 (b)). However, there is no immediate interpretation
of the meaning of the axes output by the classical algorithm. Furthermore, the
important difference between the two Lactobacillus species is lost.

Squash clustering was applied to the collection of vaginal samples in our cohort.
Because meaningful internal edge lengths can be assigned to the squash clustering
tree, it is not ultrametric, whereas the UPGMA tree is (Figure 4). The two tight
clusters at the bottom of (a) and (b) contain the Lactobacillus-dominated vaginal
samples seen on the left side of (Figure 3 (a)) and correspond to L. iners (upper
tight cluster) and L. crispatus (lower tight cluster). A more detailed leaf-labeled
comparison between the two trees is available in the supplementary material (Fig-
ure S1).

Although we argue that these clusters do have more meaningful internal edge
lengths than the UPGMA tree, the clusters found by squash clustering for this
example data set do not have a significantly different pH phenotypic consistency
than those found by UPGMA. For a subtree c of the clustering tree, define Sc

to be its leaf set; for any real-valued phenotypic character of a sample we define
the phenotypic consistency of c to be the variance of the phenotypic character
for the samples in Sc. To investigate how phenotypic consistency corresponds to
statistically supported subtrees of the cluster, the data was bootstrapped at the
level of reads 100 times, such that every bootstrap replicate for a given sample was
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(a) (b)

Figure 4. The results of (a) squash clustering and (b) UPGMA
as applied to the vaginal data set. The trees are unlabeled, and
th labels do not appear in the same order on the two trees; for a
comparison of labeled trees see Figure S1.

a uniform sample of the reads for that sample with replacement. Then, for every
subtree c, the bootstrap support and the pH phenotypic consistency for the samples
in that subtree can be represented by a point in a scatterplot (Figure 5). If one
method found clusters with better pH phenotypic consistency than the other, then
one method’s points would appear lower on average than the other.

3. Discussion

3.1. Generalization and limitations. The methods described here, although
implemented for comparison of microbial communities, can in fact be used in more
general settings. Edge PCA can be used whenever each sample can be represented
by a collection of mass distributed over a common tree structure. Squash clustering
can be applied in any case where there is a well-defined notion of the distance
between two samples and a well-defined procedure for averaging two samples to
produce another object of the same type.

There are some limitations to the sort of comparisons that can be performed us-
ing these methods simply because the underlying data is a collection of phylogenetic
placements on a tree. For example, if a clade of the reference tree is missing, then
differences in diversity within that clade will not be accounted for in the compar-
ison. Such issues will be present whenever a reference tree is being used, whether
using phylogenetic placements directly or mapping reads to the tree using BLAST
as a preliminary step in a UniFrac analysis. This disadvantage can be balanced with
the advantage of not having to define OTU’s, which can be sensitive to clustering
parameters [14].
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Figure 5. Squash clustering does not appear to have significantly
better correlation with phenotype than UPGMA. Each point repre-
sents a subtree in the cluster, where the x-axis shows the bootstrap
value (100 replicates) for that subtree, and the y axis shows the
variance in pH for all of the samples in that cluster. Lines show
smoothing performed with a generalized additive model using
splines.

The methods presented here also depend on the number of phylogenetic place-
ments being correlated with the number of organisms of that type found in the
sample. This is not always true. Loci such as 16s are often sequenced by first
amplifying using a polymerase chain reaction with a broad-spectrum primer; this
primer may have different efficiencies for different organisms, or may miss certain
organisms altogether. In addition, genetic material extraction efficiency varies by
organism [9]. Nevertheless, the results that come from using our methods do ap-
pear to correspond with non-genetic methods such as morphological comparison
(Figure 3) and pH (Figure S2).

3.2. Relation to previous work. The work presented here has a similar intent
as double principal components (DPCoA) analysis as applied to distributions of
phylotypes on a phylogenetic tree [2, 11]. The idea of a DPCoA analysis is to
perform a principal components analysis on the phylotype abundance table in a
way that down-weights differences between species that are close to one another on
the phylogenetic tree. As such, it shares some similarity to doing multidimensional
scaling or principal components on the pairwise distance matrix generated by a
KR/UniFrac analysis. It differs from the methods presented here because it only
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uses the tree in the form of a pairwise distance matrix; consequently it cannot
leverage the edge-by-edge structure of the tree as is done here.

There are also some connections with the statistical comparison features of
MEGAN [8] in that we use the structure of the tree as part of a comparative
framework. Our method and the MEGAN method both highlight regions of the
tree for which important differences exist between samples. However, the details
are quite different: the “directed homogeneity” test of [8] employs statistical cri-
teria to decide if two samples have significant differences either across an edge or
between daughters of a given edge. The edge PCA algorithm, on the other hand,
does not attempt to make hypothesis-testing statistical statement and it uses all of
the samples available simultaneously.

