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Abstract

News media significantly drives the course of events. Understanding how has long been an
active and important area of research. Now, as the amount of online news media available grows,
there is even more information calling for analysis, an ever increasing range of inquiry that one
might conduct. We believe subject-specific summarization of multiple news documents at once
can help. In this paper we adapt scalable statistical techniques to perform this summarization
under a predictive framework using a vector space model of documents. We reduce corpora of
many millions of words to a few representative key-phrases that describe a specified subject of
interest. We propose this as a tool for news media study.

We consider the efficacies of four different feature selection approaches—phrase co-occurrence,
phrase correlation, L1 regularized logistic regression (L1LR), and L1 regularized linear regression
(Lasso)—under many different pre-processing choices. To evaluate these different summarizers
we establish a survey by which non-expert human readers rate generated summaries. Data
pre-processing decisions are important; we also study the impact of several different techniques
for vectorizing the documents, and identifying which documents concern a subject.

We find that the Lasso, which consistently produces high-quality summaries across the many
pre-processing schemes and subjects, is the best choice of feature selection engine. Our findings
also reinforce the many years of work suggesting the tf-idf representation is a strong choice of
vector space, but only for longer units of text. Though we focus here on print media (newspa-
pers), our methods are general and could be applied to any corpora, even ones of considerable
size.

Keywords: regularized methods, text summarization, high-dimensional analysis

1 Introduction

The sheer amount and crucial importance of news make it an urgent task to allow efficient sum-
marization. Indeed, the news media significantly drives the course of events. It picks which events
to report and the manner in which to report them, affecting the sentiments of news consumers and
through them the wider world. “I am deeply interested,” said Joseph Pulitzer in his last will and
testament, “in the progress and elevation of journalism, having spent my life in that profession,
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regarding it as a noble profession and one of unequaled importance for its influence upon the minds
and morals of the people.”

We know this influence is real. News sources influence how individuals evaluate and elect leaders
(Miller and Krosnick, 2000). Exposure to a new source can change how individuals conceive of
themselves in relation to the larger world: for instance, Nisbet and Myers (2010) found that greater
exposure to the Al Jazeera network reduced nationalistic sentiments among Arab news consumers.

Different news sources produce, for a variety of reasons, different news products. Branton
and Dunaway (2009) found that simple geography can introduce coverage bias for some news
subjects (specifically, that a publication’s distance from the US-Mexico border affects the tone
with which it writes about immigration). Gilens and Hertzman (2000) found that coverage of the
1996 Telecommunications Act was considerably different among news sources whose owners stood
to gain from the Act’s passage versus those news sources without such owners. Groseclose and
Milyo (2005) found the vast majority of news sources have a pattern of citing left-of-center think
tanks and policy groups.

If exposure to news can drive larger changes in society, and if news coverage—even when control-
ling for topic—can vary in tone, emphasis, and style, then it is important to understand precisely
where and how these variations occur. It is often said that news media are an essential part of
any democracy. In a digital democracy it is absolutely essential to provide concerned citizens
and decision-makers with automated methods for news summarization so this part can be readily
examined.

In this paper we address the problem of efficiently summarizing the way a subject is described
in a large collection of text documents. We examine various classification methods that are adapted
to the task, and assess their performance based on human validation experiments and a real-life
data set of news articles.

1.1 Analyzing news media

Often, news reports are compared to each other by way of hand coding. Wahl, Wood, and Richards
(2002) asked volunteer readers to compare their impressions of articles written about mental illness
in 1989 versus 1999, with 300 articles drawn from each year. Denham (2004) analyzed the 2003
story of athlete Carl Lewis’s possible drug use as covered by United States news sources versus
coverage in non-U.S. outlets, examining 115 articles in all. Potter (2009) examined the 2004 news
coverage of Haiti by five sources, reading 711 articles in all.

Common to all these approaches is the reduction of each article to a few essential facets, usually
established prior to analysis. For instance, Wahl et al. (2002) asked coders, “Which of the following
themes (e.g., ‘mental illness is treatable’, ‘people with mental illness may be dangerous’, etc.) are
mentioned in this 1989 article?” Denham coded the types of sources cited in each article. Potter
counted the number of times each of a set of keywords (e.g., “violence,” “crisis,” “chaos,” and
“anarchy,”) were used in conjunction with the word “Haiti.” This approach reduces complex text-
data to a handful of quantitive variables, allowing for more traditional analysis such as regression
or simple tests of difference.

The hand-coding approach is prohibitively labor intensive. For example, Denham relayed in
personal correspondence that each article took roughly fifteen minutes to analyze, suggesting about
28 hours of time for the full text corpus. There may be many interesting studies never conducted due
to the time and labor expenses involved. Those analyses which are conducted likely undersample
the full range of relevant news articles available, or choose only subjects that involve a sufficiently
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small number of documents—in all cases, the budget for labor restricts analysis. As the amount of
available news increasing, the task of understanding news content grows more daunting. Many are
now attempting to help with this via a variety of approaches: Media watchdogs (Media Research
Center, Media Matters for America) and automated analogues (Google news trends, Twitter’s
trending queries) all attempt to make sense of these vast volumes of text.

We believe there is opportunity to answer the question, “What is being said in the news?”
with statistical machine learning tools. Indeed, in the last five years we have seen the emergence
of a computational social science field connecting statistics and machine learning to anthropology,
sociology, public policy, and more (Lazer, Pentland, Adamic, Aral, Barabsi, Brewer, Christakis,
Contractor, Fowler, Gutmann, Jebara, King, Macy, Roy, and Van Alstyne, 2009).

Given a corpus of documents as well as a subject of interest (represented as a short list of
words), our task is to find what few words and phrases best describe or distinguish the subject as
it appears in the documents. We use scalable, reproducible machine learning techniques to reduce
corpora of many millions of words into a few representative key-phrases. We view these lists of
phrases as summaries of how the given subject is treated in the corpus. By subject, we mean a noun,
topic, or theme of interest in a collection of text documents (e.g., country, person, economy, etc.),
and by treated we mean how a collection of documents discusses a specific subject and in what
context. A summarizer, in this case, is an automated process that takes a collection of documents
and a subject of interest and returns the summary, i.e. a list of key-phrases describing how the
subject is treated across the documents.

To illustrate, one of our proposed summarizers gives “beijing, contributed research, global, hu
jintao, imports, of xinjiang, peoples liberation army, shanghai, sichuan province, staterun, tibet,
trade, uighurs, wen jiabao, xinhua news agency” for how China (represented as “china, chinas,
chinese”) is treated in the New York Times international section, 2009. This succinct summary
captures main relevant personalities (e.g., Wen Jiabao, Hu Jintao), associated areas (e.g., Uighurs,
Tibet), entities (Xinhua news), and topics (trade, imports, global [activity], state-run [organiza-
tions]). The appearance of these particular aspects of China informs us about how China is being
treated by the New York Times, and suggests directions for further human reading.

Even under our general approach, there are many different ways one might design a summarizer.
In particular, how raw text is prepared for statistical analysis can have enormous impact on the
final results. We therefore investigate how different techniques and approaches differ in the quality
of summaries produced. We measure this quality with a human experiment.

Overall, we propose our approach of subject-specific automatic summarization of a large corpus
as a method for news media study. This approach readily generalize to other types of documents.
We are currently working on making an on-line toolkit1 to make these methods readily available.

1.2 Automated analyses

Automatic summarization of news could increase both the range of investigations undertaken and
the volume of data considered by orders of magnitude, assuming that the validity of these automatic
analyses has been established. We review some existing computational approaches here before
presenting our own.

1http://statnews.org
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Summarization by extraction. Two approaches to text analysis, key-phrase extraction (e.g.,
Rose, Engel, Cramer, and Cowley, 2010; Senellart and Blondel, 2008; Frank, Paynter, Witten,
Gutwin, and Nevill-Manning, 1999; Chen, Yang, Zhang, Chen, Shen, and Cheng, 2006) and sentence
extraction (e.g., Hennig, 2009; Goldstein, Mittal, Carbonell, and Kantrowitz, 2000; Neto, Freitas,
and Kaestner, 2002), involve clipping relevant and exemplary portions of document text. Important
sentences, key-phrases or key-words are pulled from each document and presented as the summary.
Key-phrase extraction takes short phrases as representative, while sentence extraction pulls out the
“most relevant” complete sentences.

Historically, this research has primarily focused on summarizing individual documents. That is,
a summarizer might produce one summary for every document in a corpus. In large data situations,
individual document summarizers are problematic: even a terse summary of every document in a
corpus may be too much to read if there are tens of thousands of them. Desired content could still be
hard to find if most documents do not directly relate to the subject of interest. If many documents
are similar, the collection of summaries may be full of redundancies. If the subject of interest is
usually mentioned in a secondary capacity it might be missing entirely from the summaries.

In our context, we need to summarize multiple documents at once with an eye to extracting
the content related to our subject of interest. Some work on this has been done. Goldstein
et al. (2000) outline how multiple-document summarization is distinct from individual document
methods, and propose a sentence-scoring system to extract non-redundant sentences from small sets
of news articles. Under their system, sentences are scored and selected sequentially, with future
scores penalized by similarity to previously selected sentences. There are many tuning parameters
involved, as well as an assumption that documents have been clustered by overall topic.

Hennig (2009) fits a latent topic model (similar to LDA, discussed below) to do subject-specific
summarization of multiple documents. Here the subject is represented as a set of documents and
a short narrative of the desired content. All units of text are projected into a latent topic space
that is learned from the data independent of the subject and then sentences are extracted by a
greedy scoring procedure by comparing similarity of the latent representations of the sentences to
the subject. Although we also summarize an entire collection of documents as they pertain to a
specific subject of interest, we do not use a latent space representation of the data.

Summarization via topic modeling. Some analysis algorithms take text information as input
and produce a model, usually generative, fit to the data. The model itself captures structure
in the data, and this structure can be viewed as a summary. A popular example is the latent
Dirichlet allocation (Blei, Ng, and Jordan, 2003), which posits that each word observed in the text
is standing in for a hidden, latent “topic” variable. The rates at which each word token stands in
for each topic, and which topics appear most frequently across the corpus, provide a model-based
summary–truncate each topic to its most prominent word tokens, and the researcher can see plainly
which tokens are prominent in the text.

