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Abstract. Classical ecological theory predicts that environmental stochasticity increases extinction
risk by reducing the average per-capita growth rate of populations. For sedentary populations in a
spatially homogeneous yet temporally variable environment, a simple model of population growth
is a continuous time Markov process Zt, t ≥ 0, where the conditional law of Zt+∆t − Zt given
Zt = z has mean and variance approximately zµ∆t and z2σ2∆t when the time increment ∆t is

small. The long-term stochastic growth rate limt→∞ t−1 logZt for such a population equals µ− σ2

2 .
Most populations, however, experience spatial as well as temporal variability. To understand the
interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population
growth, we study an analogous model Xt = (X1

t , . . . , X
n
t ), t ≥ 0, for the population abundances in

n patches: the conditional law of Xt+∆t given Xt = x is such that when the time increment ∆t is
small the conditional mean of of Xi

t+∆t−Xi
t is approximately [xiµi +

∑
j(x

jDji−xiDij)]∆t, where
µi is the per capita growth rate in the i-th patch and Dij is the dispersal rate from the i-th patch

to the j-th patch, and the conditional covariance of Xi
t+∆t −Xi

t and Xj
t+∆t −X

j
t is approximately

xixjσij∆t for some covariance matrix Σ = (σij). We show for such a spatially extended population
that if St = (X1

t + · · ·+Xn
t ) denotes the total population abundance, then Yt = Xt/St, the vector of

patch proportions, converges in law to a random vector Y∞ as t→∞, and the stochastic growth rate
limt→∞ t−1 logSt equals the space-time average per-capita growth rate

∑
i µiE[Y i∞] experienced by

the population minus half of the space-time average temporal variation E[
∑
i,j σijY

i
∞Y

j
∞] experienced

by the population. We derive analytic results for the law of Y∞, find which choice of the dispersal
mechanism D produces an optimal stochastic growth rate for a freely dispersing population, and
investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results
provide fundamental insights into “ideal free” movement in the face of uncertainty, the persistence
of coupled sink populations, the evolution of dispersal rates, and the single large or several small
(SLOSS) debate in conservation biology.

1. Introduction

Environmental conditions (e.g. light, precipitation, nutrient availability) vary in space and time.
Since these conditions influence survivorship and fecundity of an organism, all organisms whether
they be plants, animals, or viruses are faced with a fundamental quandary of “Should I stay or should
I go?” On the one hand, if individuals disperse in a spatially heterogeneous environment, then they
may arrive in locations with poorer environmental conditions. On the other hand, if individuals

Key words and phrases. stochastic population growth, spatial and temporal heterogeneity, dominant Lyapunov
exponent, ideal free movement, evolution of dispersal, single large or several small debate, habitat fragmentation.
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do not disperse, then they may fare poorly due to temporal fluctuations in local environmental
conditions. The consequences of this interaction between dispersal and environmental heterogeneity
for population growth has been studied extensively from theoretical, experimental, and applied
perspectives [Hastings, 1983, Petchey et al., 1997, Lundberg et al., 2000, Gonzalez and Holt, 2002,
Schmidt, 2004, Roy et al., 2005, Boyce et al., 2006, Matthews and Gonzalez, 2007, Schreiber,
2010]. Here, we provide a mathematically rigorous and analytically tractable perspective on these
interactive effects using spatially explicit models of stochastic population growth.

Population growth is inherently stochastic due to numerous unpredictable causes. For a single,
unstructured population with overlapping generations, the simplest model accounting for these
fluctuations is a linear stochastic differential equation of the form

(1) dZt = µZtdt+ σZtdBt,

where Zt is the population abundance at time t, µ is the mean per-capita growth rate (that is,
E[Zt+∆t − Zt |Zt = z] ≈ zµ∆t), σ2 is the “infinitesimal” variance of fluctuations in the per-capita
growth rate (that is, E[(Zt+∆t−Zt−zµ∆t)2 |Zt = z] ≈ z2σ2∆t), and Bt is a standard Brownian mo-
tion. Equivalently, the random variable logZt is normally distributed with mean logZ0 +(µ−σ2/2)t
and variance σ2t. Hence, even if the mean per-capita growth rate µ is positive these populations
decline exponentially towards extinction when σ2/2 > µ due to the predominance of the stochastic
fluctuations. Despite its simplicity, the model (1) is used extensively for projecting future popu-
lation sizes and estimating extinction risk [Dennis et al., 1991, Foley, 1994, Lande et al., 2003].
For example, Dennis et al. [1991] estimated µ and σ for six endangered species. These estimates
provided a favorable outlook for the continued recovery of the Whooping Crane (i.e. µ � σ2/2),
but unfavorable prospects for the Yellowstone Grizzly Bear.

Individuals cannot avoid being subject to temporal heterogeneity, but it is only when they dis-
perse that they are affected by spatial variation in the environment. The effect of spatial het-
erogeneity on population growth depends, intuitively, on how individuals respond to environmental
cues [Hastings, 1983, Cantrell and Cosner, 1991, Dockery et al., 1998, Chesson, 2000, Cantrell et al.,
2006, Kirkland et al., 2006, Schreiber and Lloyd-Smith, 2009]. When movement is towards regions
with superior habitat quality, the presence of spatial heterogeneity increases the rate of population
growth [Chesson, 2000, Schreiber and Lloyd-Smith, 2009]. The most extreme form of this phenome-
non occurs when individuals are able to disperse freely and ideally; that is, they can move instantly
to the locations that maximize their per-capita growth rate [Fretwell and Lucas, 1970, Cantrell
et al., 2007]. Anthropogenically altered habitats, however, can cause a disassociation between cues
used by organisms to assess habitat quality and the actual habitat quality. This disassociation can
result in negative associations between movement patterns and habitat quality and a correspond-
ing reduction in the rate of population growth [Remeš, 2000, Delibes et al., 2001, Schreiber and
Lloyd-Smith, 2009]. For “random diffusive movement” (that is, no association between movement
patterns and habitat quality), spatial heterogeneity increases population growth rates due to the in-
fluence of patches of higher quality. However, this boost in growth rate is most potent for sedentary
populations [Hastings, 1983, Dockery et al., 1998, Kirkland et al., 2006, Schreiber and Saltzman,
2009]. This dilutionary effect of dispersal on population growth was observed in the invasion of a
woody weed, Mimosa pigra, into the wetlands of tropical Australia [Lonsdale, 1993]. A relatively
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fast disperser, this weed had a population doubling time of 1.2 years on favorable patches, but it
exhibited much slower growth at the regional scale (doubling time of 6.7 years) due to the separation
of suitable wetland habitats by unsuitable eucalyptus savannas.

Despite these substantial analytic advances in understanding separately the effects of spatial
and temporal heterogeneity on population growth, there are few analytic studies that consider the
combined effects. For well-mixed populations with non-overlapping generations living in patchy en-
vironments, Metz et al. [1983] showed that population growth is determined by the geometric mean
in time of the spatially (arithmetically) averaged per-capita growth rates. A surprising consequence
of this expression is that populations coupled by dispersal can persist even though they are extinc-
tion prone in every patch [Jansen and Yoshimura, 1998]. This “rescue effect”, however, only occurs
when spatial correlations are sufficiently weak [Harrison and Quinn, 1989]. Schreiber [2010] extended
these results by deriving an analytic approximation for stochastic growth rates for partially mixing
populations. This approximation reveals that positive temporal correlations can inflate population
growth rates at intermediate dispersal rates, a conclusion consistent with simulation and empirical
studies [Roy et al., 2005, Matthews and Gonzalez, 2007]. For example, Matthews and Gonzalez
[2007] manipulated metapopulations of Paramecium aurelia by varying spatial-temporal patterns
of temperature. In spatially uncorrelated environments, the populations coupled by dispersal al-
ways persisted for the duration of the experiment, while some of the uncoupled populations went
extinct. Moreover, metapopulations experiencing positive temporal correlations exhibited higher
growth rates than metapopulations living in temporally uncorrelated environments.

Here, we introduce and analyze stochastic models of populations that continuously experience
uncertainty in time and space. Our analysis answers for this model some fundamental questions in
population biology such as:

• What is the ideal free distribution of individuals constantly facing uncertainty about local
environmental conditions?
• When are population growth rates maximized at low, high, or intermediate dispersal rates

for populations exhibiting diffusive movement?
• How do multiple spatial scales of environmental heterogeneity influence population persis-

tence?

In Section 2 we introduce our model for population growth in a patchy environment. It describes
temporal fluctuations in the qualities of the various patches using multivariate Brownian motions
with correlated components.

In Section 3, we first consider the vector-valued stochastic process given by the proportions of the
population in each patch. These proportions converges in law to a (random) equilibrium at large
times. The probability that this equilibrium spatial distribution is in some given subset of the set
of possible patch proportions is just the long-term average amount of time that the process of patch
proportions spends in that subset. We derive a simple expression for the stochastic growth of the
population in terms of the first and second moments of the equilibrium spatial distribution. It is
difficult to obtain explicit closed-form expressions for the law of the equilibrium spatial distribution
for an arbitrary number of patches, but we are able to do so in the case of two patches and investigate
how this law depends on the dispersal mechanism. We then present some numerical simulations to
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give a first indication of the interesting range of phenomena that can occur when there are several
patches and biased movement.

We use the results from Section 3 in Section 4 to investigate ideal free dispersal in stochastic envi-
ronments. That is, we determine which dispersal mechanism maximizes the stochastic growth rate
for given mean values or the per-capita growth rates in each of the patches and given infinitesimal
covariances for their temporal fluctuations.

We consider the effect of constraints on the dispersal mechanism in Section 5. We suppose that
the dispersal rates are fixed up to a scalar multiple δ and establish an analytic approximation for
the stochastic growth rate of the form a+b/δ for large δ. We use this approximation to give criteria
for whether low, intermediate, or high dispersal rates maximize the stochastic growth rate. In
particular, we combine this analysis with tools from group representation theory to obtain results
on the stochastic growth rate for environments with multiple spatial scales.

We discuss how our results relate to existing literature in Section 6. We end with a collection of
Appendices where, for the sake of streamlining the presentation of our results in the remainder of
the paper, we collect most of the proofs.

2. The Model

We consider a population with overlapping generations living in a spatially heterogeneous envi-
ronment consisting of n distinct patches and suppose that the per-capita growth rates within each
patch are determined by a mixture of deterministic and stochastic environmental inputs. Let X i

t

denote the abundance of the population in the i-th patch at time t and write Xt = (X1
t , . . . , X

n
t )T

for the resulting column vector (we will use the superscript T throughout to denote the transpose of
a vector or a matrix). If there was no dispersal between patches, it would be appropriate to model
X as a Markov process with the following specifications for ∆t small:

E[X i
t+∆t −X i

t |Xt = x] ≈ µix
i∆t,

where µi is the mean per-capita growth rate in patch i, and

Cov[X i
t+∆t −X i

t , X
j
t+∆t −X

j
t |Xt = x] ≈ σijx

ixj∆t,

where Σ = (σij) is a covariance matrix that captures the spatial dependence between the tempo-
ral fluctuations in patch quality. More formally, we consider the system of stochastic differential
equations of the form

dX i
t = X i

t

(
µidt+ dEi

t

)
,

where Et = ΓTBt, Γ is an n × n matrix such that ΓTΓ = Σ, and Bt = (B1
t , . . . , B

n
t )T , t ≥ 0, is a

vector of independent standard Brownian motions.
In order to incorporate dispersal that couples the dynamics between patches, let Dij ≥ 0 for

j 6= i be the per-capita rate at which the population in patch i disperses to patch j. Define
−Dii :=

∑
j 6=iDij to be the total per-capita immigration rate out of patch i. The resulting matrix

D has zero row sums and is thus the generator of a continuous time Markov chain; that is, if we
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write Pt := exp(tD) for t ≥ 0, so that Pt, t ≥ 0, solves the matrix-valued ODE

d

dt
Pt = PtD,

then the matrix Pt has nonnegative entries, its rows sum to one, and the Chapman-Kolmogorov
relations PsPt = Ps+t hold for all s, t ≥ 0. The (i, j)-th entry of Pt gives the proportion of the
population that was originally in patch i at time 0 but has dispersed to patch j at time t.

Adding dispersal to the regional dynamics leads to the system of stochastic differential equations

(2) dX i
t = X i

t(µidt+ dEi
t) +

n∑
j=1

DjiX
j
t dt.

We can write this system more compactly as the vector-valued stochastic differential equation

dXt = diag(Xt) (µdt+ dEt) +DTXt dt

= diag(Xt)
(
µdt+ ΓTdBt

)
+DTXt dt,

(3)

where µ := (µ1, . . . , µn)T , and, given a vector u, we write diag(u) for the diagonal matrix that has
the entries of u along the diagonal.

We implicitly assume in the above set-up that all dispersing individuals arrive in some patch
on the landscape. To account for dispersal induced mortality, we can add fictitious patches in
which dispersing individuals enter and experience a mortality rate before dispersing to their final
destination.

Also, our model does not include density-dependent effects on population growth. However,
one can view it as a linearization of a density-dependent model about the extinction equilibrium
(0, . . . , 0)T and, therefore, (3) determines how the population grows when abundances are low.
Moreover, for discrete-time analogues of our model, positive population growth for this linearization
implies persistence in the sense that there exists a unique positive stationary law for corresponding
models with compensating density-dependence [Benäım and Schreiber, 2009]. We conjecture that
the same conclusion holds for our continuous time model.

