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We consider, for the first time in the modern setting of high-
dimensional statistics, the classic problem of optimizing the objective
function in regression. We propose an algorithm to compute this op-
timal objective function that takes into account the dimensionality
of the problem.

robust regression | prox function | high-dimensional statistics

Abbreviations: EPE, expected prediction error;
L
=, equal in law; LAD, least absolute

deviations

In this article we study a fundamental statistical problem:
how to optimally pick the objective to be minimized in a

parametric regression when we have information about the
error distribution.

The classical answer to the problem we posed at the be-
ginning, maximum likelihood, was given by Fisher (5) in the
specific case of multinomial models and then at succeeding
levels of generality by Cramér (3), Hájek (7) and above all Le
Cam (11). For instance, for p fixed or p/n → 0 fast enough,
least squares is optimal for Gaussian errors while LAD is op-
timal for double exponential errors. We shall show that this
is no longer true in the regime we consider with the answer
depending, in general, on the limit of the ratio p/n as well as
the form of the error distribution. Our analysis in this paper
is carried out in the setting of Gaussian predictors, though as
we explain below, this assumption should be relaxable to a sit-
uation where the distribution of the predictors satisfy certain
concentration properties for quadratic forms.

We carry out our analysis in a regime which has been es-
sentially unexplored, namely 0 � p/n < 1 where p is the
number of predictor variables and n is the number of inde-
pendent observations. Since in most fields of application, sit-
uations where p as well as n is large have become paramount,
there has been a huge amount of literature on the case where
p/n� 0 but the number of “relevant” predictors is small. In
this case the objective function, quadratic (least squares) or
otherwise (`1 for LAD) has been modified to include a penalty
(usually `1) on the regression coefficients which forces sparsity
((1)). The price paid for this modification is that estimates of
individual coefficients are seriously biased and statistical in-
ference, as opposed to prediction, often becomes problematic.

In (4), we showed 1 that this price need not be paid if p/n
stays bounded away from 1. We review the main theoretical
results from this previous paper in Result 1 below. From a
practical standpoint, some of our key findings were:

1. surprisingly, when 0 � p/n < 1 − ε, it is no longer true
that LAD is necessarily better than least squares for heavy
tailed errors. This behavior is unlike that in the classi-
cal regime p bounded or p/n→ 0 fast enough studied, for
instance, in (8);

2. linear combinations of regression coefficients are unbiased
and still asymptotically Gaussian at rate2 1/

√
n.

This article contains three main parts: Section “Back-
ground and Main results” contains needed background and a
description of our findings. In “Computing the optimal ob-

jective”, we give two examples of interest to statisticians: the
case of Gaussian errors and the case of double exponential
errors. We present our derivations in the last section.

Background and main results
We consider a problem in which we observe n indepen-

dent, identically, distributed pairs (Xi, Yi), where Xi is a p-
dimensional vector of predictors, and Yi is a scalar response.
We call the problem high-dimensional when the ratio p/n is
not close to 0. In effect, we are considering an asymptotic set-
ting where lim inf p/n is not 0. We also limit ourselves to the
case where lim sup p/n < 1. As far as we know, all the very
large body of work developed in robust regression (following
(8)) is concerned with situations in which p/n tends to 0, as
n tends to infinity.

Let us briefly recall the details of the robust regression
problem. We consider the estimator

β̂ = argminβ∈Rp

n∑
i=1

ρ(Yi −X ′iβ) ,

where ρ is a function from R to R, which we will assume
throughout is convex3. Furthermore, we consider a linear re-
gression model

Yi = εi +X ′iβ0 ,

where β0 (∈ Rp) is unknown and {εi}ni=1 are random errors.
Throughout, we will assume that {εi}ni=1 are independent of
Xi. Naturally, our aim is to estimate β0 from our observations
{(Xi, Yi)}ni=1 and the question is therefore, which ρ we should
choose. We can separate this into two questions. 1)What
choice of ρ minimizes the asymptotic error for estimating an
individual regression coefficient (or a given linear form in β0)?
2) What choice of ρ minimizes the asymptotic prediction error
for a new observation (Xnew, Ynew) given the training data?
The answers to 1) and 2) turn out to be the same in the high-
dimensional and Gaussian setting we are considering, just as
in the low-dimensional case, but the extension is surprising.

Some recent high-dimensional results. In a recent paper (see
(4)), we found heuristically the following.