Chang, Boyd-Graber, Gerrish, Wang, and Blei (2009) had humans evaluate the cohesion of
words representing learned topics. They presented lists of words representing a topic with “im-
poster” word from another topic mixed in. The humans were asked to identify which words stood
out. This showed these approaches as producing cogent and reasonable topics: the words grouped
together cohered semantically. Supervised versions (Blei and McAuliffe, 2008) of these methods
can be used to find the topics and tokens which comparatively distinguish labelled documents from
each other.
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Although these methods are computationally expensive and produce dense models requiring
truncation for interpretability, they are powerful indications of the capabilities of computer-assisted
summarization. These methods analyze the corpus as a whole and, in an unsupervised way, build a
model of how the documents cover a modest number of organically grown topics. We opt instead for
a more directed process of specifying a particular subject (out of possible millions) and extracting
how that subject is treated in the corpus.

1.3 Our approach: a predictive framework

Our approach is motivated by predictive classification frameworks. Classification of text documents
using the words and phrases in those documents as features is a familiar and well-studied prediction
problem (Genkin, Lewis, and Madigan, 2007; Zhang and Oles, 2001). In a typical classification
scenario, objects belong to different groups and features of those objects are used to predict that
group membership. For our task, the two groups are subject-related articles and irrelevant articles.
The objects are units of text and the features are the phrases found in that text. We use a predictive
classifier to summarize by taking the phrases that most drive the classification as a summary of
the positive set.

A predictive framework consists of n units, each with a class label yi ∈ {−1,+1} and a collection
of p possible features that can be used to predict this class label. Each unit i ∈ I ≡ {1, . . . , n} is
attributed a value xij for each feature j ∈ J ≡ {1, . . . , p}. These xij form a n× p matrix X. The
n units are blocks of text taken from the corpus (e.g., entire articles or individual paragraphs), the
class labels yi indicate whether document unit i contains content on a subject of interest, and the
features are all the possible key-phrases that could be used to summarize the subject. y and X
can be built in several ways. We build X by reweighting the elements of a document-term matrix
matrix C:

Definition A document-term matrix C sets

Cij := The number of times key-phrase j appears in document i

This is often called the bag-of-phrases model : each document is represented as a vector with the
jth element being the total number of times that the specific phrase j appears in the document.
Stack these row vectors to make a matrix C ∈ Rn×p of counts. C has one row for each document
and one column for each phrase. C tends to be highly sparse: most entries are 0. C and X can
be viewed as vector space representations of the documents. Each document is a point in Rp, with
each dimension corresponding to a feature.

To transform raw text into this vector space, convert it to a collection of individual text docu-
ment units, establish a dictionary of possible phrases, and count how often each of the dictionary’s
phrases appear in each of the document units. Once this is completed, the summarizing process
consists of 3 major steps, illustrated in Figure 1:

1. build X from C;

2. build y by identifying which document units in the corpus treat a specified subject;

3. extract a list of phrases which summarize the documents that treat the subject (compared to
those that do not).
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For topic T

Prepare Data Matrix
Remove stop words, rescale

Label Text Units
+1 if query-related, -1 otherwise

Select k Phrases
E.g., via a classification algorithm

Form Data Matrix

For the 
whole corpus

Set Unit of Analysis
E.g., paragraph, whole article

Figure 1: The Summarization Process. The first two steps are done for the entire corpus, the latter
for a specific subject. Steps explained in text.

How the documents are labelled, how the documents are vectorized, and how phrases are selected
can all be done in different ways. Different choices for these steps result in different summarizers,
some better than others. We describe these steps and choices fully in Sections 3 and 4. Following
that, we present results from an experiment where human readers registered their approval or
disapproval of the resulting summaries from different summarizers for several subjects of interest
in a randomized experiment.

1.4 Evaluating summaries

Four sample summaries of the coverage of four different countries are shown in Table 1.3. These
summaries arguably serve as an insight into the New York Times’ coverage of these countries, and
provide some pointers as to future directions of more in-depth analysis. They came from a specific
combination of choices for the vectorization, labeling, and feature selection steps. But are these
summaries better, or worse, than the summaries from a different configuration?

Comparing the efficacy of different summarizers requires systematic evaluation. To do this,
many researchers use corpora with existing summaries (e.g., using the human-encoded key-phrases
in academic journals such as in Frank et al. (1999)), or corpora that already have human-generated
summaries (such as the TIPSTER dataset used in Neto et al. (2002)). Others have humans generate
summaries for a sample of individual documents and compare the summarizer’s output to this
human baseline. We, however, investigate summarization of many documents in cases where the
labeling is ambiguous or non-obvious, and so we do not use an annotated evaluation corpus or
summaries of individual documents. The news dataset we use, a collection of New York Times
articles from the international section, is described in Section 2 below.
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iraq russia germany mexico

american a medvedev angela merkel and border protection
and afghanistan caucasus berlin antonio betancourt
baghdad europe chancellor angela cancn
brigade gas european chihuahua
combat georgia france and denise grady
gen interfax news agency frankfurt drug cartels
in afghanistan iran group of mostly guadalajara
invasion moscow hamburg influenza
nuri nuclear marwa alsherbini oaxaca
pentagon president dmitri matchfixing outbreak
saddam republics minister karltheodor zu president felipe
sergeant sergei munich sinaloa
sunni soviet nazi swine
troops vladimir world war texas
war and who tijuana

Table 1: Four Sample Summaries of Four Different Countries. The method used was one of the
best identified for article-unit analysis by our validation experiment: a count rule with a threshold
of 2, the Lasso for phrase selection, and tf-idf reweighting of features. These summaries inform us
as to which aspects of these countries are of most concern to the New York Times in 2009: even
now, Nazis and the World Wars are tied to Germany. Iraq and Afghanistan are also tied closely.
Gen[erals] and combat are the major focus in Iraq. The coverage of Mexico revolves around the
swine flu, drug cartels, and concerns about the border. Russia, on the other hand, does not seem
strongly associated with any particular event. These observations may well be unique to the New
York Times. It would be instructive to compare to other media channels.

In the machine-learning world, numerical measures such as prediction accuracy or model fit are
often used to compare different techniques. While we hypothesize that prediction accuracy should
correlate with summary quality, there are no theoretical results to demonstrate this. Further-
more, there are no other immediate calculable measures of summary quality, and thus evaluating
summarizer performance with numerical measures is not robust to critique.

We therefore asked non-expert human readers to compare samples of news articles of interest
to samples of relevant summaries generated by our different proposed methods. We compare these
ratings across summarization method to discern which methods were most satisfactory. This survey
is described in Section 5.

The results, discussed in Section 6, show that the Lasso, with the robustness to produce high-
quality summaries across the many pre-processing schemes, is the best choice of feature selection
engine. Its cousin, L1 regularized logistic regression, performs comparably well but at greater
computational expense. Our findings also reinforce the many years of work suggesting the tf-idf
representation is a strong choice of vector space.
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Figure 2: Length Distribution of the New York Times dataset. Left plot, (a), is the distribution
of article lengths in paragraphs. The right three plots show different distributions of lengths in
words: (b) is length of single-paragraph articles, (c) is length of longer articles, and (d) is length of
the paragraphs of the longer articles (the chart is truncated at 200 words—there are 18 paragraphs
with more than 200 words).

2 Description of Text Corpus

For our investigation we used the International Section of the New York Times for the 2009 year.
Articles were scraped from the newspaper’s RSS feed2, and the HTML markup was stripped from
the text. We obtained 130,266 paragraphs of text comprising 9,560 articles. The New York Times,
upon occasion, will edit an article and repost it under a different headline and link; these multiple
versions of the articles remain in the data set. By looking for similar articles as measured by a
small angle between their feature vectors in C, we estimate that around 400 articles (4–5%) have
near-duplicates.

The number of paragraphs in an article ranges from 1 to 38. Typical articles3 have about
16 paragraphs (with an Inter-Quartile Range (IQR) of 11 to 20 paragraphs, i.e. about 75% of
articles are 11 paragraphs or longer, and 25% are 20 paragraphs or longer). However, about
15% of the articles, the “World Briefing” articles, are a special variety that contain only one long
paragraph4. Among the more typical, non-“World Briefing” articles, the distribution of article
length as number of paragraphs is bell-shaped and unimodal. Figure 2 illustrates the distribution
of number of paragraphs per article, and number of words per paragraph and per article (broken
down by article type).

The single-paragraph “World Briefing” articles have a median length of 87 words. For the
longer articles, the median number of words in an article is 664 and the median number of words in
a paragraph is 38 words. Distributions of these three statistics are shown on the right three plots

2feed://feeds.nytimes.com/nyt/rss/World
3See, e.g., http://www.nytimes.com/2011/03/ 04/world/americas/04mexico.html
4See, e.g., http://www.nytimes.com/2011/03/03/ world/americas/03briefs-cuba.html
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of Figure 2. Longer articles have much shorter paragraphs, generally, than the “Word Briefing”
single-paragraph articles.

3 Building The Predictive Framework

3.1 Choosing the granularity of analysis

We divide the raw text into units of analysis and determine which of those units have relevant
information about the subject, and summarize based on common features found in these units.
The granularity with which the text is partitioned may then have some impact on the resulting
summaries. In particular, we hypothesized that using smaller, lower-word-count units of text should
produce more detail-oriented summaries, while using larger units will highlight key-phrases dealing
more with the larger themes discussed when the subject of interest is mentioned.

We tested this hypothesis by comparing summarizers that analyze at the article level to those
which analyze at the component-paragraphs level. Interestingly, we found no large differences. See
Section 6.5.

3.2 Identifying potential summarizing phrases

To build C we first identify all possible phrases that could be part of a summary. This list of
possibilities constitute our dictionary. Building this dictionary begins with asking, “Which text
phrases are acceptably descriptive?” Sometimes the answer to this question suggests a manually-
defined dictionary: if summaries should only list, e.g., countries then the dictionary would be easy
to assemble by hand.

In many situations, however, the dictionary of terms should be kept large, and possibly be
drawn from the corpus itself. Different decisions—Should capitalization matter? Are punctuation
marks terms? Can terms include numerals?—yield dictionaries varying widely in size and utility.
Terms could be further disambiguated by many natural language tools, e.g. part-of-speech tagging
which would again increase dictionary size. Any automated system for forming a dictionary will
entail at least some uncertainty in term identification.