From now on we assume that the dispersal rate matrix D is irreducible (that is, that it can
not be put into block upper-triangular form by a re-labeling of the patches). This is equivalent to
assuming that the entries of the matrix Pt = exp(tD) are strictly positive for all t > 0, and so it is
possible to disperse between any two patches. Also, we will assume that the covariance matrix Σ
has full rank (that is, that it is non-singular). This assumption implies that the randomness in the
temporal fluctuations is genuinely n-dimensional.

3. The stable patch distribution and stochastic growth rate

3.1. Stable patch distribution. The key to understanding the asymptotic stochastic growth rate
of the population is to first examine the dynamics of the spatial distribution of the population. Let
St := X1

t + · · · + Xn
t denote the total population abundance at time t and write Y i

t := X i
t/St for

the proportion of the total population that is in patch i. Set Yt := (Y 1
t , . . . , Y

n
t )T . The stochastic

process Y takes values in the probability simplex ∆ := {y ∈ Rn :
∑

i yi = 1, yi ≥ 0}.
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The following proposition, proved in Appendix A, shows that the stochastic process Y is au-
tonomously Markov; that is, that its evolution dynamics are governed by a stochastic differential
equation that does not involve the total population size. Moreover, it says that the law of the
random vector Yt converges to a unique equilibrium as t→∞.

Proposition 3.1. Suppose that X0 6= 0. Then, the stochastic process Y satisfies the stochastic
differential equation

(4) dYt =
(
diag(Yt)−YtY

T
t

)
ΓTdBt +DTYtdt+

(
diag(Yt)−YtY

T
t

)
(µ− ΣYt) dt.

Moreover, there exists a random variable Y∞ taking values in the probability simplex ∆ such that Yt

converges in law to Y∞ as t→∞ and such that the empirical measure Πt := 1
t

∫ t
0
δYs ds converges

almost surely to the law of Y∞ as t→∞. The law of Y∞ does not depend on X0.

The empirical probability measure Πt appearing in Proposition 3.1 describes the proportions of
the time interval [0, t] that the process Y spends in the various subsets of its state space ∆. Namely,
for a Borel set A ⊆ ∆ of patch occupancy states, Πt(A) equals the fraction of time spent in these
states over the time interval [0, t]. For example, if A = {y ∈ ∆ : y1 > 1/2}, then Πt(A) equals the
fraction of time for which at least 50% of the population in patch 1 over the time interval [0, t].

3.2. Stochastic growth rates. Recall that St = X1
t + · · ·+Xn

t is the total population size at time
t. That is, St = 1TXt, where 1 = (1, . . . , 1)T . Because D1 = 0, it follows from (3) that

dSt = XT
t ΓTdBt + µTXtdt = StY

T
t ΓTdBt + Stµ

TYtdt.

Therefore, by Itô’s lemma,

logSt = S0 +

∫ t

0

YT
t ΓTdBt +

∫ t

0

µTYtdt−
1

2

∫ t

0

YT
t ΓTΓYtdt.

Dividing by t, taking the limit as t→∞, and applying Proposition 3.1 yields the following result.

Theorem 3.2. Suppose that X0 6= 0. Then,

(5) χ := lim
t→∞

t−1 logSt = µTE[Y∞]− 1

2
E
[
YT
∞ΣY∞

]
almost surely,

where Y∞ is described in Proposition 3.1.

The limit χ in (5) is generally know as the Lyapunov exponent for the Markov process X. Following
Tuljapurkar [1990], we also call χ the stochastic growth rate of the population as it describes the
asymptotic growth rate of the population in the presence of stochasticity. One interpretation of (5)
comes from the observation that this quantity is the asymptotic stochastic growth rate we would
see in the single, unstructured population described by (1) if the mean per-capita growth rate in
that model was

(6) µTE[Y∞] =
∑
i

µiE[Y i
∞] = lim

t→∞

∑
i

µiE[Y i
t ]

and the infinitesimal variance of the temporal fluctuations was

(7) E
[
YT
∞ΣY∞

]
= lim

t→∞

1

∆t
E[(YT

t (Et+∆t − Et))
2]
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for any ∆t. The quantity in (6) is obtained by taking a weighted average of the mean per-capita
growth rates in each patch with respect to the patch proportions Yt, computing the expected value
of this random variable, and then taking a limit as t→∞. Similarly, the quantity in (7) is obtained
by taking a weighted average of the appropriately rescaled temporal fluctuations 1√

∆t
(Et+∆t − Et)

with respect to the patch proportions Yt, computing the variance of this random variable, and
then taking a limit as t → ∞. In other words, the stochastic growth rate we see in the case of
several patches is just what would we see for a single, unstructured patch provided that the mean
per-capita growth rate and infinitesimal variance of the temporal fluctuations are both computed
by suitable averaging of the patch-specific quantities in the structured model with respect to the
equilibrium patch proportions.

To get a more explicit expression for the stochastic growth rate, we need to determine the law of
the (random) stable patch distribution Y∞, or at least find its first and second moments. In general,
this is a difficult problem that reduces to solving an elliptic PDE on the probability simplex ∆ with
appropriate boundary conditions. However, in the case of two patches, the problem becomes one
of solving a second order ODE on the unit interval.

Example 3.1 Stochastic growth in two patch environments. Assume there are two patches
(that is, n = 2). For simplicity, suppose there are no environmental correlations between the
patches; that is, that σii = σ2

i and σij = 0 for i 6= j. Proposition 3.1 gives that Y 1
t = X1

t /(X
1
t +X2

t )
satisfies the one-dimensional stochastic differential equation

dY 1
t = M(Y 1

t ) dt+
√
V (Y 1

t ) dBt

where

M(y) := y(1− y)(µ1 − µ2 − σ2
1y + σ2

2(1− y))−D12y +D21(1− y)

and

V (y) := y2(1− y)2(σ2
1 + σ2

2).

A standard result (see, e.g., Karlin and Taylor [1981, Chapter 15]) implies that the infinitesimal
generator of the one-dimensional diffusion process (Y 1

t )t≥0 is the second order differential operator

Af(y) :=
1

2
V (y)f ′′(y) +M(y)f ′(y),

and the density ρ for the corresponding stationary law (that is, the density of Y 1
∞) solves the adjoint

equation

1

2
(V ρ)′′ − (Mρ)′ = 0

on (0, 1). If we integrate once and rearrange, we see that

(V ρ)′ = 2
M

V
(V ρ),
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Figure 1. Spatial distribution and population growth in a two patch environment.
In (a), the stochastic growth rate χ is plotted as a function of the dispersal rate δ.
In (b), the stationary density of the fraction of individuals in patch 1 is plotted for
different dispersal rates. Parameter values are µ1 = µ2 = 0.3, σ1 = σ2 = 1, and
D12 = D21 = δ.

an equation that is solved by

ρ(y) :=
C1

V (y)
exp

(
2

∫
M(y)

V (y)
dy

)
=

C2

y2(1− y)2
exp

(
2

σ2
1 + σ2

2

∫
µ1 − µ2

y(1− y)
− σ2

1

1− y
+
σ2

2

y
− D12

y(1− y)2
+

D21

y2(1− y)
dy

)
= C3 y

β−α1(1− y)−β−α2 exp

(
− 2

σ2
1 + σ2

2

(
D21

y
+

D12

1− y

))
,

where the Ci are normalization constants, and

αi :=
2σ2

i

σ2
1 + σ2

2

β :=
2

σ2
1 + σ2

2

(µ1 − µ2 +D21 −D12) .
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Using this expression in (5), we get the following explicit expression for the stochastic growth rate

χ = µ1

∫ 1

0

yρ(y) dy + µ2

∫ 1

0

(1− y)ρ(y) dy − σ2
1

2

∫ 1

0

y2ρ(y) dy − σ2
2

2

∫ 1

0

(1− y)2ρ(y) dy

= µ2 −
σ2

2

2
+ (µ1 − µ2 + σ2

2)

∫ 1

0

yρ(y) dy − σ2
1 + σ2

2

2

∫ 1

0

y2ρ(y) dy

Despite its apparent complexity, this formula provides insights into how dispersal may influence
population growth. For example, consider a population dispersing diffusively between statistically
similar but uncorrelated patches (that is, D12 = D21 = δ/2, µ1 = µ2 = µ, and σ1 = σ2 = σ). We
claim that the stochastic growth rate χ is an increasing function of the dispersal rate δ. Intuitively,
this occurs because increasing δ decreases the variance of the random variable Y∞ but has no effect
on its expectation. It even follows that if µ − σ2/2 < 0, and so both patches would be unable to
sustain the population in the absence of dispersal, that connecting the patches by dispersal can
permit persistence (Fig. 1). Since χ is an increasing function of δ and Y 1

∞ clearly converges in law
to the constant 1

2
as δ →∞, this phenomena occurs if and only if σ2/4 < µ < σ2/2.

To verify our claim that χ is increasing with δ, write ρ(·; δ) for the density of Y 1
∞ to emphasize

its dependence on δ and notice that in this case

ρ(y; δ) = C(δ)y−1(1− y)−1 exp

(
− δ

2σ2y(1− y)

)
, y ∈ (0, 1),

where C(δ) is the normalization constant and

(8) χ(δ) = µ− σ2/2 + σ2

∫ 1

0

y(1− y) ρ(y; δ) dy.

It suffices to show that

∫ 1

0

y(1− y)ρ(y; 2δσ2) dy =

∫ 1

0
exp

(
− δ
y(1−y)

)
dy∫ 1

0
y−1(1− y)−1 exp

(
− δ
y(1−y)

)
dy

is an increasing function of δ > 0. Differentiating with respect to δ and carrying the differentiation
inside the integral sign, we obtain

C(2σ2δ)2 ×
[∫ 1

0

y−2(1− y)−2 exp

(
− δ

y(1− y)

)
dy ×

∫ 1

0

exp

(
− δ

y(1− y)

)
dy

−
(∫ 1

0

y−1(1− y)−1 exp

(
− δ

y(1− y)

)
dy

)2
]
.

This quantity is the variance of the random variable (Y 1
∞(1− Y 1

∞))
−1

and is thus nonnegative.
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For the purpose of comparison with general asymptotic approximations that we develop later, we
note that after a change of variable∫ 1

0
exp

(
− δ

2σ2y(1−y)

)
dy∫ 1

0
y−1(1− y)−1 exp

(
− δ

2σ2y(1−y)

)
dy

=

∫∞
0
e−zz−

1
2 (2σ2z

δ
+ 4)−

3
2 dz∫∞

0
e−zz−

1
2 (2σ2z

δ
+ 4)−

1
2 dz

.

Upon expanding the two functions w 7→ (w + 4)−
1
2 and w 7→ (w + 4)−

3
2 in Taylor series around 0

and integrating, we find that the ratio of integrals is of the form

1

4
− 1

δ

σ2

16
+ O

(
1

δ2

)
as δ →∞, so that

(9) χ(δ) ≈ µ− σ2

4
− 1

δ

σ4

16

as δ →∞.

Because there do not appear to be closed-form expressions for the law of the stable patch distri-
bution Y∞ when there are more than two patches, we must seek other routes to understanding the
stochastic growth rate in such cases. One approach would be to derive the PDE for the associated
probability density (including the appropriate boundary conditions) and solve it numerically. A
second approach would be to simulate the stochastic process Y for long time intervals and derive
approximate values for the first and second moments of the equilibrium distribution. To give an
indication of the range of phenomena that can occur in even relatively simple systems where there is
biased movement between patches, we adopt the even simpler solution of simulating the stochastic
process X directly for long time intervals to obtain an approximate value of the stochastic growth
rate.

Example 3.2 Fully connected metapopulations with biased emigration. In this simulation,
one quarter of the patches are higher quality (µ = 10 in these patches) and the remainder are lower
quality (µ = 1). All patches have the same level of (uncorrelated) environmental noise: σii = 16 for
all i and σij = 0 for i 6= j. When an organism exits a patch it chooses from the other patches with
equal probability, but the emigration rate from a patch depends on the patch quality.

Consider first the case that emigration is “adaptive” in the sense that individuals emigrate more
rapidly out of lower quality patches (Dij = 10δ for i 6= j and lower quality patches i) than higher
quality patches (Dij = δ for i 6= j and higher quality patches i). As expected, Fig. 2 shows that
χ(δ) increases with δ in this regime.

Alternatively, consider the case that emigration is “maladaptive” in the sense that individuals
emigrate more rapidly out of higher quality patches (Dij = 10δ for i 6= j and higher quality patches
i) than lower quality patches (Dij = δ for i 6= j and lower quality patches i). It is possible
to show using the results of Section 5 below, that, in this regime, high dispersal rates lead to
a lower stochastic growth rate than sedentary populations (that is, limδ→∞ χ(δ) is dominated by
limδ→0 χ(δ)), and yet χ(δ) increases with δ when δ is large. It turns out (see Fig. 3) that χ(δ)
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Figure 2. The effect of dispersal rate δ on populations emigrating more rapidly out
of lower quality patches than higher quality patches. Details of parameter values are
described in the main text.

exhibits a rather complex dependence on δ: it increases at low dispersal rates, but then declines at
higher dispersal rates, and finally increases again at the highest dispersal rates.

4. Ideal free dispersal in a stochastic environment

A basic quandary in evolutionary ecology is, “For a given set of environmental conditions, what
dispersal pattern maximizes fitness?” Since fitness in our context corresponds to the stochastic
growth rate of the population, we can rephrase this question as, “Given µ and Σ, what form of
the dispersal mechanism D maximizes χ?” We call such an optimal dispersal mechanism ideal free
dispersal.