Reserved for Publication Footnotes

1heuristically
2under conditions depending on the model and the linear combination; see details below.
3the properties of β̂ naturally depend on ρ - this dependence will be made clear later
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Result 1 (El Karoui et al.(4)). Suppose Xi are i.i.d N (0,Σ),
with Σ positive definite. Suppose Yi = εi +X ′iβ0, ε′is are i.i.d,
independent of Xi, β0 ∈ Rp is deterministic, and n ≥ p. Call

β̂(ρ;β0,Σ) = argminβ∈Rp

n∑
i=1

ρ(Yi −X ′iβ) .

Then we have the stochastic representation

β̂(ρ;β0,Σ)
L
= β0 + Σ−1/2β̂(ρ; 0, Idp) ,

L
= β0 + ‖β̂(ρ; 0, Idp)‖Σ−1/2u ,

where u is uniform on Sp−1 (the unit sphere in Rp) and inde-

pendent of ‖β̂(ρ; 0, Idp)‖.
Let us call rρ(p, n) = ‖β̂(ρ; 0, Idp)‖. As p and n tend to in-

finity, while p ≤ n and limn→∞ p/n = κ < 1, rρ(p, n)→ rρ(κ)
in probability (under regularity conditions on ρ and ε), where
rρ(κ) is deterministic. Define ẑε = ε + rρ(κ)Z, where Z ∼
N (0, 1) is independent of ε, and ε has the same distribution
as εi. We can determine rρ(κ) through{

E
(
[proxc(ρ)]′ (ẑε)

)
= 1− κ ,

E
(
[ẑε − proxc(ρ)(ẑε)]

2
)

= κr2ρ(κ) ,
[S]

where c is a positive deterministic constant to be determined
from the previous system.

The definition and details about the prox mapping are
given in the section “Explanations” and the Appendix. This
formulation is important because it shows that what matters
about an objective function in high-dimension is not really
the objective itself but rather its prox, in connection with the
distribution of the errors. We also note that our analysis in
(4) highlights the fact that the result concerning rρ(κ) should
hold when normality of the predictors is replaced by a con-
centration of quadratic form assumptions. System [S] is the
basis of our analysis.

Consequences for estimation of β0. If v is a given determin-

istic vector, we see that v′β̂(ρ;β0,Σ) is unbiased for v′β0 and

var
(
v′β̂(ρ;β0,Σ)

)
=
v′Σ−1v

p
E
(
‖β̂(ρ; 0, Idp)‖2

)
.

In other words, in high-dimension, the simple estimator

v′β̂(ρ;β0,Σ) is
√
p/(v′Σ−1v)-consistent for v′β0. We further

note that
√
pv′β̂(ρ;β0,Σ) is asymptotically normal, and its

variance can be estimated, so inference about v′β0 is easy.
More details are in the SI. Picking v to be the k-th canonical
basis vector, ek, we also see that we can consistently estimate
the k-th coordinate of β0, β0(k), at rate

√
p/(e′kΣ−1ek).

A similar analysis can be performed to obtain unbiased
(and consistent) estimators of quadratic forms in β0, i.e quan-
tities of the form β′0Σ2β0, where Σ2 is a given covariance ma-
trix.

On expected prediction error (EPE). In the case where
(Xnew, Ynew) follows the model above and is independent of
{(Xi, Yi)}ni=1, we immediately see that

EPE = E
(

(Ynew −X ′newβ̂)2
)

= σ2
ε + E

(
‖β̂(ρ; 0, Idp)‖2

)
.

Picking ρ to minimize the quantity E
(
‖β̂(ρ; 0, Idp)‖2

)
(viewed as a function of ρ) will allow us to get the best esti-
mators (in the class we are considering) for both EPE and,
as it turns out, linear forms in β0.

Main result. We propose an algorithm to determine the
asymptotically optimal objective function to use in robust re-
gression. Just as in the classical case, it requires knowledge
of the distribution of the errors, which we call ε. We call the
density of the errors fε and assume that fε is log-concave.

If φr is the normal density with variance r2 and fr,ε =
φr ? fε, where ? is the usual convolution operation, fr,ε is log-
concave. As a matter of fact, it is well-known (see (9; 13)) that
the convolution of two log-concave densities is log-concave.

We call Iε(r) =
∫

(f ′r,ε)
2/fr,ε the information of fr,ε, which

we assume exists for all r ≥ 0. It is known that when ε has
a density, r2Iε(r) is continuous in r (see (2), where it is ex-
plained that Iε(

√
r) is differentiable or see (6)).