We elected to use a large dictionary containing all phrases of up to three words in length.
We generated our dictionary by first removing all numerals and punctuation, then case-folding
(converted all text to lowercase). We then segmented each document into overlapping phrases,
consisting of all single words, bigrams and trigrams in that document unit. Some text analysts
stem their phrases, reducing words to a core root prefix, e.g., truncating “terror,” “terrorist,” and
“terrorism” to “terror”. We do not stem. There is a semantic difference if a particular subject
is associated with “canadians”, the citizenry versus “canada” the country. Stemming would lose
the ability to make that inferrence. From our corpus, this identified in 4.5 million distinct phrase
tokens. We then did a first-pass pruning, removing all phrases appearing fewer than six times in
the corpus, resulting in a dictionary of p = 216, 626 distinct phrases.

3.3 Representing subjects and labeling the text

We train a classifier to predict document labels, yi ∈ {−1,+1}, with their vectors of phrase features,
xi ∈ Rp, for i = 1, . . . , n. In the labeling step we build y = (y1, . . . , yn) by deciding whether each
text unit in the corpus should be considered a positive class example or a negative class example.
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Establishing the class labels for a news document corpus is sometimes straightforward. For instance,
when Wahl et. al compared 1989 articles about mental illness to those from 1999, the labels are
simple: the documents from the opposing years go in opposite classes. We build y by identifying
which of the document units treat the subject of interest. For small enough n, y could be built
by hand. For corpora too large to admit manual labeling, we need reasonable automatic labeling.
Ideally this need not be a perfect identification—noise in labeling should not have undue impact
on the resulting summaries.

In the large sense, a subject is a concept of interest that an investigator might have. We
represent a subject with a small set of phrases, e.g., the subject of China would be well represented
by the set {“china,” “chinas,” “chinese”}. Specifically, let the subject Q ⊂ J be a set of phrases
selected to ideally capture a concept of interest.

We consider two general labeling techniques. The first technique, count-m, marks text unit i
as treating a subject if related phrases appear frequently enough, as given by:

Definition Count-m labeling labels text unit i as:

yi = 2 · 1{ri ≥ m} − 1

where 1{·} is the indicator function and ri ≡
∑

j∈Q cij is the total number of subject-specific
phrases in unit i.

The second labeling technique, hardcount-m, drops any document i with 0 < ri < m from the
data set instead of labeling it with −1. The hardcount method considers those documents too
ambiguous to be useful as negative class examples. It produces the same positive example set as
count-m would. We hypothesized that dropping the ambiguous document units will heighten the
contrast in content between the two classes, and thus lead to superior summaries. It did not. See
Section 6.5

In conjunction with labeling the documents, we remove each phrase in subject Q from the set
of possible features J to prevent the summary from being trivial and circular: appearance of the
phrase “united states” perfectly distinguishes the set of documents containing the phrase “united
states” in a perfectly boring and tautological way. We also remove sub-phrases and super-phrases.
For example, if Q is {“united states”} then we remove candidate phrases “united”, “states”, “united
states”, “of the united”, “states of america” and so forth. The removal is easily automated. For
ease of notation in the following text, when we state X, we mean the X for which this removal has
already been performed for the relevant subject.

We generate y this way because we are interested in how a subject is treated in a corpus. Other
approaches are possible. For example, y might identify which articles were written in a specific
date range; this would then lead to a summary of what was covered in that date range.

3.4 Reweighting and removing features

Automatic text processing typically involves a lot of pre-processing. It is well known, for example,
that baseline word frequencies can impact information retrieval methods, and so often raw counts
are adjusted to account for commonality and rarity of terms (e.g., Monroe, Colaresi, and Quinn,
2008). In the predictive framework, these choices revolve around building the feature matrix X.
We transform each text unit into a vector of features where the features are short phrases of up to
three words long. We consider three different forms of this vectorization, all built on the traditional
bag-of-phrases representation.
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Our first, baseline, vectorization is to simply drop stop words (words a priori determined as too
uninformative to merit inclusion). Our second is an implementation of the tf-idf technique (Salton,
1991), rescaling the bag-of-phrases components so that appearances of rarer phrases are considered
more important than common ones. Our third approach is to rescale each phrase vector (column
of C) to have unity L2 norm.

Stop Words. Stop words are low information words such as “and,” or “the”, typically appearing
with high frequency. Stop words may be context dependent. For example, in US international
news “united states” or “country” might be considered high frequency and low information. High-
frequency words have higher variance and effective weight in many methods, causing them to be
erroneously selected as features due to sample noise. To deal with these nuisance words, many text-
processing methods use a fixed, hand-built stop-word list and preemptively remove all features on
that list from consideration (e.g., Zhang and Oles, 2001; Ifrim, Bakir, and Weikum, 2008; Genkin
et al., 2007).

This somewhat ad-hoc method does not adapt automatically to the individual character of a
given corpus and presents many difficulties. Switching to a corpus of a different language would
require new stop word lists for the summarizer. When considering phrases instead of single words,
the stop word list is not naturally or easily extended. For example, simply dropping phrases con-
taining any stop word is problematic: it would be a mistake to label “shock and awe” uninteresting.
On the other hand, there are very common candidate phrases that are entirely made up of stop
words, e.g., “of the,” so just culling the single word phrases is unlikely to be sufficient. See Monroe
et al. (2008) for a more detailed examination of some of these issues.

L2-rescaling. As an alternative, appropriately adjusting the phrase vectors can act in lieu of a
stop-word list by reducing the variance and weight of the high-frequency features. This ideally
removes any bias towards selecting features purely on their overall rates of appearance. We use
the corpus to find baseline appearance rates for each feature and then appropriately adjust C by
a function of these rates; this core idea is discussed by Monroe et al. (2008). We consider two
approaches to reweighting as alternatives to simple stop word removal: L2-rescaling of the columns
of C, and tf-idf weighting.

We define L2-rescaling to be:

Definition X is a L2-rescaled version of C if each column of C is rescaled to have unit length
under the L2 norm. I.e.:

xij =
cij√
zj
, where zj ≡

n∑
i=1

c2ij

To illustrate the impact of L2 rescaling, see Table 2, containing four summaries from the L1LR
feature selection method. Compare the first two columns: column 1 is from a summarizer that
used stop-word removal only and Column 2 is from one that used both stop-word removal and L2-
rescaling. Despite stop-word removal, the first list nevertheless contains some meaningless words
such as “mr”, while the rescaled list does not contain these words. Indeed, without rescaling,
“mr” and “said” appear for most subjects examined. Furthermore, the remaining words are quite
general. This is a common problem with stop-word lists: they get rid of the worst offenders, but
do not solve the overall problem. If no stop words are deleted, then we get column 3 (no rescaling
or stop-word removal) and column 4 (rescaling only). Column 3 is terrible; the list is dominated
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by high-frequency, low-content words. Column 4 is identical to Column 2—the rescaling, in this
case, has rendered the stop-word list irelevant.

stop-word stop word no rescaling
only and rescaling adjustment only

1 afghanistan asian afghanistan asian
2 beijing beijing and beijing
3 companies contributed research beijing contributed research
4 countries euna lee countries euna lee
5 economic global global global
6 global hong kong has hong kong
7 hong jintao his jintao
8 military north korea its north korea
9 mr shanghai mr shanghai

10 north staterun north staterun
11 percent uighurs of uighurs
12 the united states wen jiabao the united wen jiabao
13 uighurs xinhua to xinhua
14 world united states
15 year was

Table 2: Comparative Effects of Reweighting Methods. These are the four possible lists for “China”
for all combinations of L2-rescaling and stop-word removal. The phrase-selection method used is
L1LR with count-2 labeling. The unit of analysis is full articles.

tf-idf Weighting. A different form of rescaling comes from the popular tf-idf heuristic (Salton,
1991), which attempts to de-emphasize commonly occuring terms while also trying to account for
each document’s length.

Definition X is a tf-idf weighted version of C if

xij :=
cij
qi

log

(
n

dj

)
where qi ≡

∑p
j=1 cij is the sum of the counts of all key-phrases in document i and dj ≡

∑n
i=1 1{cij >

0} is the number of documents in which term j appears at least once.

Under tf-idf, words which appear in a large proportion of documents are shrunk considerably in
their representation in X. Words which appear in all n documents, such as “the”, are zeroed out
entirely which drops them from consideration.

A potential advantage of tf-idf is that it might ease comparisons between documents of different
lengths because term counts are rescaled by the total number of terms in the document, which is
related to the document length.

We hypothesized that feature weighting is more transparent and reproducible than stop word
removal and that it results in superior summaries when compared to stop-word removal. With
the human validation experiment, we compared using L2-rescaling, tf-idf weighting, and stop-word
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removal as the pre-processing step for each of our feature selectors and found that humans indeed
prefer lists coming from reweighting methods.

4 Feature selection

Classic prediction methods give models where each feature usually is given a weight. The models
are thus hard to interpret when there are many features, as is typically the case with text analysis.
We, however, want to ensure that the number of phrases selected is small so the researcher can
easily read and consider the entire summary. Short summaries are quick to digest, and thus are
easily comparable. Such summaries could even be automatically generated for a corpus in one
language and then translated to another, thus easing comparison of media coverage from different
nationalities and allowing insight into foreign language news. These summaries are a versatile
tool for understanding the content of large corpora. The constraint of short summaries makes the
summarization problem a sparse feature selection problem, as studied in, (e.g., Forman, 2003; Lee
and Chen, 2006; Yang and Pendersen, 1997). In order to easily explore a corpus, these methods
need to be fast as well. The feature selection step is the most computationally intensive; we discuss
relative speeds below.

Even with severe restrictions on the length of phrases in our data set there were more than
4,500,000 potential phrases that one might select as a key-phrase. Selecting the relevant phrases
most connected to a subject of interest is thus a high dimensionality problem. Recent regularized
statistical classification methods give hope for solving this difficult problem. Sparse methods in
particular, such as L1-penalized regression, naturally select a small subset of the available features
(in our case candidate key-phrases) as being relevant predictors.

Sparsity lends itself to human interpretability as a small set of features is more easily evaluated
by human researchers. In other domains, L1-regularized methods are useful for sparse model
selection; they can identify which of a large set of mostly irrelevant features are associated with
some outcome. In our domain there is no reasonable underlying model that is indeed sparse; we
expect different phrases to be more or less relevant, but few to be completely and utterly irrelevant.
Nevertheless, we still employ the sparse methods to take advantage of their feature selection aspects,
hoping that the most important features will be selected first.