Equation (5) provides a means to answer this question. Because Σ has full rank, the function
y 7→ 1

2
yTΣy is strictly convex, and so Jensen’s inequality implies that

E[YT
∞ΣY∞] ≥ E[Y∞]TΣE[Y∞],

with equality if and only if the random vector Y∞ is almost surely constant. Hence, to maximize
the stochastic growth rate χ, we need to eliminate the variability in Y∞, so that Y∞ = y almost
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Figure 3. The effect of dispersal rate δ on populations emigrating more rapidly out
of higher quality patches than lower quality patches. Details of parameter values are
described in the main text.

surely for a constant y that is chosen to maximize

(10) µTy − 1

2
yTΣ y

subject to the constraint y ∈ ∆. Under our standing non-degeneracy assumptions on D and Σ,
the law of Y∞ is supported on all of ∆, and so we cannot actually achieve a situation in which
Y∞ is a constant. However, the following result, which we prove in Appendix B, shows that we
can approach this regime arbitrarily closely. We note that any vector π in the interior of ∆ is the
stationary law for some irreducible infinitesimal generator Q (that is, that πTQ = 0). For example,
Q = 1πT − I suffices.
Proposition 4.1. Consider a vector π in the interior of ∆ and an irreducible infinitesimal gen-
erator Q that has π as its unique stationary law. Let Y∞(δ) be the equilibrium patch distribution
and χ(δ) be the stochastic growth rate for (3) with D = δQ. Then Y∞(δ) converges in law to the
constant vector π as δ →∞, and χ(δ) converges to µTπ − 1

2
πTΣ π as δ →∞.

In the absence of population growth due to deterministic or stochastic effects, each of the dispersal
mechanisms δQ in Proposition 4.1 sends the patch distribution to the vector π regardless of the
initial conditions, and the speed at which this happens increases with δ, so that it becomes effectively
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instantaneous for large δ. Proposition 4.1 says that this push towards a deterministic equilibrium
overcomes any disruptive effects introduced by population growth provided δ is sufficiently large,
and so it is possible to produce random equilibrium patch distributions that are arbitrarily close
to any given vector π in the interior of ∆. If we further approximate vectors π on the boundary of
∆ by ones in the interior, we see that it is possible to produce equilibrium patch distributions that
are arbitrarily close to any given vector in ∆.

Given that any patch distribution can be approximated arbitrary closely by the equilibrium patch
distribution of a suitable population of rapidly dispersing individuals, the problem of optimizing χ
reduces, as we have already noted, to maximizing the strictly concave function g(y) = µTy− 1

2
yTΣ y

over the compact, convex set ∆. Denote the unique maximizer by y∗ = (y∗1, . . . , y
∗
n)T .

Note first that it is optimal for all individuals to remain in the single patch k (that is, y∗k = 1)
when

∂g

∂yi
(ek)−

∂g

∂yk
(ek) = µi − σik − µk + σkk < 0 for all i 6= k,

where ek is the k-th element of the standard basis of Rn, or, equivalently,

µk − µi > σkk − σik for all i 6= k.

Hence, if the variances are sufficiently large and the covariances are sufficiently small, then ideal
free dispersal involves dispersing between several patches.

When it is optimal to disperse between several patches, we can solve for the optimal dispersal
strategy y∗ by using the method of Lagrange multipliers. Without loss of generality, assume that
the optimal strategy y∗ makes use of all patches, that is, that y∗ is in the interior of ∆ (otherwise,
we just have to consider analogous problems on the faces of the convex polytope ∆ of the form
{y ∈ ∆ : yi = 0, i ∈ I}, where I is a subset of {1, . . . , n}). Because

∇g(y) = µ− Σy and ∇

(∑
i

yi

)
= 1,

the optimal y∗ must satisfy

(11) µ− Σy∗ = λ1,

where λ is a Lagrange multiplier. Since

(Σy)i =
1

∆t
E

[
(Ei

t+∆t − Ei
t)
∑
j

yj(E
j
t+∆t − E

j
t )

]
,

(11) implies that ideal free populations are distributed across the patches in such a way that in
all occupied patches the differences between the mean per-capita growth rates and the covariances
between the within patch noise and the noise experienced on average by an individual are equal.

Now,

(12) y∗ = Σ−1(µ− λ1),

and the constraint 1Ty = 1 yields
1 = 1TΣ−1(µ− λ1),
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so that

(13) λ =
1TΣ−1µ− 1

1TΣ−11
and

(14) y∗ = Σ−1

(
µ− 1TΣ−1µ− 1

1TΣ−11
1

)
.

The right-hand side of equation (14) is the optimal vector y∗ we seek, provided that it belongs to
the interior of ∆. Otherwise, as we remarked above, we need to perform similar analyses on the
faces of the simplex ∆.

To illustrate the utility of this formula, we examine two special cases: when the environmental
noise between patches is uncorrelated, and when the patches experience the same individual levels
of noise but they are spatially correlated.

Example 4.1 Spatially uncorrelated environments. Suppose that there are no spatial corre-
lations in the environmental noise, so that Σ is a diagonal matrix with diagonal entries σii = σ2

i . It
follows from equation (14) that the ideal free patch distribution is

(15) y∗i =
1

σ2
i

∑
j 1/σ2

j

[∑
j

µi − µj
σ2
j

+ 1

]
,

provided that
∑

j(µj − µi)/σ2
j < 1 for all i. Hence, ideal free dispersers visit all patches whenever

the environmental variation is sufficiently great relative to differences in the mean per-capita growth
rates. In particular, if all mean per-capita growth rates are equal, then the fraction of individuals
in a patch is inversely proportional to the variation in temporal fluctuations in the patch; that is,
y∗i = (1/σ2

i )/(
∑

j 1/σ2
j ).

Example 4.2 Spatially correlated environments. Suppose that the infinitesimal variance of
the temporal fluctuations in each patch is σ2 and that the correlation between the fluctuations in
any pair of patches is ρ. Thus, Σ = σ2(1− ρ)I + σ2ρJ , where J = 11T is the matrix in which every
entry is 1. Provided that − 1

n−1
< ρ < 1, the matrix Σ is non-singular with inverse

Σ−1 =
1

1− ρ
I − ρ

(1− ρ)(1 + (n− 1)ρ)
J.

Denoting by µ̄ = 1
n

∑
i µi the average across the patches of the mean per-capita growth rates, the

optimal dispersal strategy is given by

(16) y∗i =
µi − µ̄

σ2(1− ρ)
+

1

n

provided that yi∗ > 0 for all i. Notice that (16) agrees with (15) when ρ = 0 and σi = σ. Equa-
tion (16) implies that if the environmental variance σ2 is sufficiently large, then ideal free dispersers
visit all patches and spend more time in patches that support higher mean per-capita growth rates.
Increasing the common spatial correlation ρ results in ideal free dispersers spending more time in
patches whose mean per-capita growth rate is greater than the average of the mean per-capita
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Figure 4. Effects of spatial correlations on the ideal free patch distribution in a 15
patch environment. Per-capita growth rates µi are plotted in the top left. The ideal
free patch distribution y∗ is plotted at three levels of spatial correlation ρ. Covariances
are σii = 2 and σij = 2ρ for i 6= j.

growth rates and less time in other patches (Fig. 4). When the spatial correlations are sufficiently
large, it is no longer optimal to disperse to some patch(es) with lower mean per-capita growth rates.
When this occurs, the ideal free patch distribution has y∗i = 0 in these patch(es) with lower mean
per-capita growth rate and y∗i for the other patch(es) given by (16) with µ̄ the average of the mean
per-capita growth rates across these remaining patch(es).

5. The effect of constraints on dispersal

While the ideal free patch distribution is a useful idealization to investigate how organisms should
disperse in the absence of constraints, organisms in the natural world have limits on their ability
to disperse and to collect and interpret environmental information. Recall from Section 4 that if
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y∗, the optimal patch distribution for an ideal free disperser, is in the interior of the probability
simplex ∆, then, loosely speaking, the ideal free disperser achieves the maximal stochastic growth
rate by using a strategy for which dispersal rate matrix is of the form D = δQ, where Q is any
irreducible infinitesimal generator matrix with (y∗)TQ = 0 and δ = ∞. At the opposite extreme,
if y∗ assigns all of its mass to a single patch, then an ideal free disperser never leaves that single
most-favored patch.

To get a better understanding of how constraints on dispersal influence population growth, we
consider dispersal matrices of the form D = δQ, where δ ≥ 0 and Q is a fixed (irreducible)
infinitesimal generator matrix Q with a stationary law π (that is, πTQ = 0) that is not necessarily
the optimal patch distribution for an ideal free disperser in the given environmental conditions. We
write χ(δ) for the stochastic growth rate of the population and ask which choice of δ maximizes χ(δ).
In particular, we are interested in conditions under which some intermediate δ (that is, 0 < δ <∞)
maximizes χ(δ).

We know from Proposition 4.1 that χ(δ) approaches πTµ− 1
2
πTΣπ as δ →∞. We therefore set

χ(∞) = πTµ− 1
2
πTΣπ. On the other hand, if there is no dispersal (δ = 0), then limt→∞

1
t

logX i
t =

µi − σ2
i

2
with probability one whenever X i

0 > 0, and so limt→∞
1
t

logSt = maxi µi − σ2
i

2
whenever

X i
0 > 0 for all i. Hence, it is reasonable to set χ(0) = maxi(µi − σ2

i

2
). The following result, which

we prove in Appendix C, implies that the function δ 7→ χ(δ) is continuous on [0,∞).

Proposition 5.1. The function δ 7→ χ(δ) is analytic on the interval (0,∞) and continuous at the
point δ = 0.

It follows that one way to establish that χ(δ) is maximized for an intermediate value of δ is to
show that χ(0) < χ(∞) and that χ(δ) > χ(∞) for all sufficiently large δ. The following theorem
provides an asymptotic approximation for χ(δ) when δ is large that will allow us to check when
the latter condition holds. We prove the theorem under the hypothesis that the (irreducible)
infinitesimal generator matrix Q is reversible with respect to its (unique) stationary law π; that is,
that πiQij = πjQji for all i, j. Reversibility implies that at stationarity the Markov chain defined by
Q is “locally balanced” in the sense that if we observe a large number of individuals independently
executing the equilibrium dynamics, then the rate at which we see individuals move from patch
i to patch j equals the rate at which we see individuals move from patch j to patch i. We note
that diffusive movement (that is, the matrix Q is symmetric) and any form of movement along a
one-dimensional landscape (that is, the matrix Q is tridiagonal) are examples of reversible Markov
chains. We provide a proof of the theorem in Appendix D. Corollary 5.3 below, which we prove in
Appendix E, provides a more readily computable expression for the asymptotics of the stochastic
growth rate under further assumptions.

Theorem 5.2. Suppose that Q is reversible with respect to its stationary law π. Then,

χ(δ) =

(
µTπ − 1

2
πTΣπ

)
+

1

δ

[
(µ− Σπ)Tν

−1

2

∫ ∞
0

Tr(exp(QT s)
(
diag(π)− ππT

)
Σ
(
diag(π)− ππT

)
exp(Qs)Σ) ds

]
+ O(δ−

5
4 )(17)
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as δ →∞, where ν is the unique vector satisfying 1Tν = 0 and QTν = −
(
diag(π)− ππT

)
(µ−Σπ).

When the dispersal mechanism D = δQ is consistent with ideal dispersal in the limit δ → ∞,
equation (11) implies that (µ− Σπ)Tν = λ1Tν = 0. On the other hand, the proof of Theorem 5.2
shows that∫ ∞

0

Tr(exp(QT s)
(
diag(π)− ππT

)
Σ
(
diag(π)− ππT

)
exp(Qs)Σ) ds = Tr

(
E[V∞V

T
∞]Σ

)
> 0

where V∞ is a Gaussian random vector. Hence, as expected, χ(δ) is an increasing function for large
δ when π corresponds to the ideal free distribution associated with µ and Σ. However, when π does
not correspond to the ideal free distribution, χ(δ) may be increasing or decreasing for large δ as we
illustrate below.

When Q and Σ commute, the asymptotic expression (17) for χ(δ) simplifies a great deal.

Corollary 5.3. Suppose that Q is symmetric and QΣ = ΣQ. Let λ1 ≤ . . . ≤ λn−1 < λn = 0 be
the eigenvalues of Q with corresponding orthonormal eigenvectors ξ1, . . . , ξn. Then, the eigenvalues
θ1, . . . , θn of Σ can be ordered so that Σξk = θkξk, for each 1 ≤ k ≤ n, and the approximation (17)
reduces to

(18) χ(δ) =

(
µ̄− 1

2n
θn

)
− 1

δn

[
n−1∑
k=1

1

λk

(
(ξTk µ)2 − 1

4n
θ2
k

)]
+ O(δ−5/4)

as δ →∞ and where µ̄ = 1
n

∑
µi.

To illustrate the utility of this latter approximation, we develop more explicit formulas for three
scenarios: diffusive movement in a landscape where all patches are equally connected (that is, a
classic “Levins” style landscape [Levins, 1969]), diffusive movement in a landscape consisting of
a ring of patches, and diffusive movement in a landscape with multiple spatial scales (that is, a
hierarchical Levins landscape). We begin with a simple example.

Example 5.1 Fully connected metapopulations with unbiased movement. Consider a pop-
ulation in which individuals disperse at the same per-capita rate δ/n between all pairs of patches.
Let σ2 be the variance of the within patch fluctuations and ρ be the correlation in these fluctuations
between any pair of patches. Under these assumptions, the dispersal matrix equals Q = J/n−I and
the environmental covariance matrix equals Σ = (1− ρ)σ2I + ρσ2J , where we recall that J = 11T

is the matrix of all ones. Because Q is symmetric, the stationary law of Q is uniform; that is,
π1 = · · · = πn = 1

n
. Hence, in the absence of population growth there would be equal numbers of

individuals in each patch at large times.
Because the matrices I and J commute, the matrices Q and Σ also commute. Recall the notation

of Corollary 5.3. The eigenvector ξn is 1√
n
1. If ξ is any vector of length one orthogonal to ξn, then

Jξ = 0, and so Qξ = −ξ and Σξ = (1−ρ)σ2ξ. We may thus take ξ1, . . . , ξn−1 to be any orthonormal
set of vectors orthogonal to ξn. Moreover, λ1 = · · · = λn−1 = −1 and θ1 = · · · = θn−1 = (1− ρ)σ2.