Throughout the paper we denote by p2 the function taking
value

p2(x) = x2/2 .

Here is our theorem.
Theorem 1. If rρ is a solution of System [S], we have
rρ ≥ ropt(κ), where ropt(κ) = min{r : r2Iε(r) = κ}.
Furthermore, ropt(κ) is the solution of System [S] when ρ =
ρopt, and ρopt is the convex function

ρopt =
(
p2 + r2opt(κ) log(φropt(κ) ? fε)

)∗ − p2 .
(For a function g, g∗ is its (Fenchel-Legendre) conjugate, i.e
g∗(x) = supy[xy − g(y)].)

We give an alternative representation of ρopt in the Ap-
pendix.

We propose the following algorithm for computing the op-
timal objective function under the assumptions of the theo-
rem.

1. Solve for r the equation

r2Iε(r) = p/n . [1]

Define ropt = min{r : r2Iε(r) = p/n}.
2. Use the objective function4

ρopt =
(
p2 + r2opt log(φropt ? fε)

)∗ − p2 . [2]

The theorem and the algorithm raise a few questions: is
there a solution to the equation in Step 1? Is the min well-
defined? Is the objective function in Step 2 convex? We ad-
dress all these questions in the course of the paper.

The significance of the algorithm lies in the fact that we
are now able to incorporate dimensionality in our optimal
choice of ρ. In other words, different objectives turn out to
be optimal as the ratio of dimensions varies.

It should also be noted that at least numerically, comput-
ing ρopt is not very hard. Similarly solving Equation [1] is not
hard numerically. Hence, the algorithm is effective as soon as
we have information about the distribution of ε.

As the reader will have noticed, a crucial role is played

by β̂(ρ; 0, Idp). In the rest of the paper, we use the lighter
notation

β̂ρ , β̂(ρ; 0, Idp) .

The dependence of β̂ρ on p and n is left implicit in general, but
will be brought back when there are any risks of confusion.

Next, we illustrate our algorithm in a few special cases.

4note that any λρopt + ξ, where λ and ξ are real-valued with λ > 0, yields the same solution

for β̂
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Computing the optimal objective
The case of Gaussian errors.
Corollary 1. In the setting of i.i.d Gaussian predictors,
among all convex objective functions, l2 is optimal in regres-
sion when the errors are Gaussian.

In the case of Gaussian ε, it is clear that φropt ? fε is a

Gaussian density. Hence,
(
p2 + r2opt log(φropt ? fε)

)∗
is a mul-

tiple of p2 (up to centering) and so is ρopt. General arguments
given later guarantee that this latter multiple is strictly posi-
tive. Therefore, ρopt is p2, up to positive scaling and centering.
Carrying out the computations detailed in the algorithm we

actually arrive at ρopt(x) = x2

2

(
p/n

1−p/n

)
−K . Details are in

the SI.

The case of double exponential errors. We recall that in low
dimension (e.g p fixed, n goes to infinity), classic results show
that the optimal objective is `1. As we will see, it is not at
all the case when p and n grow in such a way that p/n has a
finite limit in (0, 1). We recall that in (4), we observed that
when p/n was greater than 0.3 or so, `2 actually performed
better than `1 for double exponential errors.

Though there is no analytic form for the optimal objective,
it can be computed numerically. We discuss how and present
a picture to get a better understanding of the solution of our
problem.

The optimal objective

For r > 0, r ∈ R, and Φ the Gaussian cumulative distri-
bution function, let us define

Rr(x) = r2 log

(
e

(x−r2)2

2r2 Φ

[
x− r2

r

]
+ e

(x+r2)2

2r2 Φ

[
−x+ r2

r

])
+ r2 log(

√
π

2
r) .

It is easy to verify that, when the errors are double exponen-
tial, −r2 log(φr ?fε)(x) = x2/2−Rr(x). Hence, effectively the
optimal objective is the function taking values

ρopt(x) = R∗ropt
(x)− x2/2 .

It is of course important to be able to compute this func-

tion and the estimate β̂opt based on it. We show below
that Rr is a smooth convex function for all r. Hence, in
the case we are considering, R′r is increasing and therefore
invertible. If we call y∗(x) = (R′ropt

)−1(x), we see that
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Fig. 1. p/n = .5: comparison of ρopt (optimal objective) to l2 and l1. ropt
is the solution of r2Iε(r) = p/n; for p/n = .5, ropt ' 1.35
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(κ) for double exponential errors: the ratio is always

less than 1, showing the superiority of the objective we propose over `2.
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2
`1
(κ) : the ratio is always less than 1, showing the su-

periority of the objective we propose over `1. Naturally, the ratio goes to 1 at 0, since

we know that `1 is the optimal objective when p/n → 0 for double exponential

errors.