Given the particular document vectors and document labels for a subject, we extract the features
that constitute the final summary four different ways. Two of them, Co-occurrance and Correlation
Screening, are scoring schemes where each feature gets scored independently and the top-scoring
features are taken as a summary. This is similar to traditional key-phrase extraction techniques.
The other two (the Lasso and L1LR) are L1 regularized version of least squares linear regression.
They have been used in many domains for sparse model selection, and seemed naturally suited to
this task. As an example of different summaries of the same subject, Table 3 has four summaries
for China. These different summaries, which used the same reweighting and labeling methods,
are generated from the four different feature selectors discussed below. Clearly choice of feature
selector matters greatly.

It is important to underline that, in our case, the object of interest has shifted: we are using
classification methods but are not interested in classification. Our underlying hypothesis is that
those features useful for classification are the very features that humans would judge as viable and
accurate summaries of the subject being classified in the corpus given.

The feature selection step is a regression (or similar) analysis of the vectorized, labeled text.
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Co-Occur Correlation L1LR Lasso

1 and beijing and asian asian
2 by beijings beijing beijing
3 contributed research contributed research contributed research contributed research
4 for from beijing euna lee exports
5 global global global global
6 has in beijing hong kong hong kong
7 hu jintao li jintao jintao
8 in beijing minister wen jiabao north korea north korea
9 its president hu jintao shanghai shanghai

10 of prime minister wen staterun tibet
11 that shanghai uighurs uighurs
12 the the beijing wen jiabao wen jiabao
13 to tibet xinhua xinhua
14 xinhua xinhua the
15 year zhang

Table 3: Comparison of the Four Feature Selection Methods. Four sample summaries of news
coverage of China. (Documents labeled via count-2, X is the L2-rescaling of the document-term
matrix C.) Note superior summary quality of the right two feature selectors that explicitly use the
predictive framework. See text for details.

We seek a subset of phrases K ⊆ J with cardinality as close as possible to, but no larger than, a
target k, the desired summary length. We typically use k = 15 phrases, but 30 or 50 might also be
desirable. The higher the value of k, the more detailed and complex the summary.

We consider two simple phrase feature selectors (Co-occurrence and Correlation Screening) that
rate each feature independently of the others, and two more computationally expensive feature
selection methods (the Lasso and L1-regularized logistic regression) that use sparse regression
techniques that incorporate relationships between features.

For the two simpler methods, we score all candidate phrases individually and then take the k
highest-scoring, distinct phrases as the summary. By distinct, we mean that we drop all selected
sub-phrases when counting list length. For example, if “united states” and “united” are both
selected, we drop “united” from the summary.

The primary advantages of Co-Occurance and Correlation Screening is that they are fast, scal-
able, and easily distributed across multiple platforms for parallel processing. Unfortunately, as
they score each feature independently from the others, they cannot take advantage of any structure
between features to aid summarization.

For the two sparse regression methods, we tune the usual regularization parameters to achieve
k non-zero, distinct phrases and then take these resulting phrases as our summary. Sparse methods
typically incur a heavier computational burden, though this extra computational cost would be
worth paying in order to select a more representative and less redundant set of features.

Below we detail the four specific phrase-selection methods. Two of these, Co-occur and L1-
penalized logistic regression (L1LR), are familiar schemes from previous work Gawalt, Jia, Miratrix,
Ghaoui, Yu, and Clavier (2010). We predict that the heavyweight methods will be superior due to
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their naturally-enforced sparsity and greater use of the parts of the media corpus unrelated to the
subject.

4.1 Co-Occurrence

This is our simplest, baseline, method. The idea is to simply take those phrases that appear most
often in the positively marked text as the summary. This method is often used in, e.g., newspaper
charts showing the trends of major words over a year (such as Google News Trends5) or word or
tag clouds (created at sites such as Wordle6).

By the feature selection step we have two labelled document subsets, I+ = {i ∈ I|yi = +1}, of
cardinality #I+, and I− = {i ∈ I|yi = −1}, of cardinality #I−. Define Ê(xj |y=+1) as the mean
of xij over all i such that yi = +1. Also define, e.g., P (y=+1) as the proportion of yi that are +1.
Note that #I+ = nP (y=+1). Compute the relevance score sj of feature j for all j ∈ J :

sj =
1

#I+
∑
i∈I+

xij = Ê(xj |y=+1).

sj is the expected weight of the phrase in the positively marked examples. If the features have not
been weighted, then sj is the average number of times the feature appears in a positively marked
example.

For some k′, let s̄ be the (k′ + 1)th highest value found in the set {sj | j ∈ J }. Build
K = {j ∈ J : sj > s̄}, the set of (up to) k′ phrases with the highest average weight across the
positive examples. Any phrases tied with the (k′+1)th highest value are dropped, sometimes giving
a list shorter than k′. The size of K after subphrases are removed can be even less. Let the initial
value of k′ be k, the actual desired length. Now adjust k′ upwards until just before the summary
of distinct phrases is longer than k. We are then taking the k′ ≥ k top phrases and removing the
sub-phrases to produce k or fewer distinct phrases in the final summary.

If X = C, i.e. it is not weighted, then this method selects those phrases that appear most
frequently in the positive examples. The weighting step may, however, reduce the co-occurrence
score for common words that appear frequently in both the positive and negative examples. This
is especially true if, as is usually the case, there are many more negative examples than positive
ones. This type of simple adjustment can radically increase this method’s performance.

4.2 Correlation Screening

Correlation Screening selects features with the largest absolute correlation with the subject labeling
y. It is a fast method that independently selects phrases that tend to appear in the positively marked
text and not in the negatively marked text. Score each feature as:

sj = |cor(xj , y)|

Now select the k highest-scoring, distinct features as described for Co-Occur, above.

As a motivation for this technique, suppose that the features xj , j = 1, . . . p have been rescaled
to have a variance of 1. L2 rescaling approximates this, but as the columns are not 0-mean, the

5http://www.google.com/trends
6http://www.wordle.net/
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variances are going to be less than 1. The empirical covariance cov(xj , y) = sj ·
√
var(xj)var(y) =

sj ·
√
var(y) of xj and y is then:

cov(xj , y) = Ê(xjy)− Ê(xj)Ê(y)

= Ê(xj |y=+1)P̂ (y=+1)− Ê(xj |y=−1)P̂ (y=−1)−[
Ê(xj |y=+1)P̂ (y=+1) + Ê(xj |y=−1)P̂ (y=−1)

]
P̂ (y=+1)−[

Ê(xj |y=+1)P̂ (y=+1) + Ê(xj |y=−1)P̂ (y=−1)
]
P̂ (y=−1)

= Ê(xj |y=+1)P̂ (y=+1)
(

1− P̂ (y=+1) + P̂ (y=−1)
)
−

Ê(xj |y=−1)P̂ (y=−1)
(

1− P̂ (y=−1) + P̂ (y=+1)
)

= 2P̂ (y=+1)P̂ (y=−1)
[
Ê(xj |y=+1)− Ê(xj |y=−1)

]
∝ Ê(xj |y=+1)− Ê(xj |y=−1)

The proportionality constant is fixed by y and constant across all features.

Co-Occur gives scores proportional to Ê(xj |y = 1) only. A high score for feature j does
not necessarily indicate any connection to the target y, and could instead be obtained if j is
an overall common phrase. Correlation Screening does more: the difference between Ê(xj |y=+1)
and Ê(xj |y=−1) must relate to the connection between xj and y. Due to the fact that we do not
recenter the xj , the above argument only completely holds when comparing features with similar
variances, which are basically functions of frequency of appearance. Not being centered penalizes
features with high variance, which has been generally seen as a good benefit (see, e.g., Monroe
et al., 2008).

4.3 L1-penalized linear regression (Lasso)

The Lasso is an L1-penalized version of linear regression and is the first of two feature selection
methods examined in this paper that address our model-sparsity-for-interpretability constraint
explicitly. Imposing an L1 penalty on a least-squares problem regularizes the vector of coefficients,
allowing for optimal model fit in high-dimensional (p > n) regression settings. Furthermore, L1

penalties typically result in sparse feature-vectors, which is desirable in our context. The Lasso
takes advantage of the correlation structure of the features to, in principle, avoid selecting correlated
terms. For an overview of the Lasso and other sparse methods see, e.g., The Elements of Statistical
Learning (Hastie, Tibshirani, and Friedman, 2003).

The Lasso is defined as:

(β̂(λ), γ̂) := arg min
β,γ

m∑
i=1

∥∥y − xTi β − γ∥∥2 + λ
∑
j

|βj |. (1)

The penalty term λ governs the number of non-zero elements of β. We use a non-penalized intercept,
γ, in our model. Penalizing the intercept would shrink the estimated ratio of number of positive
example documents to the number of negative example documents to 1. This is not desirable;
the number of positive examples is far less than 50%, as shown in Table 6, and in any case is
not a parameter which needs estimation for our summaries. For a fixed λ, we solve this convex
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optimization problem with a modified version of the BBR algorithm (Genkin et al., 2007); this is
described further in Section 4.5.

Higher values of λ result in the selection of fewer features. A sufficiently high λ will return a
β with zero weight for all phrases, selecting no phrase features, and λ = 0 reverts the problem to
ordinary linear regression, leading to some weight put on all phrases in most circumstances. By
doing a binary search between these two extremes, we can quickly find a value of λ for which β(λ)
has the desired k distinct phrases with non-zero weight.

4.4 L1-penalized logistic regression (L1LR)

Similar to the Lasso, L1-penalized logistic regression (L1LR) is typically used to obtain a sparse
feature set for predicting the log-odds of an outcome variable being either +1 or −1. It is widely
studied in the classification literature, including text classification (see Genkin et al., 2007; Ifrim
et al., 2008; Zhang and Oles, 2001). We define the model as:

(β̂(λ), γ̂) := arg min
β,γ
−

m∑
i=1

log
(
1 + exp[−yi(xTi β + γ)]

)
+ λ

∑
j

|βj |. (2)

The penalty term λ again governs the number of non-zero elements of β. As with Lasso, we are
again not penalizing the intercept. L1LR is also implemented with a form of the BBR algorithm.