Now, (ξTnµ)2 = (1/n) (
∑n

k=1 µk)
2

= n(µ̄)2, and so Parseval’s identity (that is, essentially Pythago-

ras’s theorem) implies that
∑n−1

k=1(ξTk µ)2 =
∑n

k=1 µ
2
k − n(µ̄)2 = µTµ− n(µ̄)2. Denote the variance of
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the vector µ by

Var[µ] =
1

n
µTµ− (µ̄)2 =

1

n

n−1∑
k=1

(ξTk µ)2.

Substituting these observations into equation (18), we get that

(19) χ(δ) = µ̄− σ2

2n
(1 + (n− 1)ρ) +

1

δ

[
Var[µ]− (n− 1)((1− ρ)σ2)2

4n2

]
+ O(δ−

5
4 ).

Recall that for the special case of two uncorrelated patches with D12 = D21 = δ/2, µ1 = µ2 = µ,
and σ1 = σ2 = σ, we showed from our exact formula for χ(δ) in the two patch case that

χ(δ) ≈ µ− σ2

4
− 1

δ

σ4

16

as δ →∞, see (9). Hence, this approximation agrees with (19).
Approximation (19) implies that χ(δ) is decreasing for large δ whenever

(20)
n√
n− 1

√
Var[µ] >

(1− ρ)σ2

2
,

and that χ(δ) is increasing if the opposite inequality holds. Thus, highly diffusive movement has
a negative impact on population growth whenever there are sufficiently many patches and there is
sufficient spatial variation in the mean per-capita growth rates. Alternatively, if there is no spatial
variation in the mean per-capita rates and stochastic fluctuations are not perfectly correlated, then
the population growth rate continually increases with higher dispersal rates. This latter observation
is consistent with π being the optimal patch distribution for ideal free dispersers in this case.

We have remarked that, in general, an intermediate dispersal rate is optimal when χ(0) < χ(∞)
and χ(δ) > χ(∞) for all sufficiently large δ. This will occur for individuals in this diffusive dispersal
regime when

(21) (1− ρ)σ2/2 >
maxi µi − µ̄

1− 1/n
.

and (20) holds.
When there are many patches (that is, n→∞), inequalities (21) and (20) are both satisfied if

(1− ρ)σ2/2 > max
i
µi − µ̄ > 0.

In other words, an intermediate dispersal rate is optimal for a system of diffusively dispersing indi-
viduals if there is some spatial variation in mean per-capita growth rates and there are sufficiently
large, but not perfectly correlated, temporal fluctuations.

In order to apply Corollary 5.3, we need to to simultaneously diagonalize the matrices Q and
Σ. A situation in which this is possible and the resulting formulas provide insight into biologically
relevant scenarios is when the dispersal mechanism and the covariance structure of the noise both
exhibit the symmetries of an underlying group. Example 5.1 above is a particular instance of this
situation.
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More specifically, we suppose that the patches can be labeled with the elements of a finite group
G in such a way that the migration rate Qg,h and environmental covariance Σg,h between patches
g and h both only depend on the “displacement” gh−1 from g to h in G. That is, we assume
there exist functions q and s on G such that Qgh = q(gh−1) and Σgh = s(gh−1). For instance,
if G is the group of integers modulo n, then the habitat has n patches arranged in a circle, and
the dispersal rate and environmental covariance between two patches only depends on the distance
between them, measured in steps around the circle. We do not require that the vector µ of mean
per-capita growth rates satisfies any symmetry conditions.

The matrices Q and Σ will commute if q and s are class functions, that is, if q(gh) = q(hg) and
s(gh) = s(hg) for all g, h ∈ G. We assume this condition holds from now on. Note that if G is
Abelian (that is, the group operation is commutative), then any function is a class function.

We now record a few facts about representation theory, the tool that will enable us to find the
eigenvalues and eigenvectors of Q and Σ; we refer readers interested in more detail to [Serre, 1977,
Diaconis, 1988]. A unitary representation of a group G is a homomorphism ρ from G into the group
of dρ×dρ unitary matrices, where dρ is called the degree of the representation. Two representations
ρ′ and ρ′′ are equivalent if there exists a unitary matrix U such that ρ′′(g) = Uρ′(g)U−1 for all
g ∈ G. A representation ρ′ is irreducible if it is not equivalent to some representation ρ′′ for which
ρ′′(g) is of the same block diagonal form for all g ∈ G. A finite group has a finite set of inequivalent,

irreducible, unitary representations, which we denote by Ĝ. The simplest representation is the
trivial representation ρtr of degree one, for which ρtr(g) = 1 for all g.

If ρ′, ρ′′ ∈ Ĝ, then

(22)
∑
g∈G

ρ′ij(g)ρ′′k`(g)∗ =

{
#G
dρ
, if ρ′ = ρ′′ and (i, j) = (k, `),

0, otherwise,

where z∗ denotes the complex conjugate of a complex number z, and #G is the number of elements
of G.

The Fourier transform of a function f : G→ C is a function f̂ on Ĝ defined by

(23) f̂(ρ) :=
∑
g∈G

f(g)ρ(g) for ρ ∈ Ĝ.

Note that f̂(ρ) is a dρ×dρ matrix. It follows from the orthogonality properties of the matrix entries
of the irreducible representations recorded above that the Fourier transform may be inverted, giving
f explicitly as the linear combination of matrix entries of f̂ . Specifically,

f(g) =
1

#G

∑
ρ∈Ĝ

dρ Tr
(
ρ(g−1)f̂(ρ)

)
.

Associated with a representation ρ ∈ Ĝ is its character κ, defined by κ(g) := Tr ρ(g). We write
G̃ for the set of characters of irreducible representations. The characters are class functions. They
form an orthogonal basis for the subspace of class functions on G and

∑
g∈G |κ(g)|2 = #G, where

|z| =
√
zz∗ is the modulus of the complex number z. For ρ ∈ Ĝ with character κ ∈ G̃, the Fourier
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transform of a class function f satisfies

f̂(ρ) =
1

dρ
f̃(κ)I

where I is the dρ × dρ identity matrix and

(24) f̃(κ) :=
∑
g∈G

f(g)κ(g).

Consequently,

(25) f(g) =
1

#G

∑
κ∈G̃

κ(g)∗f̃(κ).

Finally, given a a function f on G and character κ that corresponds to a representation ρ, denote
by ‖f‖κ the norm of the projection of f onto the subspace CG spanned by the matrix entries of ρ;
that is,

‖f‖2
κ :=

dρ
#G

dρ∑
i,j=1

∣∣∣∣∣∑
g∈G

ρij(g)f(g)

∣∣∣∣∣
2

.

The following theorem is proved in Appendix F.

Theorem 5.4. Suppose that the n patches are labeled by a finite group G in such a way that Qgh =
q(gh−1) and Σgh = s(gh−1), where q and s are class functions. Suppose further that q(g) = q(g−1),
g ∈ G, so that the matrix Q is symmetric. Let µ̄ = 1

#G

∑
g∈G µ(g) and s̄ = 1

#G

∑
g∈G s(g). Then,

(26) χ(δ) =

(
µ̄− 1

2
s̄

)
− 1

δn

∑
κ∈G̃\{κtr}

dκ
q̃(κ)

(
‖µ‖2

κ −
1

4n
s̃(κ)2

)
+O(δ−5/4)

as δ →∞. Furthermore, q̃(κ) < 0 for all κ ∈ G̃ \ {κtr}.

Roughly speaking, this expression tells us about the respective roles of variance of patch quality
(µ) and covariance of environmental noise (s). Since q̃(κ) is negative for all κ, it tells us that if
variability between patches in µ is larger, in some sense, than environmental covariance between
patches, then χ(δ) is decreasing for large δ, and so, with a fixed migration pattern q, the optimal
dispersal level is not infinite. Conversely, if environmental noise is strongly correlated between
patches and the mean patch quality is similar, then more dispersal is expected to be better.

Example 5.2 Circle of Patches. Suppose that the n patches of a habitat are arranged in a circle
and are labeled by Zn = {0, 1, . . . , n − 1}, the group of integers modulo n with identity element
0. Because Zn is Abelian, any function is a class function. The irreducible representations of Zn
are all one-dimensional (that is, dρ = 1 for all ρ ∈ Ĝ), and hence an irreducible representation can
be identified with its character. The characters are of the form j 7→ κm(j) = exp (2πimj/n) for
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0 ≤ m ≤ n − 1. κ0 is the trivial character κtr. Given a function Zn → C, its Fourier transform is
given by

f̃(κm) =
n∑
j=1

f(j) exp (2πimjπ/n) for 0 ≤ m ≤ n− 1.

If we assume that individuals disperse only to neighboring patches and these dispersal rates
are equal, then q(1) = q(n − 1) = 1/2, q(0) = −1 and q(2) = . . . = q(n − 2) = 0. Assume
the environmental noise is independent between patches and has variance σ2 i.e. s(0) = σ2 and
0 = s(1) = . . . = s(n − 1). Finally, suppose that patch quality as measured by the average per-
capita growth rates is spatially periodic, so that µ(k) = µ̄ + c cos(2πk`/n) for some c > 0, µ̄, and
1 ≤ ` < n/2.

Under this set of assumptions, we can compute that for m 6= 0, q̃(m) = cos(2πm/n) − 1 and
s̃(m) = σ2. Furthermore, ‖µ‖2

κ`
= ‖µ‖2

κn−`
= nc2/4 and ‖µ‖2

m = 0 otherwise. From these computa-
tions, Theorem 5.4 implies that

χ(δ) ≈ µ̄− σ2/2− 1

δn

(
nc2

2(cos(2π`/n)− 1)
−

n−1∑
m=1

σ2

4n(cos(2πm/n)− 1)

)
for large δ. Using the identity

∑n−1
k=1(1 − cos(2πk/n))−1 = (n2 − 1)/6 (see equation 1.381.1 in

Gradshteyn and Ryzhik [2007]’s table of integrals and series), this approximation simplifies to

χ(δ) ≈ µ̄− σ2/2 +
1

4δn2

(
2n2c2

1− cos(2π`/n)
− 1

6
(n2 − 1)σ4

)
.

Since χ(0) = µ̄ + c − σ2/2, high dispersal is better than no dispersal if χ(∞) − χ(0) = σ2(1 −
1/n)/2− c > 0. When the number of patches is sufficiently large, this inequality implies that highly
dispersive populations grow faster than sedentary populations provided that the temporal variation
is sufficiently greater than the spatial variation in per-capita growth rates i.e. σ2 > 2c. On the
other hand, χ(δ) is decreasing for large δ if the coefficient of 1/δ is positive i.e.

4c2 >
1

3
(1− cos(2π`/n))(1− n−2)σ4.

Hence, if `/n is small enough, then χ(δ) is decreasing for large δ. Together, these inequalities imply
that for small scale spatial heterogeneity (i.e. `/n sufficiently small) and sufficiently large temporal
variability, intermediate dispersal rates maximize the stochastic growth rate.

Example 5.3 Multi-scale patches. Suppose now that our organism lives in a hierarchically
structured habitat. For example, individuals might live on bushes, the bushes grow around the
edges of clearings, and the clearings are scattered across an archipelago of islands. We label each
bush with an ordered triple recording on which island, in which clearing, and in what bush around
the clearing it lives, so that for instance (2, 1, 4) denotes the fourth bush in the first clearing of
the second island. To make the mathematical picture a pretty one, we suppose that each of the I
islands has the same number C of clearings and each clearing has the same number B of bushes.
This enables us identify the habitat structure with the group ZI ⊗ ZC ⊗ ZB, where, as above, Zm
is the group of integers modulo m. We will get particularly simple and interpretable results if we
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also assume that dispersal rates and environmental covariances only depend on the scale at which
the movement occurs – between bushes, clearings, or islands.

Although it requires imaginative work to find examples with many more scales than this (do the
organism’s fleas have fleas?) it does not cost us anything to work in greater generality. Suppose,
then, that the patches in the habitat are labeled with the group G = G1⊗· · ·⊗Gk, where Gj = Znj
for 1 ≤ j ≤ k.

Thus, one patch is labeled with the identity element idG = (id1, . . . , idk) and every other patch is
labeled by the displacement required to get there from idG. The later coordinates are understood to
be at finer “scales”, so that if gi = hi for all 1 ≤ i ≤ j−1, then g and h represent patches in the same
metapatch at scale j. For instance, in our example above, the archipelago of islands is the single
metapatch at scale 1 and the metapatches at scales 2 and 3 are, respectively, the islands and the
clearings. We label the metapatches at scale r with the set Zr := {g ∈ G : gr = idr, . . . gk = idk},
with the convention that Zk+1 := G. Because a label g = (g1, . . . , gk) ∈ G represents displacement,
the coordinate of the leftmost non-identity element of g, denoted by

`(g) := min{j : gj 6= idj} and `(idG) = k + 1,

tells us the scale on which the motion occurs: g ∈ G corresponds to a displacement that moves
between patches within the same metapatch at scale `(g) but moves from a patch within a metapatch
at scale `(g) + 1 to a patch within some other metapatch at that scale. Note that 1 ≤ `(g) ≤ k+ 1.