3.3. Future work. The basic step of the methods presented here— transforming
phylogenetic placement samples into vectors indexed by the edges of the tree—
is general and can be applied in a number of contexts. In this paper, we followed
this transformation with an application of principal components analysis, but many
other options are possible. We plan to apply classical supervised learning techniques
to similarly transformed data.

4. Methods

A probability measure on the reference phylogenetic tree is obtained from a
collection of sequence reads as follows. A given read can be assigned to the phylo-
genetic tree in its maximum likelihood or maximum posterior probability location
using the phylogenetic likelihood criterion to obtain a “point placement.” A point
placement can be thought of as a probability measure with all of the mass concen-
trated at the best attachment location. Alternatively, one can express uncertainty
in the optimal location by spreading the probability mass according to posterior
probability (assuming some priors) or “likelihood weight ratio”; see [7] for details.
In either case, each read is thought of as a probability measure on the reference
phylogenetic tree. A probability measure for a collection of reads can be obtained
by averaging the measures for each read individually (that is, by constructing the
probability measure that is the convex combination or mixture of the probability
measures for each read in which each such measure is given an equal weight).

4.1. Edge principal components analysis. Begin with a phylogenetic tree T
and probability measures P1, . . . , PS on T , each of which comes from an assignment
of the reads in one of S samples to the phylogenetic tree, as described above. If
T is not already rooted at some vertex, pick an arbitrary vertex to be the root.
Removing a given internal edge e from the tree splits T into two components: T+(e)
containing the root and T−(e) without. For a probability measure P on T , define
the corresponding edge mass difference

δP (e) = P (T+(e))− P (T−(e)).

Suppose that T has E internal edges. The edge mass difference matrix ∆ is the
S×E matrix that has the vectors of edge mass differences for the successive samples
as its rows.

Edge principal components analysis is then performed by first deriving the E×E
covariance matrix Σ from the matrix ∆ of “observations” followed by computing
the E eigenvectors of Σ ordered by decreasing size of eigenvalue.
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Each resulting eigenvector is a signed weighting on the internal edges of the
tree, and these weightings may be used to highlight those edges of the tree for
which there is substantial between-sample heterogeneity in the masses assigned to
the two components of the tree defined by the edge. Indeed, recall the variational
characterization of the eigenvectors v1, . . . , vE of an E × E non-negative definite
matrix M listed in order of decreasing eigenvalue:

v1 = arg max
||v||=1

〈v,Mv〉

v2 = arg max
||v||=1,v⊥v1

〈v,Mv〉

· · ·
vE = arg max

||v||=1,v⊥{v1,...,vE−1}
〈v,Mv〉,

where ‖v‖ is the usual Euclidean length of the vector v, 〈v, w〉 is the usual Euclidean
inner product of the vectors v and w, and v ⊥ {v1, . . . , vk} indicates that v is
perpendicular to each of the vectors v1, . . . , vk. Thus, an edge that receives a
weight with large magnitude from an eigenvector corresponding to one of the bigger
eigenvalues of the covariance matrix Σ may be viewed as an edge for which there
are substantial dissimilarities between samples in the amount of mass placed in the
components on either side of the edge.

When looking at the weight assigned to a single edge in isolation, only the
magnitude of the weight matters and not the sign, because if v is an eigenvector for
a particular eigenvalue, then so is −v. However, sign matters when comparing the
weights assigned to two or more edges: if the edge mass differences for two edges
are negatively associated, then the corresponding entry of the covariance matrix
will be negative, and the corresponding two entries of the eigenvector for a large
eigenvalue will tend to have different signs.

Changing the chosen root from vertex x to vertex y does not affect the eigenvalues
or the magnitudes of the entries in the corresponding eigenvectors, and it only
changes the signs of the entries for the edges between x and y. We may see this as
follows. Note first that if an edge e is between x and y, then re-rooting flips the
sign of δP (e). Define K be the diagonal E × E matrix such that Ke,e = −1 for
edges e on the path between x and y, and 1 otherwise. Note that K = K−1. The
covariance matrix Σ′ for the re-rooted tree and that for the original tree will then
be related by a similarity transformation: Σ′ = KΣK. Thus, the eigenvalues for Σ
are the same as those for Σ′, and vk is an eigenvector of Σ if and only if Kvk is an
eigenvector of Σ′.

4.2. Squash clustering. Given probability measures P and Q on the rooted tree
T , the Zolatarev-like Zp generalization of the KR distance is defined for p ≥ 1 as

(1) Zp(P,Q) =
[∫

T

|P (τ(y))−Q(τ(y))|p λ(dy)
] 1

p

,

where λ is the natural length measure on the tree and τ(y) is the subtree on the
other side of y to the root. The classical KR distance is (1) with p = 1; for the
examples in this paper, p = 1 was used exclusively. It is shown in [4] that choosing
a different root does not change the distance. It is also noted in [4] that if P and
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Q only assign mass to leaves of the tree and y is in the interior of edge e then

|P (τ(y))−Q(τ(y))| = 1
2

(|P (T+(e))−Q(T+(e))|+ |P (T−(e))−Q(T−(e))|)

furnishing a connection with edge PCA.
At each stage of the squash clustering algorithm we have a pairwise distance

matrix with rows and columns indexed by the clusters that have already been
made by the algorithm. Initially, the clusters are just the individual samples and
the entries in the pairwise distance matrix are computed using the formula (1).