4.5 Computational cost

Computational costs primarily depend on the size and sparsity of X. X is stored as a list of tuples,
each tuple being a row and column index and value of a non-zero element. This list is sorted so it
is quick to identify all elements in a column of a matrix as they are in sequential order. This data
structure saves both in storage and computational cost.

Let Z be the number of nonzero elements in X. Then the complexity for the tf-idf and L2

rescaling methods are O(Z) because we only have to re-weight the nonzero elements and the
weights are only calculated from the nonzero elements. Stop-word elimination is also O(Z).

The running times of the four feature selection methods differ widely. For Correlation Screening
and Coocurrence, the complexity is O(Z).

The Lasso and L1LR depend on solving complex optimization problems. We implemented
them using a modified form of the BBR algorithm (Genkin et al., 2007). The BBR algorithm is
a coordinate descent algorithm to solve L1 penalized logistic regressions with penalized (or no)
intercept. It effectively cycles through all the columns of X, computing the optimal value for βj
for feature j holding the other features fixed. The intercept would simply be another column in X
with all 1s.

We modified the BBR algorithm such that 1) we can solve the Lasso with it; 2) we do not
penalize the intercept; and 3) the implementation exploits the sparsity of X. Due to this, we do
not center the prediction matrix to preserve its sparsity. For both the Lasso and Logistic regression,
we need only a few iterations through β1 to βp to get the final solution.

For each iteration, we first calculate the optimum intercept γ̂ given the current value of β̂
and then cycle through the features, calculating the update to βj of ∆βj for j = 1, . . . , p. The
complexity of these computations for ∆βj is O(Zj), where Zj is the number of nonzero elements in
the jth column of X because calculation of ∆βj involves only a few simple mathematical operations
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(+,−, ∗, /) on the non-zero elements of X’s jth column. Given this, we have a complexity cost of
O(Z) for each full cycle through the features. The overall computational complexity of the Lasso
and Logistic regression is then O(Itr×Z) where Itr is the number of iterations needed. This cost
is further multiplied by the number of steps needed in the binary search of the tuning parameter λ
to achieve the desired summary length.

Note that if the sparse matrix technique is not used, the complexity for a single optimization
step is O(Itr × n× p). When Z � n× p, our implementation saves a lot of computation cost.

Empirical Speed Tests. We timed the various methods to compare them given our data set.
The average times to summarize a given subject for each method, not including the time to load,
label, and rescale the data, are on Table 4. As expected, Co-occurence and Correlation Screening
are roughly the same speed. The data-preperation steps by themselves (not including loading the
data into memory) average a total of 15 seconds, more expensive by far than the feature selection
for the simple methods (although we did not fully optimize these steps). This is primarily due to
generating the labeling y and dropping the subject-related features from the matrix X.

Lasso is about 9 times slower and L1LR is more than 100 times slower using current optimization
techniques, but these techniques are evolving fast. For example, one current area of research is safely
pruning many irrelevant features before fitting which can lead to substantial speed-ups (El Ghaoui,
Viallon, and Rabbani, 2011). This safe feature elimination method removes features from the data
set prior to solving the Lasso or L1LR optimization. This pre-processing step is computationally
very cheap and allows for a huge reduction in the number of features when the penalty parameter
is high, which is precisely the regime where the desired list length is short, i.e. less than a hundred.

We implemented the sparse regression algorithms and feature correlation calculations in C; the
overall package is in matlab. While further optimization is quite plausible, it is clear that L1LR
is very slow. The speed cost for Lasso, especially when considering the overhead of labeling and
rescaling, is fairly minor, as shown on the third column of Table 4.

Phrase Total Percent
selection time increase

(sec) (sec)

Co-occur 1.0 20.3
Correlation Screen 1.0 20.3 0%

The Lasso 9.3 28.7 +41%
L1LR 104.9 124.2 +511%

Table 4: Computational Speed Chart. Average running times for the four feature selection methods
over all subjects considered. Second column includes time to generate y and adjust X. Final column
is percentage increase in total time over co-occur, the baseline method.

4.6 The impact of selecting distinct phrases

Final summaries consist of a target of k distinct key-phrases. The feature-selectors are adjusted to
provide enough phrases such that once sub-phrases (e.g., “united” in “united states”) are removed,
the list is k phrases long. This removal step, similar to stop-word removal, is somewhat ad hoc. It
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would be preferable to have methods that naturally select distinct phrases that do not substantially
overlap. Sparse methods have some protection against selecting highly correlated features, and
thus they might not need this cleaning step as sub-phrases tend to be highly correlated with parent
phrases, with correlations often exceeding 0.8. To investigate this, we examined the average value
of k′ − k, the difference of the length of the summary without sub-phrases removed to the length
with this removal. Results are shown in Table 5. The sparse methods indeed do not need to
take advantage of this step, supporting the heuristic knowledge that L1-penalization tends to avoid
selecting correlated features. Under tf-idf, only a little over 1 phrase, on average, is dropped. The
independent feature selection methods, however, drop many phrases on average.

For Correlation Screening, this difference is because sub-phrases are often extremely highly
correlated with parent phrases—if a given phrase is highly correlated with the outcome, then any
sub-phrase or parent phrase is likely to also be highly correlated. This problem is especially common
with the names of political leaders, e.g., Prime Minister Wen Jiabao in the second column of Table 3.
Correlation Screening is virtually unusable without dropping sub-phrases and expanding the list to
the desired length.

Reweighting Method
Feat. Sel. Method stop-word L2-rescaling tf-idf rescaling

Co-Occur 2.7 12.8 7.3
Correlation 12.9 12.9 12.7

L1LR 0.5 3.9 1.2
Lasso 0.6 3.7 1.2

Table 5: Phrase Reduction for the Four Feature Selectors. Each entry shows the mean number
of sub-phrases dropped, on average, for all varieties of summarizer with specified rescaling and
feature-selection method for a target summary length of k = 15 phrases. For example, under tf-idf
we need to generate a full list of 16.2 phrases with L1LR, on average, to achieve a final list length of
15 phrases. The sparse methods do not need much pruning. Correlation Screening, as anticipated,
selects highly related sub-phrases and therefore requires much pruning.

The amount of sub-phrase reduction in co-occurrence-derived summaries strongly depends on
the reweighting method used. Under stop-word removal there is little reduction since many of the
selected phrases are combinations of non-overlapping stop-words, such as “of the,” or “to the,”
where the individual component stop-words have been removed prior to summarization. Under
L2-rescaling, the typically common stop-word combinations no longer score highly, and problems
similar to those seen in the Correlation Screening results arise: groups of parent- and sub-phrases
score similarly, requiring sub-phrase pruning to improve list quality.

4.7 A Further Argument for Feature Reweighting

Now that we have introduced our feature selectors, we can give a small mathematical argument
to the importance of rescaling when using L1LR. Consider tuning λ so as to select only a single
feature, ideally the most important for the given topic. We have shown:
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Theorem 4.1.

λ > max
j

∣∣∣∣∣∑
i

Xijyi
1 + (n1

n0
)yi

∣∣∣∣∣ =⇒ β̂j(λ) = 0 for all j

As λ is reduced from an intercept-only solution, the first feature selected will then be the one
with the largest ∑

i

Xijyi
1 + (n1/n0)yi

.

See Appendix A for the proof. There is also a similar theorem, not shown, for the penalized-
intercept variant.

The theorem tells us that as we reduce λ from the null solution the first predictor (phrase)
selected by L1LR is the one with the largest value of <Xj , y> α :=

∑
iXijyi/αi, where αi =

1+(n1/n0)
yi . These quantities have no easy interpretation if X is not rescaled. On the other hand,

if X is rescaled: <Xj , y> α = <Xj , yα> = ||Xj ||||Yα|| cos θα = ||Yα|| cos θα where the ith element
of yα is yi/αi and where ||Yα|| is constant across j. Ranking will depend only on θα, the angle
between Xj and yα. If Xj is not normalized then ‖Xj‖ ≥

√
p, where p is the number of non-zero

elements of Xj , so more frequent words have a sizable boost to their weights, regardless of y. The
scale of Xj matters. If Xj is not rescaled, the comparison between features is unfair. If it is, we
are measuring closeness to a canonical direction yα.

5 Human Experiment

A summarizer’s resulting phrase list should be short and interpretable. It should reflect how humans
themselves, had they the time or ability to read the corpus, would summarize the subject. The
list should be comprehensive. It should give informative words. There should be few redundancies.
It would touch on a broad range of aspects of the subject, suggesting a premium placed on how
unrelated a list’s phrases are from each other. Many techniques might give short lists of phrases
potentially related to a given subject. The difficulty lies in how to evaluate these different techniques
in terms of relevant metrics—salience, accuracy, and utility. Classical measures of performance such
as prediction accuracy or model fit might indicate these things—indeed, this belief motivates our
overall approach—but we do not know the strength of the connection. Indeed some researchers
investigating the interpretability of learned topics in a document set found that the model fit
measures for different models did not correspond to human preference(Gawalt et al., 2010; Chang
et al., 2009).

Although a bit time consuming, it is not too difficult for people to tell how well a summary
relates to a subject. Because final outcomes of interest are governed by human opinion, the only
way to validate that a summarizer is achieving its purpose is via a study where humans assess
summary quality. We therefore conduct such a study. Our study has three main aims: to verify
that features used for classification are indeed good key-phrases, to help learn what aspects of the
summarizers seem most important in extracting the key meaning of a corpus, and to determine
which feature selection methods are most robust to different choices of pre-processing (choice of
granularity, labeling of text units, and rescaling of X).

In our experiment, we compare our four feature selection methods under a variety of labeling
and vector-reweighting methods in a crossed, randomized experiment where non-experts read both
original documents and our summaries and judge the quality and relevance of the output. Even
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though we expect individuals’ judgements to vary, we can average the responses across a collection
of respondents and thus get a measure of overall, generally shared opinion.

We carried out our survey in conjunction with the XLab, a campus lab dedicated to helping
researchers conduct human experiments. The lab provides a room of kiosks where researchers can
ask a series of questions of their respondents in a focused, controlled environment. We recruited 36
respondents (undergraduates at a major university) from the lab’s respondent pool via a generic,
nonspecific message stating that there was a study that would take up to one hour of time. While
these experiments are expensive and time consuming, they are necessary: as far as we can determine,
there is as of yet no other avenue of assessment in this domain.