We assume that the dispersal rate and the environmental covariance between two patches only
depends on the scale of the displacement necessary to move between the two patches. That is, we
suppose there are numbers q1, . . . , qk+1 and s1, . . . , sk+1 such that q(g) = q`(g) and s(g) = s`(g).

In Appendix G we show that the Fourier transforms appearing in Theorem 5.4 depend on the
following quantities.

Let Nr := #Zr =
∏r−1

j=1 nj be the number of metapatches at scale r. Write Z̄r := {g ∈ G : gj =

idj, j ≤ r} for the subgroup of displacements that move from one patch to another within the same

metapatch at scale r + 1 and set N̄r := #Z̄r =
∏k

j=r+1 nj.
Set

vµ(r) :=
1

Nr

∑
g∈Zr

 1

nr

∑
h∈Gr

 1

N̄r

∑
z∈Z̄r

µ(ghz)

2

−

 1

nr

∑
h∈Gr

1

N̄r

∑
z∈Z̄r

µ(ghz)

2 .

We can interpret this quantity as follows. There are Nr metapatches at scale r. Each one has within
it nr metapatches at scale r + 1. First, compute the average of µ over all the patches within each
metapatch at scale r + 1, then compute the variance of these averages within each metapatch at
scale r, and finally average these variances across all the metapatches at scale r to produce vµ(r).
Thus, vµ(r) measures the variability in µ that can be attributed to scale r + 1.

Set

s̃(r) =
k∑
`=r

(s`+1 − s`)N̄`
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and

q̃(r) = −
r∑
`=1

q`(N̄`−1 − N̄`)− qrN̄r.

Theorem 5.5. For a habitat with the above multi-scale structure, equation (17) reduces to

χ(δ) =

(
µ̄− 1

2
s̄

)
− 1

δ

k∑
r=1

1

q̃(r)

(
vµ(r)− Nr+1 −Nr

4(#G)2
s̃(r)2

)
+O(δ−5/4)(27)

as δ →∞. Furthermore, q̃(r) < 0 for all 1 ≤ r ≤ k.

This result agrees with equation (19), which describes the special case where there is a single
scale.

Note that if s` increases with ` (that is, two patches within the same metapatch have a higher
environmental covariance than two patches in different metapatches at that scale), then s̃(r) de-
creases with r. Also, if q` increases with ` (that is, there is a higher rate for dispersing to a patch
within the same metapatch at some scale than to a patch in another metapatch at that scale), then
q̃(r) is negative and decreases with r. Using these observations, we may read off several things from
(27).

Firstly, imagine a fixed ensemble of patches with varying mean per-capita growth rates and
consider the following two possibilities for assignment of these patches to metapatches at scale 2
(the islands in our bush-clearing-island example). One possibility is that some islands are assigned
patches that are primarily of high quality, whereas other islands are mostly assigned poor patches.
The other possibility is that patches of different quality are evenly spread across the islands, with
the range of quality within an island similar to the range of quality between islands. In the first
case, the variance across islands of within-island means is comparable to the variance across all
patches, so vµ(1) ≈ vµ(k). In the second case, the within-island means are approximately constant,
so that vµ(1) will be small. Therefore, since q̃(r) is negative for all r, all other things being equal,
having local positive association of µ at nearby patches leads to higher stochastic growth rates, at
least for large enough values of the dispersal parameter δ. Said another way, the species will do
better if the good habitat is concentrated on particular islands, rather than spread out across many.

Secondly, adding new scales of metapatch may change the situation from one in which χ(δ) is
maximal at high values of the dispersal parameter δ to one in which χ(δ) is maximal at intermediate
values of δ, or vice-versa. If n1 = 1, then s̃(1) and vµ(1) are both zero, and changing n1 (for example,
going from one to several islands in our example) will increase s̃(1). Changing n1 will also add the
quantity −q1(n1 − 1)N̄1 to all values of q̃(r). The result of this could be to change the sign of the
coefficient of 1

δ
in (17), possibly drastically changing the optimal level of dispersal and maximal

growth rate.
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6. Discussion

Classical ecology theory predicts that environmental stochasticity increases extinction risk by
reducing the long term per-capita growth rate of populations [May, 1975, Turelli, 1978]. For seden-
tary populations in a spatially homogeneous yet temporally variable environment, a simple model
of their growth is given by the stochastic differential equation dZt = µZtdt + σZtdBt, where B is
a standard Brownian motion. The stochastic growth rate for such populations equals µ − σ2

2
; the

reduction in the growth rate is proportional to the infinitesimal variance of the noise. Here, we show
(see equation (5)) that a similar expression describes the growth of populations dispersing in spa-
tially and temporally heterogeneous environments. More specifically, if average per-capita growth
rate in patch i is µi and the infinitesimal spatial covariance between environmental noise in patches
i and j is σij, then the stochastic growth rate equals the average of the mean per-capita growth rate∑

i µiE[Y i
∞] experienced by the population when the proportions of the population in the various

patches have reached equilibrium minus half of the average temporal variation E[
∑

i,j σijY
i
∞Y

j
∞]

experienced by the population in equilibrium. The law of Y∞, the random equilibrium spatial
distribution of the population which provides the weights in these averages, is determined by in-
teractions between spatial heterogeneity in mean per-capita growth rates, the infinitesimal spatial
covariances of the environmental noise, and population movement patterns. To investigate how
these interactions effect the stochastic growth rate, we derived analytic expressions for the law of
Y∞, determined what choice of spatial dispersal mechanism resulted in optimal stochastic growth
rates for a freely dispersing population, and considered the consequences on the stochastic growth
rate of limiting the population to a fixed dispersal mechanism. As we now discuss, these analytic
results provide fundamental insights into “ideal free” movement in the face of uncertainty, the per-
sistence of coupled sink populations, the evolution of dispersal rates, and the single large or several
small (SLOSS) debate in conservation biology.

In spatially heterogeneous environments, “ideal free” individuals disperse to the patch or patches
that maximize their long term per-capita growth rate [Fretwell and Lucas, 1970, Harper, 1982,
Oksanen et al., 1995, van Baalen and Sabelis, 1999, Schreiber et al., 2000, Schreiber and Vejdani,
2006, Kirkland et al., 2006, Cantrell et al., 2007]. Hence, the long term per-capita growth rates
are equal in all occupied patches. In the absence of noise and density-dependent feedbacks, there
will be generically only one occupied patch (for example, this is what would happen if the µi were
chosen independently according to some common continuous law). Here, we show that uncertainty
due to environmental stochasticity can overturn both of these predictions. Provided environmental
stochasticity is sufficiently strong and spatial correlations are sufficiently weak, equation (14) implies
that ideal free populations occupy all patches despite spatial variation in the local mean per-capita
growth rates. For patches supporting similar mean per-capita growth rates µi, ideal free dispersers
spend more time in the patches with lower environmental variances σ2

i . Intuitively, by spending
time in multiple patches (even those that in isolation would exhibit lower stochastic growth rates),
individuals are hedging their bets against environmental uncertainty [Slatkin, 1974, Philippi and
Seger, 1989, Wilbur and Rudolf, 2006].
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A sink population is a local populations that is sustained by immigration [Pulliam, 1988, Dias,
1996]. Removing immigration results in a steady decline to extinction. In contrast, source popu-
lations persist in the absence of immigration. Empirical studies have shown that landscapes often
partition into mosaics of source and sink populations [Murphy, 2001, Kreuzer and Huntly, 2003,
Keagy et al., 2005]. For discrete-time two-patch models, Jansen and Yoshimura [1998] showed,
quite surprisingly, that sink populations coupled by dispersal can persist, a prediction supported by
recent empirical studies with protozoan populations [Matthews and Gonzalez, 2007] and extended
to discrete-time multi-patch models [Roy et al., 2005, Schreiber, 2010]. Here, we show a similar
phenomena occurs for populations experiencing continuous temporal fluctuations. For example, if
the stochastic growth rates in all patches equal µ−σ2/2 and the spatial correlation between patches
is ρ, then equations (5) and (16) imply that populations dispersing freely between n patches persist
whenever µ− ((n− 1)ρ+ 1)σ2/2n > 0. Hence, ideal free movement mediates persistence whenever
local environmental fluctuations produce sink populations (that is, σ2/2 > µ > 0), environmental
fluctuations aren’t fully spatially correlated (i.e. ρ < 2µ/σ2) and there are sufficiently many patches
(that is, n > ((1 − ρ)σ2)/(2µ − ρσ2)). This latter expression for the necessary number of patches
to mediate persistence is an exact, continuous time counterpart to an approximation by Bascompte
et al. [2002] for discrete time models. When two patches are sufficient to mediate persistence, equa-
tion (8) reveals that there is a critical dispersal rate below which the population is extinction prone
and above which it persists. Our high dispersal approximation (see equation (19) with Var[µ] = 0)
suggests this dispersal threshold also exists for an arbitrary number of patches.

While ideal free movement corresponds to an evolutionarily stable strategy for species without
any constraints on their movement or their ability to collect information, many organisms experience
these constraints. For instance, in the absence of information about environmental conditions in
other patches, individuals may move randomly between patches, in which case the rate of movement
(rather than the pattern of movement) is subject to natural selection [Hastings, 1983, Levin et al.,
1984, McPeek and Holt, 1992, Dockery et al., 1998, Hutson et al., 2001, Kirkland et al., 2006].
When density-dependent feedbacks are weak and certain symmetry assumptions are meet, our high
dispersal approximation in (18) implies there is selection for higher dispersal rates whenever

(28)
n−1∑
k=1

1

|λk|
1

4n
θ2
k >

n−1∑
k=1

1

|λk|
(ξTk µ)2

where, recall, λk < 0, ξk are the eigenvalues/vectors of the dispersal matrix, µ is the vector of
per-capita growth rates, and θk are the eigenvalues of the covariance matrix for the environmental
noise. Equation (28), roughly, asserts if temporal variation (averaged in the appropriate manner)
exceeds spatial variation, then there is selection for faster dispersers; a prediction consistent with
the general consensus of earlier studies [Levin et al., 1984, McPeek and Holt, 1992, Hutson et al.,
2001]. More specifically, in the highly symmetric case where the temporal variation in all patches
equals σ2 and the spatial correlation between patches is ρ, equation (28) simplifies to

(29)
(1− ρ)σ2

2
>

n√
n− 1

√
Var[µ]
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in which case lower spatial correlations and larger number of patches also facilitate selection for
faster dispersers.

Previous studies have shown that spatial heterogeneity in per-capita growth rates increases the
net population growth rate for deterministic models with diffusive movement [Adler, 1992, Schreiber
and Lloyd-Smith, 2009]. Intuitively, spatial heterogeneity provides patches with higher per-capita
growth rates that boost the population growth rate; a boost that gets diluted at higher disper-
sal rates. Our high dispersal approximation (18) shows that this boost also occurs in temporally
heterogeneous environments i.e. the correction term −

∑n−1
k=1

1
λk

(ξTk µ)2/δ is positive. More impor-

tantly, the multiscale version of this correction term (27) implies this boost is larger when the
variation in the per-capita growth rates occurs at multiple spatial scales. For example, for insects
living on plants in meadows on islands, the largest boost occurs when the higher quality plants (i.e.
the plants supporting the largest µi values) occur on the same island in the same meadow. This
analytic conclusion is consistent with numerical simulations showing that habitat fragmentation
(e.g. distributing high quality plants more evenly across islands and meadows) increases extinction
risk [Fahrig, 1997, 2002]. Intuitively, spatial aggregation of higher quality patches increases the
chance of individuals dispersing away from a high quality patch arriving in another high quality
patch. Even without spatial variation in per-capita growth rates, equation (27) implies that strong
spatial aggregation of patches maximizes stochastic growth rates for dispersive populations living
in environments where temporal correlations decrease with spatial scale. This finding promotes the
view that a single large (SL) reserve is a better for conservation than several small (SS) reserves.
While consistent with many arguments in the SLOSS debate [Diamond, 1975, Wilcox and Murphy,
1985, Gilpin, 1988], it runs contrary to a numerical simulation study of Quinn and Hastings [1987]
that, unlike ours, applies to sedentary populations experiencing independent environments [Gilpin,
1988].

While this work provides a diversity of analytical insights into the interactive effects of temporal
variability, spatial heterogeneity, and movement on long-term population growth, many challenges
remain. Most notably, are there analytic approximations for relatively sedentary populations?
What effect do correlations in the temporal fluctuations have on the stochastic growth rate? Can
the explicit formulas for stochastic growth rates in two patch environments be extended to special
classes of higher dimensional models? Answers to these questions are likely to provide important
insights into the evolution of dispersal and metapopulation persistence.
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Appendix A. Proof of Proposition 3.1

Define the matrix R by

R := diag(µ) +D.

Equation (1) becomes

dXt = diag(Xt)Γ
TdBt +RTXtdt.

Recall that Y j
t = Xj

t /(X
1
t + · · ·+Xn

t ) for each 1 ≤ j ≤ n and Yt = (Y 1
t , . . . , Y

n
t )T . Fix j and define

fj(x1, . . . , xn) := xj/(x1 + · · · + xn), so that Y j = fj(X). Using ∂k to denote differentiation with
respect to xk, observe that

∂jfj(x1, . . . , xn) =

(∑
` 6=j

x`

)/(∑
`

x`

)2

, ∂kfj(x1, . . . , xn) = −xj
/(∑

`

x`

)2

, k 6= j.