ρopt(x) = xy∗(x) − Rropt(y
∗(x)) − x2/2. We also need to

be able to compute the derivative of ρopt (denoted ψopt) to

implement a gradient descent algorithm to compute β̂opt. For
this, we can use a well-known result in convex analysis, that
says that for a convex function h (under regularity conditions)
(h∗)′ = (h′)−1 (see (14), Corollary 23.5.1).

We present a plot to get an intuitive feeling for how this
function ρopt behaves (more can be found in the SI). Figure 1
compares ρopt to other objective functions of potential inter-
est in the case of p/n = .5. All the functions we compare are
normalized so that they take value 0 at 0 and 1 at 1.

Comparison of asymptotic performance of ρopt against
other objective functions

We compare r2opt to the results we would get using other
objective functions ρ in the case of double exponential errors.
Recall that our system [S] allows us to compute the asymp-
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p/n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Observed mean ratio 0.6924 0.7732 0.8296 0.8862 0.9264 0.9614 0.9840 0.9959 0.9997
Predicted mean ratio 0.6842 0.7626 0.8224 0.8715 0.9124 0.9460 0.9721 0.9898 0.9986
|Relative error| (%) 1.2 1.4 0.8 1.7 1.5 1.6 1.2 0.6 0.1

totic value of ‖β̂ρ‖2, r2ρ, as n and p go to infinity for any convex
(and sufficiently regular) ρ.

Comparison of ρopt to `2 We compare r2opt to r2`2 in Fig-

ure 2. Interestingly, ρopt yields a β̂ρ that is twice as efficient

as β̂`2 as p/n goes to 0. From classical results in robust re-
gression (p bounded), we know that this is optimal since `1
objective is optimal in that setting, and also yields estimators

that are twice as efficient as β̂`2 .

Comparison of ρopt to `1 We compare r2opt to r2`1 in Fig-
ure 3. Naturally, the ratio goes to 1 when p/n goes to 0, since
`1, as we just mentioned, is known to be the optimal objective
function for p/n tending to 0.

Simulations

We investigate the empirical behavior of estimators
computed under our proposed objective function. We

call those estimators β̂opt. The table above shows
E
(
r2opt(p, n)

)
/E
(
r2`2(p, n)

)
over 1000 simulations when n =

500 for different ratios of dimensions and compares the em-
pirical results to r2opt(κ)/r2`2(κ), the theoretical values. We
used β0 = 0, Σ = Idp and double exponential errors in our
simulations.

In the SI, we also provide statistics concerning ‖β̂opt −
β0‖2/‖β̂`2 − β0‖2 computed over 1000 simulations. We note

that our predictions concerning ‖β̂opt − β0‖2 work very well
in expectation when p and n are a few 100’s, even though in

these dimensions, ‖β̂opt − β0‖ is not yet close to being deter-

ministic (see SI for details - these remarks also apply to ‖β̂ρ‖2
for more general ρ).

Derivations
We prove Theorem 1 assuming the validity of Result 1.

Phrasing the problem as a convex feasibility problem. Let us

call rρ(κ) = limn→∞‖β̂(ρ; 0, Idp)‖, where p/n → κ < 1. We
now assume throughout that p/n → κ and call rρ(κ) sim-
ply rρ for notational simplicity. We recall that for c > 0
proxc(ρ) = prox1(cρ) (see Appendix). From now on, we call
prox1 just prox. If rρ is feasible for our problem, there is
a ρ that realizes it and the system [S] is therefore, with
ẑε = rρZ + ε,{

E
(
[prox(cρ)]′ (ẑε)

)
= 1− κ ,

E
(
[ẑε − prox(cρ)(ẑε)]

2
)

= κr2ρ .

Now it is clear that if we replace ρ by λρ, λ > 0, we do not

change β̂ρ. In particular, if we call ρ0 = cρ, where c is the
real appearing in the system above, we have, if rρ is feasible:
there exists ρ0 such that{

E
(
[prox(ρ0)]′ (ẑε)

)
= 1− κ ,

E
(
[ẑε − prox(ρ0)(ẑε)]

2
)

= κr2ρ .