5.1 Generating the sample of summaries

A choice of each of the options described above gives a unique summarizer. We evaluated 96
different summarizers built from these factors:

1. We evaluated summarizers that analyzed the data at the article-unit level and at the paragraph-
unit level (see Section 3.1).

2. When performing paragraph-level analysis, we labeled document units using count-1, count-2,
and hardcount-2. For the article-unit analysis we considered these three, plus count-3 and
hardcount-3 (see Section 3.3).

3. We considered tf-idf weighting, L2 rescaling, and simple stop-word removal (see Section 3.4).

4. We considered all four phrase-selection techniques (see Section 4).

Choices of unit of analysis, labeling, the three preprocessing options, and the four phrase-selection
methods give 96 different summarizers indexed by these combinations of factors.

We compared the efficacy of these combinations by having respondents assess the quality of
several different summaries generated by each summarizer. We applied each summarizer to the set
of all articles in the New York Times International Section from 2009 for 15 different countries of
interest. These countries are listed in Table 6. We only considered those countries with reasonable
representation in the corpus (i.e., the name of the country appeared in at least 200 articles). After
identifying these countries, we hand-specified a phrase set Q for each county by including any
plurals and possessives of the country and any common names for the country’s people. Using
these 15 subjects on each of the 96 summarizers, we calculated 1,440 summaries. We consider these
summaries a representative sample of the summarizers’ output.

Table 6 also includes the number of positively marked examples under all the count-m labeling
schemes we used for both article- and paragraph-unit analysis. The “article-1” header is the most
generous labeling: any article that mentions any of the words associated with the subject one or
more times is marked as treating the subject. Even under this, positive examples are scarce; it is
clear we are attempting to summarize something that does not constitute a large portion of the
text. Hardcount-m has the same number of positive examples as count-m, but fewer negative ones.

5.2 The survey and respondents

For our survey, paid respondents were convened in a large computer lab. Each respondent sat at a
computer and was given a series of questions over the course of an hour. Respondents assessed a
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article-1 article-2 article-3 paragraph-1 paragraph-2
subject # % # % # % # % # %

china 1436 15% 970 10% 800 8% 6455 5% 2026 1.6%
iran 1387 15% 906 9% 715 7% 4875 4% 1621 1.2%
iraq 1139 12% 710 7% 562 6% 4806 4% 1184 0.9%
afghanistan 1133 12% 729 8% 592 6% 4774 4% 659 0.5%
israel 1126 12% 591 6% 388 4% 4478 3% 1537 1.2%
pakistan 989 10% 650 7% 555 6% 4454 3% 1384 1.1%
russia 981 10% 699 7% 590 6% 4288 3% 1168 0.9%
france 867 9% 419 4% 291 3% 2815 2% 586 0.4%
india 848 9% 613 6% 537 6% 2368 2% 559 0.4%
germany 788 8% 387 4% 284 3% 2333 2% 459 0.4%
japan 566 6% 273 3% 195 2% 1780 1% 406 0.3%
mexico 413 4% 238 2% 189 2% 1475 1% 392 0.3%
south korea 382 4% 208 2% 136 1% 1254 1% 251 0.2%
egypt 361 4% 231 2% 194 2% 1070 1% 230 0.2%
turkey 281 3% 125 1% 96 1% 797 1% 197 0.2%

Table 6: Our Experiment’s Subjects and the Size of their Positive Example Set for different count
rules. “Article-m” denotes positive examples when using count-m rule for articles, and so forth.
“#” denotes number of units positively marked and “%” denotes portion of the total text-units
positively marked under each labeling and document unit method. There is a larger percentage of
units marked as positive in the article-unit analysis. Generally, only a small portion of articles are
considered topical for a given subject.

series of summaries and articles presented in 6 blocks of 8 questions each. Each block considered a
single (randomly selected) subject from our list of 15. Within a block, respondents were first asked
to read four articles and rate their relevance to the specified subject. Respondents were then asked
to read and rate four summaries of that subject randomly chosen from the subject’s library of 96.
The survey was a sequence of simple web-forms presented in a browser set to “kiosk-mode,” with
the navigation buttons and title hidden. Respondents could not go back to previous questions.

Before the survey all respondents did a sample series of four practice questions and were then
asked if they had any questions as to how to score or rate articles and summaries.

Evaluating article topicality. The articles presented in a block were selected with a weighted
sampling scheme in which the probability of an article being included was proportional to the
number of times it mentioned the country’s name to insure that respondents had a high probability
of seeing several articles actually relevant to the subject being investigated in the block. We
monitored the success of this scheme (and collected data about the quality of the automatic labelers)
by asking the respondents to evaluate each shown article’s relevance to the specified subject on a
1 to 7 scale.

We then averaged these scores for each article to obtain overall article relevance (what we call
the article’s “topicality”). With 4 or higher being scored as relevant, respondents saw at least 2
articles (out of the 4) on the subject of interest about 75% of the time. With 3 or higher, the
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number of blocks with at least two relevant articles rises to 91%. We attempt to summarize how
a subject is treated overall, including how it is treated in articles in which the subject is only a
secondary consideration. For example, an article focused on world energy production may still talk
a bit about Russia, and connections like this are still important in driving the overall image of
Russia in the news. Hence, even a modest score of 3 or 4 is a likely indication that the article has
subject-related content to be summarized.

An article could potentially be presented multiple times to the same respondent over the course
of the survey if that article was relevant to multiple subjects. This did occur, although infrequently
(only 9 articles out of 408 distinct articles presented were used for more than one subject). Only the
first 120 words of each article were shown; consultation with journalists suggests this would not have
a detrimental impact on content presented, as a traditional newspaper article’s “inverted pyramid”
structure moves from the most important information to more minute details as it progresses
(Pottker, 2003).

Evaluating summaries. The summaries were presented after the four articles. A simple random
sample of 4 summaries was selected from the 96 possible. Each summary was presented on its own
screen. The respondents were asked to assess each summary in four respects:

1. Content: How does this list capture the content about [subject] in the text you just read?
(1-7 scale, 7 being fully captured)

2. Relevance: How many words irrelevant or unrelated to [subject] does this list contain? (1-7
scale, 7 being no irrelevance)

3. Redundancy: How many redundant or repeated words does this list contain? (1-7 scale, 7
being no redundancies)

4. Specificity: Given what you just read, would you say this list is probably too general or too
specific a summary of how [subject] was covered by the newspaper in 2009? (response options:
too general, about right, too specific, not relevant, and can’t tell)

All respondents finished their full survey, and fewer than 1% of the questions were skipped.
Time to completion ranged from 14 to 41 minutes, with a mean completion time of 27 minutes.

6 Results

Due to significant interactions between the unit of analysis versus the other three factors (including
some three-way interactions), we analyzed the article-unit and paragraph-unit data separately. See
the interaction plots (made directly from the aggregate scores) for unit of analysis to the other three
factors on Figure 3. We compare the characteristics of article-unit summarizers and paragraph-
unit summarizers in the discussion (Section 6.5) following the individual analyses of the labeling,
reweighting, and feature selection method effects for each class.

We fit the summarizer characteristics to the respondents’ responses using linear regression. The
models included terms for respondent, subject, unit type, rescaling used, labeling used, and feature
selector used, as well as all interaction terms for the latter four features. We fit models for the
three main outcomes (the Content, Relevance, and Redundancy subscores) as well as an aggregate
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Figure 3: Comparing Article vs. Paragraph Unit Results. Interaction plots of unit of analysis vs.
the other summarizer characteristics for aggregate score based on the raw data. There are major
differences between article-unit analysis and paragraph-unit analysis when considering the impact
of choices in preprocessing, labeling, and phrase-selection method. Note, in particular, the reversal
of tf-idf and L2 rescaling, the reversal of count-1 and count-2, and the reduction of Lasso and
Co-Occur’s efficacies under the paragraph-unit analysis.
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Article-unit Paragraph-unit
Main Labeling Rescaling Main Labeling Rescaling

Factor Effect Interact Interact Effect Interact Interact

Feature Selection -10 -7 -6 -2
Labeling -1
Rescaling -15 -3

Table 7: Main Effects and Interactions of Factors. A number denotes a significant main effect or
pairwise interaction for aggregate scores, and is the base-10 log of the P -value. Blanks denotes lack
of significance.

“quality” score, taken as the mean of these three scores. The fourth question was used to examine
our hypothesis that smaller document units would increase the specificity of the summaries.

There are large respondent and subject effects. Some subjects were more easily summarized
than others, and some respondents were more critical than others. Interactions between the four
summarizer factors are (unsurprisingly) present (df = 33, F = 4.14, logP ≈ −13 under ANOVA).
Interaction plots suggest that the sizes of these interactions are large, making interpretation of the
marginal differences for each factor potentially misleading.

6.1 Article unit analysis

Interactions between factors make interpretation difficult, but overall, Lasso is a good summarizer
that is resistant to preprocessing choices. Interestingly, the simplest method, Co-Occur, is on par
with Lasso under tf-idf.

The left column of Figure 4 shows plots of the three two-way interactions between feature
selector, labeling scheme, and rescaling method for the article-unit data. There is a strong interac-
tion between rescaling and phrase-selection method (df = 6, F = 8.07, logP ≈ −8, top-left plot),
and no evidence of a labeling by phrase-selection interaction or a labeling by rescaling interaction.
Model-adjusted plots (not shown) akin to Figure 4 based on the model do not differ substantially in
character. Table 7 show all significant main effects and pairwise interactions. There is no significant
three-way interaction.

Lasso is the most consistent method, maintaining high scores under almost all combinations
of the other two factors. In Figure 4, note how Lasso has a tight cluster of means regardless of
rescaling used in the first plot and how Lasso’s outcomes are high and consistent across all labeling
in the second plot. Though L1LR or Co-Occur may be slightly superior to Lasso when the data
has been vectorized according to tf-idf, they are not greatly so, and, regardless, both these methods
seem fragile, varying a great deal in their outcomes based on the text preprocessing choices. Note,
for example, how vulnerable the Co-Occur phrase-selection method is to choice of rescaling.

The main effect of labeling is not statistically significant and the left plot of Figure 3 suggest
the effects, if any, are not large, indicating that the choice of labeling is not critical. That said,
in comparison to Lasso, the other feature selectors may be more sensitive to labeling schemes
(although this interaction is also not significant under ANOVA). See the middle-left plot of Figure 4.
Of interest is the apparent upward trend of labeling technique for Co-Occur; this is sensible in
that more stringent labeling could potentially help block words common in less subject-relevant
documents from accruing many numbers in the positive document set.