Moreover,

∂jjfj(x1, . . . , xn) = −2

(∑
` 6=j

x`

)/(∑
`

x`

)3

,

∂jkfj(x1, . . . , xn) = −1

/(∑
`

x`

)2

+ 2xj

/(∑
`

x`

)3

, k 6= j

and

∂kmfj(x1, . . . , xn) = 2xj

/(∑
`

x`

)3

, k,m 6= j.

It follows from Itô’s lemma that for each 1 ≤ j ≤ n,

dY j
t =

n∑
k=1

∂kfj(Xt)X
k
t ΓT∗kdBt +

n∑
k=1

∂kfj(Xt)X
T
t R∗kdt

+ (1/2)
n∑

k,m=1

∂k,mfj(Xt)X
k
t X

m
t (Σ)kmdt,
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where Γ∗k and R∗k denote the kth columns of the matrices Γ and R respectively. Substituting in
the derivatives of fj gives

dY j
t =−

∑
k 6=j

Y j
t Y

k
t ΓT∗kdBt +

∑
k 6=j

Y j
t Y

k
t ΓT∗jdBt

−
∑
k 6=j

Y j
t Y

T
t R∗kdt+

∑
k 6=j

Y k
t Y

T
t R∗jdt

+ (1/2)
∑
k,m6=j

2Y j
t Y

k
t Y

m
t Σkmdt− (1/2)

∑
k 6=j

2Y k
t (Y j

t )2Σjjdt

+ (1/2)× 2
∑
k 6=j

(
− Y j

t Y
k
t + 2Y k

t (Y j
t )2
)

Σkjdt

=− Y j
t

∑
k

Y k
t ΓT∗kdBt + Y j

t ΓT∗jdBt − Y j
t

∑
k

YT
t R∗kdt+ YT

t R∗jdt

+ Y j
t

∑
k,m

Y k
t Y

m
t Σkmdt− Y j

t

∑
k

Y k
t Σkjdt.

Since D1 = 0, we have
∑

k R∗k = R1 = diag(µ)1 = µ, and the above system of SDEs can be
written in the following compact way

dYt =−YtY
T
t ΓTdBt + diag(Yt)Γ

TdBt

−YtY
T
t µdt+RTYtdt+ YtY

T
t ΣYtdt− diag(Yt)ΣYtdt

=
(
diag(Yt)−YtY

T
t

)
ΓTdBt +DTYtdt

+
(
diag(Yt)−YtY

T
t

)
(µ− ΣYt) dt.

Now that the SDE (4) is established, we will prove the ergodicity of the Markov process (Yt)t≥0

defined in (4).

Existence. Clearly (Yt)t≥0 is a Feller process. Since for each t ≥ 0, the random vector Yt takes
values in the compact state space ∆, it trivially follows that the family of probability measures
{Py{Yt ∈ ·} : t > 0} is uniformly tight for any fixed y ∈ ∆, where Py denotes the law of the process
with Y0 = y. Hence, by the Krylov-Bogolyubov theorem (see, for example, [Da Prato and Zabczyk,
1996, Corollary 3.1.2]), there exists at least one probability measure µ on ∆ which is an invariant
measure for the process (Yt)t≥0, that is,∫

∆

µ(dy)Py{Yt ∈ ·} = µ{·}.

Uniqueness. The uniqueness of the invariant measure for (Yt)t≥0 is ensured by the Doob-
Khasminskii theorem (see, for example, [Da Prato and Zabczyk, 1996, Chapter 7] ), provided
this process satisfies the following two properties:
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(1) (Yt)t≥0 is irreducible, that is, Py{Yt ∈ V } > 0 for any t > 0 and any open set V in the
simplex ∆.

(2) (Yt)t≥0 is strong Feller, that is, ∆ 3 y 7→
∫

∆
Py{Yt ∈ dz}f(z) is continuous for any bounded

measurable function f : ∆→ R.

These conditions also ensure that (Yt)t≥0 converges weakly to the unique invariant measure. We
next establish irreducibility and the strong Feller property of (Yt)t≥0 separately.

(a) Irreducibility. It clearly suffices to show that the process (Xt)t≥0 as defined by (3) is irre-
ducible, that is, that Px{Xt ∈ U} > 0 for each t > 0, x ∈ Rn

+ \ {0} and open set U ⊆ Rn
+.

We will first prove that Px{X i
t > 0 ∀i} = 1 for all t > 0 and all x ∈ Rn

+ \{0}, by induction on the
size of the set G := {1 ≤ i ≤ n : xi = 0}. First consider the case #G = 0. By a suitable comparison

theorem for SDEs [Geiß and Manthey, 1994, Theorem 1.1], Px{Xt ≥ X̂t for all t ≥ 0} = 1, where

X̂ is defined by

dX̂ i
t = µiX̂

i
tdt+ X̂ i

tdE
i
t +DiiX̂

i
tdt, 1 ≤ i ≤ n.

This SDE has the unique solution X̂ i
t = xi exp(Ei

t + (µ+Dii)t) > 0, so

(30) Px{X i
t > 0 ∀i for all t > 0}, x ∈ (0,∞)n.

Now suppose #G = k < n. By the irreducibility of the infinitesimal generator matrix D, there
exist i0 ∈ G, j0 6∈ G such that Dj0,i0 > 0. Consider the new SDE

dX̃ i
t = µiX̃

i
tdt+ X̃ i

tdE
i
t +DiiX̃

i
tdt, i 6= i0,

and

dX̃ i0
t = µi0X̃

i0
t dt+ X̃ i0

t dE
i
t + (Dj0i0X̃

j0
t +Di0i0X̃

i0
t )dt.

Again by the same comparison theorem, Px{Xt ≥ X̃t for all t ≥ 0} = 1. Clearly, Px{X̃ i
t > 0} = 1

for all i 6∈ G and for all t > 0. Since X̃ i0
0 = 0 and X̃j0

0 > 0, at time t = 0 the diffusion component
of X̃ i0

t vanishes but its drift coefficient is strictly positive. It follows that Px{X̃ i0
t > 0} = 1 for all

t > 0. Hence, at any positive time t, almost surely X̃t has at most k − 1 zero coordinates, and,
by the comparison theorem, so does Xt. Using the Markov property and the induction hypothesis,
we deduce that Px{X i

t > 0 ∀i} = 1 for all t > 0. This proves that each component of X is strictly
positive with probability 1 for each t > 0.

Let ϕ : (0,∞)n → Rn be the homeomorphism given by ϕ(x) = (log x1, . . . , log xn). Set Ht =
ϕ(Xt), with Ht = (H1

t , . . . , H
n
t )T . By (30), this stochastic process is well defined provided X0 ∈

(0,∞)n. Note that (Ht)t≥0 satisfies the following SDE,

dH i
t = µidt+ dEi

t + e−H
i
t

n∑
j=1

Djie
Hj
t dt, 1 ≤ i ≤ n.

By Girsanov’s theorem (see [Ikeda and Watanabe, 1989, Section 4 of Chapter IV]), the law of
(ΓT )−1Ht (and hence the law of Ht) is absolutely continuous with respect to the law of Bt for any
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t > 0. Thus, Px{Ht ∈ V } > 0 for any open set V ⊆ Rn. Finally, for any x ∈ Rn \ {0},

Px{Xt ∈ U} =

∫
Rn+

Px{Xt/2 ∈ dy}Py{Xt/2 ∈ U}

=

∫
(0,∞)n

Px{Xt/2 ∈ dy}Py{Xt/2 ∈ U}

=

∫
(0,∞)n

Px{Xt/2 ∈ dy}Pϕ(y){Ht/2 ∈ ϕ(U)} > 0.

(b) Strong Feller property. Note that H satisfies a SDE of the form dHt = ΓTdBt + b(Ht)dt
for some smooth function b : Rn → Rn. For each K ≥ 1, consider a new SDE

dHK
t = ΓTdBt + bK(Ht)dt,

where bK : Rn → Rn is a smooth bounded function with bounded derivative such that bK(x) = b(x)
on [−K,K]n. Since the matrix Γ is nonsingular, the associated Fisk-Stratonovich type generator of
(HK

t )t≥0 is trivially hypoelliptic, which in turn implies that (HK
t )t≥0 is strong Feller for every K ≥ 1

(see [Ikeda and Watanabe, 1989, Section 8 of Chapter V]). If we define a sequence of stopping times
τK := inf{t : ‖Xt‖∞ ≥ K}, then HK

0 = H0 = x ∈ [−K,K]n implies HK
t = Ht for t ∈ [0, τK ]. Let

t > 0 and f be a bounded measurable function. Fix ε > 0. Then for any x ∈ Rn,∣∣Ex[f(Ht)]− Ex[f(HK
t )]
∣∣ ≤ 2‖f‖∞Px{τK < t}.

Hence, for any open neighborhood U(x) of x,∣∣Ey[f(Ht)]−Ex[f(Ht)]
∣∣ ≤ ∣∣Ey[f(HK

t )]−Ex[f(HK
t )]
∣∣+ 4‖f‖∞ sup

z∈U(x)

Px{τK < t} for all y ∈ U(x).

Since almost surely τK ↑ ∞, we can choose K large enough such that Px{τK < t} < ε(8‖f‖∞)−1.
Moreover, by the Feller property of (Ht)t≥0, there exists a neighborhood U1(x) of x such that
supz∈U1(x) Pz{τK < t} < ε(8‖f‖∞)−1. From the strong Feller property of (HK

t )t≥0, there exists

a neighborhood U2(x) of x such that
∣∣Ey[f(HK

t )] − Ex[f(HK
t )]
∣∣ < ε/2 for all y ∈ U2(x). Thus,∣∣Ey[f(Ht)] − Ex[f(Ht)]

∣∣ < ε for all y ∈ U1(x) ∩ U2(x). Thus, x 7→ Ex[f(Ht)] is continuous. Now,
for t > 0 and a bounded measurable function g : Rn

+ → R,

Ex[g(Xt)] =

∫
(0,∞)n

Px{Xt/2 ∈ dy}Eϕ(y)[g(ϕ−1(Ht/2))], x ∈ Rn
+.

Therefore, the map x 7→ Ex[g(Xt)] is continuous, and hence (Xt)t≥0 is a strong Feller process. It
follows easily that (Yt)t≥0 is also a strong Feller process. �

Appendix B. Proof of Proposition 4.1

By rescaling time τ := δt and setting ε := 1/δ, (4) becomes

(31) dYε
τ =
√
εf(Yε

τ )dBτ + εg(Yε
τ )dt+QTYε

τdt

where f(y) :=
(
diag(y)− yyT

)
ΓT , g(y) :=

(
diag(y)− yyT

)
(µ− Σy), and Yε

τ := Yτ/ε.
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For ε > 0, let νε be the unique invariant probability measure for (31) guaranteed by Proposi-
tion 3.1. The irreducibility of Q implies that π is the unique stable point for the ODE

d

dτ
yxτ = QTyxτ , yx0 = x ∈ ∆,

and that limτ→∞ y
x
τ = π for any x ∈ ∆. Write ν0 for the Dirac measure at the point π ∈ ∆. By the

compactness of Borel probability measures on ∆ in the topology of weak convergence, it suffices to
show if νεk converges weakly to ν for some sequence εk ↓ 0, then ν = ν0, and this is equivalent to
checking that ∫

∆

h(yxτ ) ν(dx) =

∫
∆

h(x) ν(dx)

for every τ ≥ 0 and Lipschitz function h : ∆→ R.
Set Yk

τ = Yεk
τ and νk = νεk for ease of notation. Let L be the Lipschitz constant for the function

h. Then, ∣∣∣∣∫
∆

(h(yxτ )− h(x)) ν(dx)

∣∣∣∣ = lim
k→∞

∣∣∣∣∫
∆

(h(yxτ )− h(x)) νk(dx)

∣∣∣∣
≤ lim sup

k→∞

∣∣∣∣∫
∆

(
Ex
[
h(Yk

τ )
]
− h(x)

)
νk(dx)

∣∣∣∣︸ ︷︷ ︸
=0 by invariance of νk

+ lim sup
k→∞

∣∣∣∣∫
∆

Ex
[
h(yxτ )− h(Yk

τ )
]
νk(dx)

∣∣∣∣
≤ lim sup

k→∞
L

∫
∆

Ex
[
‖yxτ −Yk

τ‖
]
νk(dx),

where ‖ · ‖ is the usual Euclidean norm on Rn.
It remains to show that limk→∞ supx∈∆ Ex

[
‖yxτ −Yk

τ‖
]

= 0. Fix x ∈ ∆ and set Zk
τ := yxτ −Yk

τ .
By Itô’s formula,

Ex
[
‖Zkτ‖2

]
= E

[∫ τ

0

2〈Zks , QTZks〉 − 2εk〈Zks , g(Yk
s )〉+ εk Tr(f(Yk

s )f(Yk
s )T )ds

]
≤ 2‖QT‖

∫ τ

0

Ex
[
‖Zks‖2

]
ds+ εkCτ,

for some constant C that does not depend on x or τ , where we write 〈·, ·〉 for the usual Euclidean
inner product on Rn, and ‖QT‖ = sup‖z‖=1 |〈z,QT z〉|. Gronwall’s inequality implies that

Ex
[
‖Zk

τ ‖2
]
≤ εkCe

2‖QT ‖τ ,

and so, by Jensen’s inequality,

Ex
[
‖Zk

τ ‖
]
≤
√
εkCe

‖QT ‖τ .

It follows that limk→∞ supx∈∆ Ex
[
‖yxτ −Yk

τ‖
]

= 0, and hence ν = ν0, as required.