We can now rephrase this system using the fundamental equal-
ity (see (12) and the Appendix) prox(ρ)+prox(ρ∗) = x, where

ρ∗ is the (Fenchel-Legendre) conjugate of ρ. It becomes{
E
(
[prox(ρ∗0)]′ (ẑε)

)
= κ ,

E
(
[prox(ρ∗0)(ẑε)]

2
)

= κr2ρ .

Prox mappings are known to belong to subdifferentials of con-
vex functions and to be contractive (see (12), p.292, Corollaire
10.c). Let us call g = prox(ρ∗0) and recall that fr,ε denotes the
density of ẑε = rZ + ε. Since g is contractive, |g(x)/x| ≤ 1 as
|x| → ∞. Since fr,ε is a log-concave density (as a convolution
of two log-concave densities - see (9) and (13)) with support R,
it goes to zero at infinity exponentially fast (see (10), p. 332).
We can therefore use integration by parts in the first equation
to rewrite the previous system as (we now use r instead of rρ
for simplicity) {

−
∫
g(x)f ′r,ε(x)dx = κ ,∫

g2(x)fr,ε(x)dx = κr2 .

Because fr,ε(x) > 0, for all x, we can multiply and divide

by
√
fr,ε inside the integral of the first equation and use the

Cauchy-Schwarz inequality to get κ = −
∫
g(x)f ′r,ε(x)dx ≤

√∫
g2fr,ε

√∫ (f ′r,ε)
2

fr,ε
,

κr2 =
∫
g2(x)fr,ε(x)dx .

It follows that

lim
n→∞

p

n
= κ ≤ r2ρ(κ)Iε(rρ(κ)) . [3]

We now seek a ρ to achieve this lower bound on r2ρ(κ)Iε(rρ(κ)).

Achieving the lower bound

It is clear that a good g (which is prox(ρ∗0)) should sat-
urate the Cauchy-Schwarz inequality above. Let ropt(κ) =
min{r : r2Iε(r) = κ}. A natural candidate is

gopt = −r2opt(κ)
f ′ropt(κ),ε

fropt(κ),ε
= −r2opt(κ)

[
log fropt(κ),ε

]′
,

It is easy to see that for this function gopt, the two equations
of the system are satisfied (the way we have chosen ropt is of
course key here). However, we need to make sure that gopt
is a valid choice; in other words, it needs to be the prox of a
certain (convex) function.

We can do so by using (12). By Proposition 9.b p. 289 in
(12), it suffices to establish that, for all r > 0,

Hr,ε(x) = −r2 log fr,ε(x)

is convex and less convex than p2. That is, there exists a
convex function γ such that Hr,ε = p2 − γ.

When ε has a log-concave density, it is well-known that
fr,ε is log-concave. Hr,ε is therefore convex.

Furthermore, for a constant K,

Hr,ε(x) =
x2

2
− r2 log

∫ ∞
−∞

e(xy/r
2)e−y

2/(2r2)fε(y)dy +K .

It is clear that r2 log
∫∞
−∞ e(xy/r

2)e−y
2/(2r2)fε(y)dy is convex

in x. Hence, Hr,ε is less convex than p2. Thus, gopt is a prox
function and a valid choice for our problem.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



Determining ρopt from gopt

Let us now recall another result of (12). We denote the
inf-convolution operation by ?inf . More details about ?inf are
given in the SI and Appendix. If γ is a (proper, closed) convex
function, and ζ = p2 ?inf γ, we have (see (12), p.286)

∇ζ = prox(γ∗) .

Recall that gopt = prox(ρ∗opt) = ∇Hropt,ε. So up to constants
that do not matter, we have

Hropt,ε = p2 ?inf ρopt .

It is easy to see (see SI) that for any function f ,

f ?inf p2 = p2 − (f + p2)∗ .

So we have Hropt,ε = p2 − (ρopt + p2)∗. Now, for a proper,
closed, convex function γ, we know that γ∗∗ = γ. Hence,

ρopt = (p2 −Hropt,ε)
∗ − p2 .

Convexity of ρopt We still need to make sure that the
function ρopt we have obtained is convex. We once again ap-
peal to (12), Proposition 9.b. Since Hropt,ε is less convex than
p2, p2 − Hropt,ε is convex. However, since Hropt,ε is convex,
p2 −Hropt,ε is less convex than p2. Therefore, (p2 −Hropt,ε)∗
is more convex than p2, which implies that ρopt is convex.