Tf-idf seems to be the best overall rescaling technique, consistently coming out ahead regardless
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Figure 4: Aggregate Quality Plots. Pairwise interactions of feature selector, labeling, and rescaling
technique. Left-hand side are for article-unit summarizers, right for paragraph-unit. See testing
results for which interactions are significant.
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Data Included Order (article) Order (paragraph)

All cooc, corr < L1LR, Lasso cooc < corr, Lasso, L1LR
stop < resc < tf-idf tfidf, stop < resc

tf-idf only no differences no differences
L2 only cooc < L1LR, Lasso; corr < Lasso no differences
stop only cooc < corr, L1LR, Lasso; corr < Lasso cooc < Lasso, L1LR

cooc only stop < resc < tf-idf stop < resc
corr only stop < tf-idf no differences
Lasso only no differences no differences
L1LR only no differences tf-idf < resc

Table 8: Quality of Feature Selectors. This table compares the significance of the separation of the
feature selection methods on the margin. Order is always from lowest to highest estimated quality.
A ”<” denotes a significant separation. All P -values corrected for multiple pairwise testing. Note
the last seven lines are lower power due to subsetting the data.

of choice of labeling or phrase-selection method. Note how its curve is higher than the rescaling
and stop-word curves in both the top- and bottom-left plots in Figure 4. Due to a correlation
statistic’s invariance to linear scaling, L2-rescaling should not impact the Correlation Screening
feature selector; this is confirmed by the data, with the stop-word removal (which dropped a few
phrases, but left the values of the remaining columns untouched) similar to L2-rescaling. Tf-idf
reweights by document length, and thus does introduce differences. The bottom line is that under
tf-idf, all the methods seem comparable. Alternatively put, tf-idf brings otherwise poor feature
selectors up to the level of the better selectors. The bottom-left plot shows that, regardless of
labeling used, tf-idf does better on average than L2 rescaling, which in turn does as well or slightly
better than stop-word removal.

Adjusting P -values with Tukey’s honest significant difference and calculating all pairwise con-
trasts for each of the three factors show which choices are overall good performers, ignoring inter-
actions. For each factor, we fit a model with no interaction terms for the factor of interest and
then performed pairwise testing, adjusting the P -values to control familywise error rate for each
type of feature examined. See Table 8 for the resulting rankings of the factor levels. Co-Occur and
Correlation Screening are significantly worse than L1LR and Lasso (correlation vs. L1LR gives
t = 3.46, P < 0.005). The labeling method options are indistinguishable. The rescaling method
options are ordered with tf-idf significantly better than rescaling (t = 5.08, logP ≈ −4), which in
turn is better than stop-word removal (t = 2.45, P < 0.05).

6.2 Paragraph unit analysis

For the paragraph-unit summarizers, the story is similar. Lasso is again the most stable to various
pre-processing decisions, but does not have as strong a showing under some of the labeling choices.
Co-Occur is again the most unstable. L1LR and Correlation Screening outperform Lasso under
some configurations. The main difference from the article-unit data is that tf-idf is a poor choice
and L2-rescaling is the best choice. Stop-word removal remains an inferior choice.

The right column of Figure 4 shows the interactions between the three factors. There is again
a significant interaction between rescaling and method (df = 6, F = 3.25, P < 0.005, top-plot).
This time, however, it is not entirely due to Co-Occur being sensitive to rescaling. Co-Occur is still
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sensitive, but correlation and L1LR are as well. Stop-word removal does quite well for L1LR and
Lasso, suggesting that rescaling is less relevant for shorter text units.

Co-Occur is significantly worse than the other three on the margin (Co-Occur vs. Correlation
Screening gives an adjusted pairwise test with t = 4.11, P < 0.0005), but the other three are
indistinguishable. Labeling matters significantly (df = 2, F = 5.23, P < 0.01), with count-1 doing
better in the margin than count-2 and hardcount-2. The higher threshold is likely removing too
many substantive paragraphs from the set of positive examples. See Table 6—around 75% of the
examples are dropped by moving from count-1 to count-2.

6.3 Analysis of subscores

The above analysis considers the aggregate score across (1) specific Content captured, (2) Redun-
dancy of phrases in the list, and (3) general Relevance of phrases in the list to the subject. We
also performed the above analyses for each of the three sub-scores separately. Overall conclusions
mainly hold, with a few important exceptions. The article-unit results across the three subscores
are more consistent, but the paragraph-unit results are not, suggesting that paragraph-unit analysis
requires more fine-tuning to get good results.

The Lasso and L1LR maintain word-lists that have few repeats, but their information capture
degrades when given quite short units of text. This partially explains the weaker performance
of Lasso in the aggregate scores for the paragraph-unit. For the paragraph unit summarizers, L2-
Rescaling is clearly superior for Relevance and Content scores, but inferior to tf-idf for Redundancy.

Content. The Content scores in the article-unit data are not as differentiated by feature selection
method as compared to the Aggregate scores, although the trends are consistent. In the paragraph-
unit data, Lasso’s scores are not high but L1LR remains strong. The pattern of interactions under
Aggregate scores and under Content scores is the same.

Redundancy. The marginal Redundancy scores for feature selection method are extremely dif-
ferentiated, with L1LR and Lasso both scoring high and Co-occur and Correlation Screening scoring
quite low. L1LR under the article-unit data is extremely high, suggesting that few, if any, redundant
phrases are selected under this method. Correlation Screening, on the other hand, does terribly
with respect to redundancy in the article-unit analysis. This is probably because partially overlap-
ping phrases tend to have similar correlations with the labeling y, and thus Correlation Screening
picks clusters of them up, even with the pruning of sub-phrases. See, for example, “prime minister
wen jiabao” on Table 3. Interestingly, in the paragraph-unit analysis, tf-idf is the superior rescaling
choice for Redundancy, even though it is not for the Aggregate scores.

Relevance. The trends in the Relevance scores are the same as for the Aggregate scores. There
is slightly greater separation between L2-rescaling, tf-idf reweighting, and stop-word removal in the
paragraph unit analysis. Co-occur is an even worse performer under this metric as compared to
Aggregate.

Correlation Screening’s poor Redundancy score substantially reduces its aggregate score. This
might be solved by a different, more sophisticated, pruning technique. Indeed, given Correlation
Screening’s quite high scores for Relevance and its strong showing for the paragraph-unit data for
both Relevance and Content, fixing the Redundancy problem could result in a good, fast summarizer
that may well outperform the penalized regression methods.
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Figure 5: Article Topicality Scores. Histogram of article topicality scores over positive class doc-
ument sets for three different labelers (from left to right: count-1, count-2, and count-3). Bar
height corresponds to percent of positive documents marked in that topicality range. (Histograms
represent reweighted survey responses to correct for biased sampling of documents.)

6.4 Article topicality and labeling method

By asking respondents to provide feedback on the topicality of the articles they read, we can
quantify the effectiveness of the automatic labeling techniques in identifying articles that treat the
subject of interest. Figure 5 shows the estimated distribution of topicality scores for each labeler,
calculated as the average of respondent’s choices of topicality value for any article-subject pair for
positively marked articles aggregated over the 15 subjects.

The left plot of Figure 3 does show a positive correlation between aggregate scores for article-
unit summarizers and the threshold of the count-m labeling technique. It appears that better
labeling technique (as measured by higher topicality scores) may have some impact on summary
quality, but the relationship does not appear to be strong as no overall main effect of labeling was
found.

The count-1 method includes many articles irrelevant to the subject as positive examples—the
modal topicality score is 1, the lowest score possible. Moving to count-2 greatly reduces the number
of low topicality articles, while transitioning from count-2 to count-3 leads to only a slightly larger
concentration of highly topical articles in a typical positive class. (This analysis holds equivalently
for hardcount-2 and hardcount-3: their positive document sets are identical to their count-2 and
count-3 counterparts.)

Figure 6 shows a scatterplot of article topicality score against the number of appearances of
subject-specific phrases in the article. (This figure does not use re-normalized data to account
for our intentional sampling bias as Figure 5 did; articles plotted here with high subject phrase
count are overrepresented compared their actual appearance rates in the data used to generate
summaries.) Fewer low-topicality articles appear as the number of appearances of subject-specific
phrases increases. However, articles containing few subject phrases can receive high topicality
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Figure 6: Article Topicality vs. Query Count. Scatterplot of number of times subject terms appear
in an article against the article’s topicality scores, for all articles included in survey. There exist
few articles with high subject counts and low-topicality scores, but many articles with low subject
counts and high-topicality scores.

scores. It is possible to set the threshold for labeling too high: Figure 3 suggests that on paragraph
data, moving to count-2 labeling, while presumably yielding a more topically accurate positive class
document set, may have resulted in poorer summaries overall.

6.5 Discussion

The feature selectors interact differently with labeling and rescaling under the two different units
of analyses. While the overall summary quality was no different between these two varieties of
summarizer, interaction plots suggest labeling is important, with count-2 being more appropriate
for articles and count-1 being more appropriate for paragraph units (see left plot of Figure 3). This
is unsurprising given the disparity in relative lengths. A count of 1 vs. 2 means a lot more in a
single paragraph than an entire article.

Preprocessing choice is a real concern. While stop-word removal and L2-rescaling seem relatively
consistent across both units of analysis, tf-idf works much worse, overall, for the paragraph unit
summarizers than with articles. This is probably due to the short length of the paragraph causing
rescaling by term frequency to have large and varying impact. It might also have to do with tf-idf
correctly adjusting for the length of the short “World-Briefing” articles. Under Lasso, however,
these decisions seem less important, regardless of unit size.

Comparing the performance of the feature selectors is difficult due to the different nature of
interactions for paragraph and article units. That said, Lasso consistently performed well. For the
article-unit it performed near the top. For the paragraph-unit it did better than most but was
not as definitively superior. L1LR, if appropriately staged, also performs well, although given its
higher computational cost the Lasso is probably a superior choice in general.
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We hypothesized that paragraph-unit analysis would generate more specific summaries and
article-unit more general. This does not seem to be the case; in analyzing the results for the fourth
question on generality vs. specificity of the summaries, there was no major difference found between
article-unit and paragraph-unit summarizers.