STOCHASTIC GROWTH IN HETEROGENEOUS ENVIRONMENTS 35

In particular,

χ(δ) =

∫
∆

µTy ν1/δ(dy)− 1

2

∫
∆

yTΣy ν1/δ(dy)

→ µTπ − 1

2
πTΣπ

as δ →∞. �

Appendix C. Proof of Proposition 5.1

Fix δ ∈ [0,∞), and denote our underlying probability space by {Ω,F ,P}. Define

Φδ
s,t : Rn × Ω→ Rn, 0 ≤ s ≤ t,

by Φδ
s,t(x, ω) = Xδ

t (ω), where (Xδ
u)u≥s is the unique solution of

Xδ
u = x +

∫ u

s

diag(Xδ
v)Γ

TdBv +

∫ u

s

(Rδ)
TXδ

vdv

with Rδ := diag(µ) + δQ.
Note that for all 0 ≤ s ≤ w ≤ t,

(32) Φs,t(·, ω) = Φδ
w,t(·, ω) ◦ Φδ

s,w(·, ω).

It is easy to see that Φδ
s,t(·, ω) is a linear map from Rn to Rn and thus can be represented by a

matrix Mδ
s,t(ω). From (32), it follows that

Mδ
s,t(ω) = Mδ

w,t(ω)Mδ
s,w(ω) for all 0 ≤ s ≤ w ≤ t.

Since Mδ
s,t is constructed from (Bu)u∈[s,t], the matrices {Mδ

k,k+1}k∈N are independent. Moreover,

since the drift and the diffusion coefficients do not depend on time, {Mδ
k,k+1}k∈N is a stationary

sequence.
We note that the Lyapunov exponent χ(δ) of (Xδ

t )t≥0 is the same as

lim
k→∞

E
[
k−1 log ‖Mδ

0,k‖
]

= inf
k≥1

E
[
k−1 log ‖Mδ

0,k‖
]
,

where we set
‖A‖ := sup{

∑
i,j

Aijxj :
∑
k

xk = 1, xk ≥ 0 ∀k}

for a matrix A with nonnegative entries.
Set Rn

+ := {x ∈ Rn : x ≥ 0}. If δ > 0, then it follows from the irreducibility of Q that

(33) Mδ
s,t(Rn

+) ⊆ {x ∈ Rn : xi > 0 for all1 ≤ i ≤ n} ∪ {0}
and hence χ(δ) is analytic on (0,∞) by [Ruelle, 1979, Theorem 3.1].

The condition (33) fails to hold when δ = 0 and so we must proceed differently. We first claim
that for fixed t > 0 the map δ 7→ t−1E[log ‖Mδ

0,t‖] is upper semicontinuous on [0,∞). To see this,

fix δ ∈ [0,∞). Set log+ x = max(0, log x) and log− x = min(0, log x). It follows from the continuous
dependence of the solution of a SDE on its parameters [Gardiner, 2004, 4.3.2], that Xδ′

t → Xδ
t almost
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surely as δ′ → δ, which implies that ‖Mδ′
0,t‖ → ‖Mδ

0,t‖ almost surely as δ′ → δ. An application of

Gronwall’s lemma gives that E[sup0≤δ≤c ‖Xδ
t‖] <∞ for each c > 0. Hence,

E
[
log+ ‖Mδ′

0,t‖
]
→ E

[
log+ ‖Mδ

0,t‖
]

as δ′ → δ.

On the other hand, by Fatou’s lemma,

E
[
− log− ‖Mδ

0,t‖
]
≤ lim inf

δ′→δ
E
[
− log− ‖Mδ′

0,t‖
]
.

Combining these two inequalities gives

lim sup
δ′→δ

E
[
log ‖Mδ′

0,t‖
]
≤ E

[
log ‖Mδ

0,t‖
]
,

and the claim follows.
Since χ(δ) = inft>0 t

−1E log ‖Mδ
0,t‖ is the infimum of a family of upper semicontinuous func-

tions, it is itself upper semicontinuous, or equivalently, lim supδ′→δ χ(δ′) ≤ χ(δ). In particular,
lim supδ→0 χ(δ) ≤ χ(0).

We now prove the opposite inequality that lim infδ→0 χ(δ) ≥ χ(0). Fix δ > 0, and without loss
of generality suppose that maxi−Qii = 1, so that if xi ≥ zi ≥ 0 for 1 ≤ i ≤ n, then (Qx)i ≥ −zi
for 1 ≤ i ≤ n. Consider the two SDEs

dXδ
t = diag(Xδ

t )Γ
TdBt + (diag(µ) + δQT )Xδ

tdt

and

dZδt = diag(Zδt )Γ
TdBt + diag(µ− δ)Zδtdt.

If Xδ
0 = Zδ0, then, by the comparison theorem,

Xδ
t ≥ Zδt for all t ≥ 0

almost surely.
Thus, the Lyapunov exponent of (Xδ

t )t≥0 dominates that of (Zδt )t≥0. Note that the coordinates of
Zδ are decoupled and hence the Lyapunov exponent of this process is the maximum of the stochastic
growth rates for the individual coordinate processes. Therefore,

χ(δ) ≥ max
j

(
µj −

1

2

∑
k

σ2
kj

)
− δ.

In particular,

(34) lim inf
δ→0+

χ(δ) ≥ max
j

(
µj −

1

2

∑
k

σ2
kj

)
= χ(0),

as required. �
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Appendix D. Proof of Theorem 5.2

Recall that

dYt =
(
diag(Yt)−YtY

T
t

)
ΓTdBt +DTYtdt+

(
diag(Yt)−YtY

T
t

)
(µ− ΣYt) dt,

whereD is of the form δQ, withQ an irreducible infinitesimal generator matrix and δ > 0. Moreover,
Q is assumed to be reversible with respect to the unique probability vector π satisfying QTπ = 0;
that is, that πiQij = πjQji for all i, j.

Define an inner product on Rn by 〈u, v〉π :=
∑

i
1
πi
uivi = uTdiag(π)−1v. It follows from reversibil-

ity that the linear operator v 7→ QTv is self-adjoint with respect to this inner product; that is, that
〈u,QTv〉π = 〈QTu, v〉π for all u, v.

From the spectral theorem and the Perron-Frobenius theorem, the linear operator v 7→ QTv has
eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn−1 < λn = 0 and corresponding orthonormal eigenvectors ξ1, . . . , ξn
with ξn = π such that

QTv =
n−1∑
k=1

λkξk〈v, ξk〉π, v ∈ Rn.

Note that

(35) 1Tv = 〈v, π〉π = 0 =⇒ 〈v,QTv〉π ≤ −κ‖v‖2
π,

where κ := −λn−1 > 0 and ‖ · ‖π is the norm associated with the inner product 〈·, ·〉π.
Note also that if 1Tv = 0, then

w :=
n−1∑
k=1

λ−1
k ξk〈v, ξk〉π

is the unique vector with the properties

〈w, π〉π = 0 and QTw = v.

In particular,

1T
(
diag(π)− ππT

)
(µ− Σπ) =

(
πT − πT

)
(µ− Σπ) = 0,

and so there is a unique vector we denote ν such that

(36) 1Tν = 〈ν, π〉π = 0 and QTν = −
(
diag(π)− ππT

)
(µ− Σπ) .

We emphasize that ν does not depend on δ.
Consider the stochastic process

Ut := δ
1
2

(
Yt/δ − π − δ−1ν

)
,

so that

Yt = δ−
1
2Uδt + π + δ−1ν.

Observe that π + δ−1ν is indeed a probability vector for δ sufficiently large. Because we are only
interested in the stationary law of Y, we assume that Y0 = π+ δ−1ν and hence U0 = 0. Note that
0 = 1TUt = 〈Ut, π〉π for all t ≥ 0.
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We have for the standard Brownian motion B̃t := δ
1
2Bt/δ that

dUt =
(

diag(δ−
1
2Ut + π + δ−1ν)− (δ−

1
2Ut + π + δ−1ν)(δ−

1
2Ut + π + δ−1ν)T

)
ΓT dB̃t

+ δ−
1
2 δQT (δ−

1
2Ut + π + δ−1ν) dt

+ δ−
1
2

(
diag(δ−

1
2Ut + π + δ−1ν)− (δ−

1
2Ut + π + δ−1ν)(δ−

1
2Ut + π + δ−1ν)T

)
×
(
µ− Σ(δ−

1
2Ut + π + δ−1ν)

)
dt.

Using QTπ = 0 and (36), we get

dUt =
[
diag(π)− ππT

]
ΓT dB̃t +QTUt dt

+
[
δ−

1
2A 1

2
(Ut) + δ−1A1(Ut) + δ−

3
2A 3

2
(Ut) + δ−2A2(Ut)

]
dB̃t

+
[
δ−1b1(Ut) + δ−

3
2 b 3

2
(Ut) + δ−2b2(Ut) + δ−

5
2 b 5

2
(Ut) + δ−3b3(Ut) + δ−

7
2 b 7

2
(Ut)

]
dt,

where

A 1
2
(u) :=

[
diag(u)− uπT − πuT

]
ΓT

A1(u) :=
[
−uuT + diag(ν)− πνT − νπT

]
ΓT

A 3
2
(u) :=

[
−uνT − νuT

]
ΓT

A2(u) := −ννTΓT

and

b1(u) := −πuTµ− uπTµ+ πuTΣπ + uπTΣπ + ππTΣu

+ diag(u)µ− diag(π)Σu− diag(u)Σπ

b 3
2
(u) := −uuTµ− πνTµ− νπTµ

+ πuTΣu+ uπTΣu+ uuTΣπ + πνTΣπ + νπTΣπ + ππTΣν

− diag(π)Σν − diag(u)Σu+ diag(ν)µ− diag(ν)Σπ

b2(u) := −uνTµ− νuTµ
+ uuTΣu+ uπTΣν + uνTΣπ + πuTΣν + πνTΣu+ νuTΣπ + νπTΣu

− diag(u)Σν − diag(ν)Σu

b 5
2
(u) := −ννTµ+ uuTΣν + uνTΣu+ νuTΣu+ πνTΣν + νπTΣν + ννTΣπ

− diag(ν)Σν

b3(u) := uνTΣν + νuTΣν + ννTΣu

b 7
2
(u) := ννTΣν.
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By Itô’s lemma,

d‖Ut‖2
π = 2UT

t diag(π)−1
[
diag(π)− ππT

]
ΓT dB̃t + 2〈UT , QTUt〉π dt

+ 2
4∑
`=1

δ−
`
2UT

t diag(π)−1A `
2
(Ut) dB̃t

+ 2
7∑
`=2

δ−
`
2UT

t diag(π)−1b `
2
(Ut) dt

+ 1Tdiag(π)−1
[
diag(π)− ππT

]
ΓTΓ

[
diag(π)− ππT

]
diag(π)−11 dt

+

(
4∑
`=1

δ−
`
21Tdiag(π)−1A `

2
(Ut)

)(
4∑
`=1

δ−
`
2A `

2
(Ut)

Tdiag(π)−11

)
dt.

Observe that

1Tdiag(π)−1
[
diag(π)− ππT

]
ΓTΓ

[
diag(π)− ππT

]
diag(π)−11 =

[
1T − nπT

]
Σ [1− nπ] .

Note also that

(37) |U i
t | ≤ Cδ

1
2 1 ≤ i ≤ n,

for an appropriate constant C because 0 ≤ Y i
t ≤ 1, 1 ≤ i ≤ n. Each function

u 7→ uTdiag(π)−1b `
2
(u), 2 ≤ ` ≤ 7,

is a polynomial in u with total degree at most ` and each function

u 7→
(
1Tdiag(π)−1A `′

2
(u)
)(

A `′′
2

(u)Tdiag(π)−11
)
, 1 ≤ `′, `′′ ≤ 4,

is a polynomial in u with total degree at most `′ + `′′.
It follows that

(38)
d

dt
E
[
‖Ut‖2

π

]
≤ −2κE

[
‖Ut‖2

π

]
+ C ′

for all t ≥ 0 for a suitable constant C ′ that does not depend on δ. Hence,

(39) sup
t≥0

E
[
‖Ut‖2

π

]
≤ C ′

2κ

(recall that U0 = 0).
Let (Vt)t≥0 be the solution of the stochastic differential equation

dVt =
[
diag(π)− ππT

]
ΓT dB̃t +QTVt dt

with V0 = U0 = 0. Note that d(1TVt) = 0 for all t ≥ 0, and so 〈Vt, π〉π = 1TVt = 0 for all t ≥ 0.
It is readily checked that

Vt =

∫ t

0

exp(QT (t− s))
[
diag(π)− ππT

]
ΓT dB̃s.
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So V is a Gaussian process for which E[Vt] = 0 and

(40) E[VtV
T
t ] =

∫ t

0

exp(QT s)
(
diag(π)− ππT

)
Σ
(
diag(π)− ππT

)
exp(Qs) ds

for all t ≥ 0. Consequently,

(41) sup
t≥0

E
[
|V i
t |p
]
<∞

for 1 ≤ i ≤ n and p ≥ 0.
In the notation above,

d(Ut −Vt) = QT (Ut −Vt) dt+

[
4∑
`=1

δ−
`
2A `

2
(Ut)

]
dB̃t +

[
7∑
`=2

δ−
`
2 b 3

2
(Ut)

]
dt.

Applying Itô’s lemma and a combination of (37), (39) and (41), we can argue along the lines we
followed to establish (38) to see that

d

dt
E
[
‖Ut −Vt‖2

π

]
≤ −2κE

[
‖Ut −Vt‖2

π

]
+ δ−1C ′′

for all t ≥ 0 for a suitable constant C ′′ that does not depend on δ. Hence,

(42) sup
t≥0

E
[
‖Ut −Vt‖2

π

]
≤ δ−1C

′′

2κ
.