Agglomerative hierarchical clustering in general proceeds by iterating the fol-
lowing sequence of steps until there is a single cluster and a corresponding 1 × 1
pairwise distance matrix.

(1) Find the smallest off-diagonal element in the current pairwise distance ma-
trix. Say it is the distance between clusters i and j.

(2) Merge the i and j clusters, making a cluster k.
(3) Remove the ith and jth rows and columns from the distance matrix.
(4) Calculate the distance from the cluster k to the other clusters.
(5) Insert the distances from k into the distance matrix.

Classical hierarchical clustering methods calculate the distance in step number 4
as some function of the distance matrix. In particular, average-linkage clustering or
UPGMA calculates the distance between two clusters as the average between pairs
of items in the clusters. Thus, if clusters i and j containing respective numbers of
items a and b are merged to form a cluster k with a + b items, then the average-
linkage distance between another cluster ` with c items and the new cluster k is
(writing d(·, ·) for the distance between individual items)

distance(k, `) =
1

(a+ b)c

∑
y∈k,z∈`

d(y, z)

=
a

a+ b

1
ac

∑
w∈i,z∈`

d(w, z) +
b

a+ b

1
bc

∑
x∈j,z∈`

d(x, z)

=
a

a+ b
distance(i, `) +

b

a+ b
distance(j, `),

and so the entries of the updated UPGMA distance matrix are just suitably weighted
averages of the entries of the previous distance matrix.

At each stage of squash clustering, on the other hand, a cluster is associated with
a probability measure on the tree T . When two clusters i and j containing respective
numbers of items a and b and associated with respective probability measures P
and Q are merged to form a cluster k, then the new cluster k is associated with the
probability measure a

a+bP + b
a+bQ and the distance from k to some other cluster `

associated with the probability measure R is

(2) Zp

(
a

a+ b
P +

b

a+ b
Q,R

)
which is analogous to the above formula for the UPGMA averaging procedure. As
remarked above, the “squash” interpretation of (2) comes from recalling that the
probability measures associated with the two clusters are each simple averages of
all of the measures for the items in the clusters. That is, if Sz is the probability
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measure associated with original item z, then

P =
1
a

∑
x∈i

Sx

and

Q =
1
b

∑
y∈j

Sy,

and the probability measure associated with the new cluster k is

a

a+ b
P +

b

a+ b
Q =

1
a+ b

∑
z∈k

Sz.

A natural question to ask is whether the distance between a probability measure
R and the weighted average of two probability measures P and Q is equal to the
similarly weighted average of the distance between R and P and the distance be-
tween R and Q. The answer is “no”: starting from (1) we have from the Minkowski
inequality that for 0 < t < 1:

Zp(tP + (1− t)Q,R)

=
[∫

T

|t (P (τ(y))−R(τ(y))) + (1− r) (Q(τ(y))−R(τ(y)))|p λ(dy)
] 1

p

≤ t
[∫

T

|P (τ(y))−R(τ(y))|p λ(dy)
] 1

p

+ (1− t)
[∫

T

|Q(τ(y))−R(τ(y))|p λ(dy)
] 1

p

= tZp(P,R) + (1− t)Zp(Q,R),

and the two sides are the same if and only if P = Q. Intuitively, then, the UPGMA
and squash clustering steps are very similar for the initial steps when the objects
being clustered are themselves similar. This can be seen in Figure S1, where re-
gions of the tree representing closely related samples (short edge length) show good
agreement between the two methods (thin edge width).
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Figure S1. A comparison of the clustering results for the vaginal
data set using the software of [10]. The software uses the Hun-
garian (a.k.a. Munkres) algorithm to find an optimal one-to-one
matching between edges of the trees minimizing differences in a
topological score between pairs of matched branches as follows.
Given two trees T and S on the same samples, let Σ(T ) and Σ(S)
be the bipartitions of the samples induced by cutting the edges of
T and S. For two bipartitions i and j, one can associate a “agree-
ment score” s(i, j) describing the proportion of shared elements
between the sides of the bipartitions. The algorithm finds a one-
to-one matching between Σ(T ) and Σ(S) that minimizes the total
agreement score between matched bipartitions. Now each tree can
be drawn in a way which shows the agreement scores, such that a
thick branch represents an edge which has a low agreement score
with its partner in the matching. The program then arranges the
trees such that matched edges are close to one another on the tree.
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Figure S2. The samples plotted with respect to the first two
principal components and colored according to pH.