It is on the surface surprising that the Lasso often outperformed L1LR as L1LR fits a model
that is more appropriate for the binary outcome of the labeling. The Lasso has a L2-loss, which
is sensitive to outliers, while L1LR’s logistic curve is less sensitive. However, the design matrix
X, especially under rescaling, is heavily restricted. All entries are nonnegative and few are large.
This may limit the opportunity for individual entries in the L2 loss to have a significant impact,
ameliorating the major drawback of the Lasso.

There is no evidence that dropping units that mention the subject below a given threshold (the
hardcount labeling technique) is a good idea. Indeed, it appears to be a bad one. The pattern of
a quality dip between count-n and hardcount-n appears both in the paragraph- and article-unit
results. Perhaps articles that mention a subject only once are important negative examples. The
sub-scores offer no further clarity on this point.

7 Conclusions

News media significantly impacts our day to day lives and the direction of public policy. Analyzing
the news, however, is a complicated task. The labor intensity of hand coding either leads to small-
scale studies, or great expense. This and the amount of news available to a typical consumer
strongly motivate automated methods.

We proposed a collection of approaches for extracting meaningful summaries of specific subjects
from a media corpus, and then evaluated these approaches with a human validation experiment.
We formed that the features selected using a prediction framework do form an informative key-
phrase summary of a topic of interest. We also found practical suggestions for practitioners who
plan to analyze similar data in this fashion. Firstly, the vector representation of the data should
incorporate some reweighting of the phrase appearance counts. Tf-idf is a good overall choice
unless the text units are small (e.g., paragraphs, and, presumably, headlines, online comments, and
tweets). Secondly, the Lasso is a good overall feature selector that seems robust to how the data is
vectorized and labeled. L1LR, a natural fit model-wise, can perform well if preprocessing is done
correctly. However, it is computational expensive. The cost of the Lasso is much easier to bear.

If these tools are to be used without human validation, it is especially important to use methods
not sensitive to preprocessing decisions. A sensitive method may give results that vary widely
depending on minor decisions made in the implementation, rather than on the underlying patterns
in the text, and thus would compromise one’s faith in the final summaries. It would be hard to
tell, in this case, if things were working well. Robust methods are superior.

We argued that stop-word lists are a problematic and finicky preprocessing method. Our results
show that stop-word lists are indeed unnecessary; rescaling techniques are superior.

Correlation Screening is a simple and fast method that does not quite work for our task. Its
overall quality is sunk by poor Redundancy scores, suggesting that it finds suitably useful summary
terms, but overindulges in too many synonyms for the same concept. If the problems of the
redundancies of selected phrases could be solved, this method may be superior to the other methods.
Further work should be done in this direction.

Limiting phrases to three words or fewer is a potential problem; we encountered it, for example,
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when dealing with political leaders who are typically mentioned with their title (as in “Secretary
of State Hillary Clinton”). Ifrim et al. (2008) proposed an algorithm for L1LR that allows for
arbitrary-length key-phrases. Unfortunately, this method does not yet allow an intercept or rescal-
ing. Preliminary work suggests that this degrades summary performance. However, their ability
to include arbitrary n-gram phrases as features should be extendable to include these things, and
to the Lasso, and this is another direction of our future work. Alternatively, natural language
tools such as parts of speech tagging could pull out such names as distinct features. This alternate
approach is also currently under investigation.

This paper explores a general tool for text summarization. We are now in the process of working
with social scientists and media experts to use this tool to do media analysis. This final step is the
one which would truly demonstrate the utility of this approach.

Human validation is difficult. Ideally, there would be reliable numerical measures of a summary’s
quality that could be used to evaluate overall performance of summarizers. These measures would
have to be evaluated with human experiments, but if they proved robust then they could be used
as a check for work done without this labor-intensitve, costly, and time-consuming step. This is
another important direction for future work.
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9 Appendix A

We here prove the following theorem used to discuss the importance of rescaling.

Theorem 9.1.

λ > max
j

∣∣∣∣∣∑
i

Xijyi
1 + (n1

n0
)yi

∣∣∣∣∣ =⇒ β̂j(λ) = 0 for all j

As λ is reduced from an intercept-only solution, the first feature selected will then be the one
with the largest ∑

i

Xijyi
1 + (n1/n0)yi

.

Proof. We first prove
(
β̂(λ) = 0, γ̂0 = log

(
n1
n0

))
is one solution of L1 Logistic regression problem

(2). Let

f(β, γ) = −
m∑
i=1

log
(
1 + exp[−yi(xTi β + γ)]

)
.

It suffices to show that, there exists a vector s ∈ R1×p with |sj | < 1, for j = 1, . . . , p, such that

Of(β, γ)|β=0,γ=log(n1/n0) + λ (s, 0) = 0.

32



We show the last element of Of(β, γ) is 0 at point β = 0, γ = log(n1/n0).

∂f(β, γ)

∂γ
|β=0,γ=log(n1/n0) =

m∑
i=1

yi exp(−yi(xTi β + γ))

1 + exp[−yi(xTi β + γ)
|β=0,γ=log(n1/n0)

=
m∑
i=1

yi exp[−yi(log(n1/n0))]

1 + exp[−yi(log(n1/n0)]

=

m∑
i=1

yi
1 + exp[yi(log(n1/n0)]

=

m∑
i=1

yi
1 + (n1/n0)yi

=
∑
yi=1

yi
1 + (n1/n0)yi

+
∑
yi=−1

yi
1 + (n1/n0)yi

=
∑
yi=1

1

1 + (n1/n0)
+
∑
yi=−1

−1

1 + (n1/n0)−1

=
n1

1 + (n1/n0)
+

−n0
1 + (n1/n0)−1

= 0

∂f(β, γ)

∂β
|β=0,γ=log(n1/n0) =

m∑
i=1

yixi exp(−yi(xTi β + γ))

1 + exp[−yi(xTi β + γ)
|β=0,γ=log(n1/n0)

=

m∑
i=1

yixi exp[−yi(log(n1/n0))]

1 + exp[−yi(log(n1/n0)]

=

m∑
i=1

yixi
1 + exp[yi(log(n1/n0)]

=
m∑
i=1

yixi
1 + (n1/n0)yi

Define

sj = −
∑m

i=1
yiXij

1+(n1/n0)yi

λ
, (3)

then
Of(β, γ)|β=0,γ=log(n1/n0) + λ (s, 0) = 0.

By the condition of this Theorem

λ > max
j

∣∣∣∣∣∑
i

Xijyi
1 + (n1

n0
)yi

∣∣∣∣∣ ,
we have

|sj | < 1.
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We then prove the uniqueness of the solution when the condition in this Theorem holds. Suppose
(β+, γ+) is another solution. Then we have

f(β+, γ+) + λ‖β+‖1 = f(0, γ̂),

by subtracting λsTβ+ from both sides, we have

f(β+, γ+) + λ‖β+‖1 − λsTβ+ = f(0, γ̂)− λsTβ+,

where s is defined as (3). That is to say

λ(‖β+‖1 − sTβ+) = f(0, γ̂)− f(β+, γ+)− λsTβ+.

Since
Of(0, γ̂) + λ (s, 0) = 0,

by convexity of f(β, γ), we have

f(β+, γ+)− f(0, γ̂) ≥ Of(0, γ̂)T
(

β+

γ+ − γ̂

)
= −λsTβ+.

So
λ(‖β+‖1 − sTβ+) = f(0, γ̂)− f(β+, γ+)− λsTβ+ ≤ 0.

While sTβ+ ≤ |sTβ+| ≤ ‖β+‖1 always holds, we must have

‖β+‖1 = sTβ+.

Since |sj | < 1 for all j, we must have β+j = 0.

From the proof above, we can see that if λ < maxj

∣∣∣∣∑i
Xijyi

1+(
n1
n0

)yi

∣∣∣∣, then there is at least one j

such that βj 6= 0. Let

j0 = arg max
j

∣∣∣∣∣∑
i

Xijyi
1 + (n1

n0
)yi

∣∣∣∣∣ .
At last, we show that if

max
j 6=j0

∣∣∣∣∣∑
i

Xijyi
1 + (n1

n0
)yi

∣∣∣∣∣ < λ ≤

∣∣∣∣∣∑
i

Xij0yi
1 + (n1

n0
)yi

∣∣∣∣∣
and the solution has only one nonzero coefficient, then βj0 6= 0 while βj = 0, for all j 6= j0.

Let λ0 be an arbitrary real number which is greater than maxj

∣∣∣∣∑i
Xijyi

1+(
n1
n0

)yi

∣∣∣∣. Then (0, log(n1/n0))

is the unique solution of the L1 logistic regression (2) with λ = λ0 and it satisfies the following zero
sub-gradient condition:

Of(0, log(n1/n0)) = λ0(s, 0),

with

sj = −

∑
i

Xijyi
1+(

n1
n0

)yi

λ0
, j = 1, . . . , p.
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Let (β̂, γ̂) be one solution of the L1 logistic regression (2) with

max
j 6=j0

∣∣∣∣∣∑
i

Xijyi
1 + (n1

n0
)yi

∣∣∣∣∣ < λ ≤

∣∣∣∣∣∑
i

Xij0yi
1 + (n1

n0
)yi

∣∣∣∣∣
and the solution has only one nonzero coefficient. Then

f(β̂, γ̂) + λ‖β̂‖ ≤ f(0, log(n1/n0)),

from which we have

f(β̂, γ̂)− f(0, log(n1/n0)) ≤ −λ‖β̂‖.

One the other hand, by the convexity of f(β, γ)

f(β̂, γ̂)− f(0, log(n1/n0)) ≥ Of(0, log(n1/n0))
T

(
β̂

γ̂ − log(n1/n0)

)
= λ0s

T β̂.

So we have
λ0s

T β̂ ≤ −λ‖β̂‖1.

Suppose β̂k 6= 0 and β̂j = 0 for all j 6= k. By the definition of s, we have

−
∑
i

Xikyi
1 + (n1

n0
)yi
β̂k ≤ −λ|β̂k| < 0.

By taking absolute value, we have ∣∣∣∣∣∑
i

Xikyi
1 + (n1

n0
)yi
β̂k

∣∣∣∣∣ ≥ λ|β̂k|,
which implies ∣∣∣∣∣∑

i

Xikyi
1 + (n1

n0
)yi

∣∣∣∣∣ ≥ λ.
From the condition on λ, we know that only when k = j0, the last inequality holds.
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