Now let Y∞, U∞ and V∞ be random vectors that are distributed according to the equilibrium
laws of (Yt)t≥0, (Ut)t≥0 and (Vt)t≥0, respectively.

From (37), (39) and the linearity of the function b1,

0 = QTE[U∞] + δ−1b1(E[U∞]) + O(δ−
3
2 ).

Noting that 〈E[U∞], π〉π = 0 because 〈Ut, π〉π = 0 for all t ≥ 0, we have from (35) that

κ‖E[U∞]‖2
π ≤ −〈E[U∞], QTE[U∞]〉π

= δ−1〈E[U∞], b1(E[U∞])〉π + O(δ−
3
2 )

≤ C
′′′
δ−1‖E[U∞]‖2

π + O(δ−
3
2 )

for a suitable constant C
′′′

, and hence

(43) E[Û i] = O(δ−
3
4 ), 1 ≤ i ≤ n.

From (42),

(44)
∣∣∣E [Û iÛ j

]
− E

[
V̂ iV̂ j

]∣∣∣ = O(δ−
1
2 ), 1 ≤ i, j ≤ n.
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Write χ(δ) for the Lyapunov exponent. Recall that

χ(δ) = µTE [Y∞]− 1

2
E
[
YT
∞ΣY∞

]
= µTE

[
δ−

1
2U∞ + π + δ−1ν

]
− 1

2
E
[(
δ−

1
2U∞ + π + δ−1ν

)T
Σ
(
δ−

1
2U∞ + π + δ−1ν

)]
= δ−

1
2µTE [U∞] + µT

(
π + δ−1ν

)
− δ−1 1

2
E
[
UT
∞ΣU∞

]
− 2δ−

1
2

1

2
E
[
UT
∞
]

Σ
(
π + δ−1ν

)
− 1

2

(
π + δ−1ν

)T
Σ
(
π + δ−1ν

)
.

Substituting in (43) and (44), and noting from (40) that the random vector V∞ is Gaussian with
mean vector 0 and covariance matrix∫ ∞

0

exp(QT s)
(
diag(π)− ππT

)
Σ
(
diag(π)− ππT

)
exp(Qs) ds

we conclude that

χ(δ) =

(
µTπ − 1

2
πTΣπ

)
+ δ−1

[
(µ− Σπ)Tν − 1

2
Tr
(
E[V∞V

T
∞]Σ

) ]
+ O(δ−

5
4 )

=

(
µTπ − 1

2
πTΣπ

)
+ δ−1

[
(µ− Σπ)Tν

− 1

2

∫ ∞
0

Tr(exp(QT s)
(
diag(π)− ππT

)
Σ
(
diag(π)− ππT

)
exp(Qs)Σ) ds

]
+ O(δ−

5
4 )

as δ →∞. �

Appendix E. Proof of Corollary 5.3

We now assume that the matrices Q and Σ are both real symmetric (Σ is, of course, always
symmetric) and that they commute. Hence, as noted in the statement of the corollary, if λ1 ≤ . . . ≤
λn−1 < λn = 0 are the eigenvalues of Q with corresponding orthonormal eigenvectors ξ1, . . . , ξn,
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where ξn = 1√
n
1, then

Q =
n∑
k=1

λkξkξ
T
k

and it is possible to write the eigenvalues θ1, . . . , θn of Σ in some order so that

Σ =
n∑
k=1

θkξkξ
T
k .

By the assumption that Q is symmetric, π = 1
n
1 = 1√

n
ξn. Therefore,

µTπ − 1

2
πTΣπ = µ̄− 1

2n
θn

where µ̄ = 1
n

∑
i µi.

To find the unique vector ν that solves

1Tν = 0 and QTν = −
(
diag(π)− ππT

)
(µ− Σπ) ,

write ν =
∑n

k=1 akξk. The condition 1Tν = 0 dictates that an = 0. The second condition becomes

n−1∑
k=1

akλkξk = − 1

n

(
I − ξnξTn

)(
µ− 1√

n
θnξn

)

= − 1

n

(
n−1∑
k=1

ξkξ
T
k

)(
µ− 1√

n
θnξn

)

= − 1

n

n−1∑
k=1

(ξTk µ)ξk,

so that ak = −(ξTk µ)/(nλk) for 1 ≤ k ≤ n− 1. It follows that

(µ− Σπ)Tν = −
(
µ− 1√

n
θnξn

)T (n−1∑
k=1

ξTk µ

nλk
ξk

)

= −
n−1∑
k=1

(ξTk µ)2

nλk
.

Lastly, the matrices inside the trace in the integral∫ ∞
0

Tr
(
exp(QT s)

(
diag(π)− ππT

)
Σ
(
diag(π)− ππT

)
exp(Qs)Σ

)
ds



STOCHASTIC GROWTH IN HETEROGENEOUS ENVIRONMENTS 43

commute and so the integral is∫ ∞
0

Tr
((

diag(π)− ππT
)2

Σ2 exp(2Qs)
)
ds

=
1

n2

∫ ∞
0

Tr

((
I − ξnξTn

)( n∑
k=1

θ2
kξkξ

T
k

)(
n∑
k=1

exp(2sλk)ξkξ
T
k

))
ds

=
1

n2

∫ ∞
0

Tr

(
n−1∑
k=1

θ2
k exp(2sλk)ξkξ

T
k

)
ds

=
1

n2

∫ ∞
0

(
n−1∑
k=1

θ2
k exp(2sλk)

)
ds

= − 1

n2

n−1∑
k=1

θ2
k

2λk
.

Therefore, our asymptotic approximation of χ(δ) is(
µ̄− 1

2n
θn

)
− 1

δ

[
n−1∑
k=1

1

nλk

(
(ξTk µ)2 − 1

4n
θ2
k

)]
+O(δ−5/4)

as δ → 0. �

Appendix F. Proof of Theorem 5.4

To show that Theorem 5.4 follows from Corollary 5.3, we show that the matrix entries of each
irreducible representation belong to a common eigenspace of Q and Σ Suppose that c is a class
function and the matrix C is given by Cg,h = c(gh−1). Recall from (25) that

c(g) =
1

#G

∑
κ∈G̃

c̃(κ)κ(g)∗.

Therefore,

Cg,h =
1

#G

∑
κ∈G̃

c̃(κ)κ(gh−1)∗.

If κ is associated with the the irreducible representation ρ ∈ Ĝ, then

κ(gh−1) = Tr(ρ(gh−1)) = Tr(ρ(g)ρ(h)†) =

dρ∑
i,j=1

ρi,j(g)ρi,j(h)∗ =: (Ξ(κ))g,h,

where † denotes the Hermitian conjugate. Set Πκ := (dκ/#G)Ξ(κ). The #G × #G matrix Πκ is
Hermitian, and it follows from (22) that Π2

κ = Πκ, so that Πκ is the projection onto a d2
κ-dimensional
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subspace. Again by (22), the matrices Πκ′ and Πκ′′ are orthogonal for distinct κ′, κ′′. Thus,

C =
∑
κ∈G̃

c̃(κ)

dκ
Πκ.

This expression is nothing other than the spectral decomposition of the matrix C. It shows that
c̃(κ)/dκ is an eigenvalue of C with multiplicity d2

κ.
In summary, for each κ ∈ G̃ there are eigenvalues q̃(κ)/dκ of Q and s̃(κ)/dκ of Σ, each with

multiplicity d2
κ.

Therefore, in the notation of Corollary 5.3,

n−1∑
k=1

θ2
k

λk
=
∑
κ6=κtr

d2
κ

(
s̃(κ)

dκ

)2
dκ
q̃(κ)

=
∑
κ6=κtr

dκ
s̃(κ)2

q̃(κ)
.

Similarly, we can split the sum
n−1∑
k=1

1

λk
(ξTk µ)2

up into contributions from each non-trivial character κ that are of the form

dκ
q̃(κ)

∑
k

(ξTk µ)2,

where the sum is over the indices that correspond to eigenvectors in the range of the projection Πκ.
This contribution is clearly

dκ
q̃(κ)

‖Πκµ‖2 =
dκ
q̃(κ)
‖µ‖2

κ.

�

Appendix G. Proof of Theorem 5.5

We first recall some notation. For 0 ≤ r, ` ≤ k + 1,

Zr = G1 ⊗ · · · ⊗Gr−1 ⊗ {idr} ⊗ · · · ⊗ {idk},

Z̄` = {id1} ⊗ · · · ⊗ {id`} ⊗G`+1 ⊗ · · · ⊗Gk

and
`(g) := min{j : gj 6= idj}.

The displacement associated with g ∈ G moves between two patches that are in the same metapatch
at scale `(g) but different metapatches at scales `(g) + 1, `(g) + 2, . . . Recall also that #Gr = nr,

Nr = #Zr =
∏r−1

j=1 nj and N̄` = #Z̄` =
∏k

j=l+1 nj.
Writing 1j for the trivial character on Gj, put

Z̃r := G̃1 ⊗ · · · ⊗ G̃r−1 ⊗ {1r} ⊗ · · · ⊗ {1k}
= {κ ∈ G̃ : κ(g) = 1 ∀g ∈ Z̄r−1}
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and

r(κ) := max{j : κ /∈ Z̃j}.

We then have, by orthogonality of characters, that

∑
g∈Z̄r

κ(g) =

{
N̄r, if κ ∈ Z̃r+1,

0, otherwise,

and we denote this quantity by N̄rδZ̃r+1
(κ).

Define the function f` : G→ C by setting f`(g) = 1 if `(g) = ` and f`(g) = 0 otherwise. Then,

f̃`(κ) =
∑

g:`(g)=`

κ(g)

=
∑

g∈Z̄`−1

κ(g)−
∑
g∈Z̄`

κ(g)

= N̄`−1δZ̃`(κ)− N̄`δZ̃`+1
(κ).

Our assumption that s(g) = s`(g) implies that s(g) =
∑k+1

`=1 s`f`(g). Since κ ∈ Z̃` if and only if
r(κ) + 1 ≤ `, it follows by linearity that

s̃(κ) =
k+1∑
`=1

s`

(
N̄`−1δZ̃`(κ)− N̄`δZ̃`+1

(κ)
)

=
k+1∑

`=r(κ)+1

s`N̄`−1 −
k+1∑
`=r(κ)

s`N̄`

=
k∑

`=r(κ)

s`+1N̄` −
k∑

`=r(κ)

s`N̄`

=
k∑

`=r(κ)

(s`+1 − s`)N̄`,

where we used the convention N̄k+1 = 0.
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Turning to q, we have q(g) = q`(g) for g 6= idG and q(idG) = qk+1 = −
∑k

`=1 q`(N̄`−1 − N̄`). By
the same argument as above,

q̃(κ) =
k+1∑

`=r(κ)+1

q`N̄`−1 −
k+1∑
`=r(κ)

q`N̄`

=
k+1∑

`=r(κ)+1

q`(N̄`−1 − N̄`)− qr(k)N̄r(k)

=
k∑

`=r(κ)+1

q`(N̄`−1 − N̄`)−
k∑
`=1

q`(N̄`−1 − N̄`)− qr(k)N̄r(k)

= −
r(κ)∑
`=1

q`(N̄`−1 − N̄`)− qr(k)N̄r(k)

= −
r(κ)−1∑
`=1

q`(N̄`−1 − N̄`)− qr(k)N̄r(k)−1.

Lastly, for an arbitrary function µ we need to evaluate

1

#G

∑
κ:r(κ)=r

‖µ‖2
κ.

We do using the following lemma that follows immediately from the orthogonality properties of
characters.

Lemma G.1. Let H and K be two finite Abelian groups. For f : H ⊗K → C,

∑
κ∈H̃

∣∣∣∣∣∣
∑

(h,k)∈H⊗K

f(h, k)κ(h)

∣∣∣∣∣∣
2

= #H
∑
h∈H

∣∣∣∣∣∑
k∈K

f(h, k)

∣∣∣∣∣
2

.

Using lemma G.1 applied to the decomposition of G as Zr ⊗ Z̄r−1, we get

∑
κ∈Z̃r

‖µ‖2
κ =

Nr

#G

∑
g∈Zr

 ∑
z∈Z̄r−1

µ(gz)

2

.
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Further decomposing Zr+1 as Zr ⊗Gr and Z̄r−1 as Z̄r ⊗Gr, and using Nr+1 = nrNr gives∑
κ:r(κ)=r

‖µ‖2
κ =

∑
κ∈Zr+1

‖µ‖2
κ −

∑
κ∈Zr

‖µ‖2
κ

=
Nr+1

#G

∑
g∈Zr+1

∑
z∈Z̄r

µ(gz)

2

− Nr

#G

∑
g∈Zr

 ∑
z∈Z̄r−1

µ(gz)

2

=
nrNr+1

#G

∑
g∈Zr

 1

nr

∑
h∈Gr

∑
z∈Z̄r

µ(ghz)

2

−

 1

nr

∑
h∈Gr

∑
z∈Z̄r

µ(ghz)

2 .

To turn the remaining sums into averages, we need to pull out a factor of NrN̄
2
r , leaving us with

nrNr+1NrN̄
2
r =

∏k
`=1 n

2
` = #G2. Therefore, recalling that

vµ(r) =
1

Nr

∑
g∈Zr

 1

nr

∑
h∈Gr

 1

N̄r

∑
z∈Z̄r

µ(ghz)

2

−

 1

nr

∑
h∈Gr

1

N̄r

∑
z∈Z̄r

µ(ghz)

2 ,

we have ∑
κ:r(κ)=r

‖µ‖2
κ = #G× vµ(r).

The theorem follows once we note that

#{κ : r(κ) = r} = #(Z̃r+1 \ Z̃r) = Nr+1 −Nr.

�
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