Minimality of ropt

The fundamental inequality we have obtained is Equa-
tion [3], which says that for any feasible rρ, when p/n → κ,
κ ≤ r2ρ(κ)Iε(rρ(κ)). Our theorem requires solving the equa-

tion r2Iε(r) = κ. Let us study the properties of the solutions
of this equation.

Let us call ξ the function such that ξ(r) = r2Iε(r). We
note that ξ(r) is the information of Z+ε/r, where Z ∼ N (0, 1)
and independent of ε. Hence ξ(r)→ 0 as r → 0 and ξ(r)→ 1
as r → ∞. This is easily established using the information
inequality I(X + Y ) ≤ I(X) when X and Y are independent
(I is the Fisher information; see e.g (15)). As a matter of fact,
ξ(r) = r2I(rZ+ε) ≤ r2I(ε)→ 0 as r → 0. On the other hand,
ξ(r) = I(Z + ε/r) ≤ I(Z) = 1. Finally, as r → ∞, it is clear
that ξ(r)→ I(Z) = 1 (see SI for details). Using the fact that
ξ is continuous (see e.g (2)), we see that the equation ξ(r) = κ
has at least one solution for all κ ∈ [0, 1).

Let us recall that we defined our solution as ropt(κ) =
min{r : r2Iε(r) = κ}. Denote r1 = inf{r : r2Iε(r) = κ}. We
need to show two facts to guarantee optimality of ropt: 1) the
inf is really a min. 2) r ≥ ropt(κ), for all feasible r’s (i.e r’s
such that r2Iε(r) ≥ κ).

1) follows easily from the continuity of ξ and lower bounds
on ξ(r) detailed in the SI.

We now show that for all feasible r’s, r ≥ ropt(κ). Suppose
it is not the case. Then, there exists r2, which is asymptot-
ically feasible and r2 < ropt(κ). Since r2 is asymptotically
feasible, ξ(r2) ≥ κ. Clearly, ξ(r2) > κ, for otherwise we would
have ξ(r2) = κ with r2 < ropt(κ), which would violate the def-
inition of ropt(κ). Now recall that ξ(0) = 0. By continuity of
ξ, since ξ(r2) > κ, there exists r3 ∈ (0, r2) such that ξ(r3) = κ.
But r3 < r2 < ropt(κ), which violates the definition of ropt(κ).

Appendix: Reminders

Convex analysis reminders
Inf-convolution and conjugation. Recall the definition of the
inf-convolution (see e.g (14), p.34). If f and g are two func-
tions,

f ?inf g(x) = inf
y

[f(x− y) + g(y)] .

Recall also that the (Fenchel-Legendre) conjugate of a func-
tion f is

f∗(x) = sup
y

[xy − f(y)] .

A standard result says that when f is closed, proper and con-
vex, (f∗)∗ = f ((14), Theorem 12.2).

We also need a simple remark about relation between inf-
convolution and conjugation. Recall that p2(x) = x2/2. Then
(we give details in the SI),

f ?inf p2 = p2 − (f + p2)∗ .

The prox function. The prox function seems to have been in-
troduced in convex analysis by Moreau (see (12), (14), pp.339-
340). The definition follows. We assume that f is a proper,
closed, convex function. Then, when f : R → R, and c > 0 is
a scalar,

prox1(f)(x) = prox(f)(x) = argminy
(x− y)2

2
+ f(y) ,

proxc(f)(x) = prox(cf)(x) = argminy
(x− y)2

2c
+ f(y) ,

prox(f)(x) = (Id + ∂f)−1(x) .

In the last equation, ∂f is in general a subdifferential of f .
Though this could be a multi-valued mapping when f is not
differentiable, the prox is indeed well-defined as a (single-
valued) function.
A fundamental result connecting prox mapping and conjuga-
tion is the equality

prox(f)(x) + prox(f∗)(x) = x .

An alternative representation for ψopt
We give an alternative representation for ψopt. Recall

that we had gopt = prox(ρ∗opt) = −r2optf ′ropt,ε/fropt,ε. Us-

ing prox(ρopt) = Id − prox(ρ∗opt), we see that prox(ρopt) =

Id+r2optf
′
ropt,ε/fropt,ε. In the case where ρopt is differentiable,

this gives immediately

ψopt

(
x+ r2opt

f ′ropt,ε(x)

fropt,ε(x)

)
= −r2opt

f ′ropt,ε(x)

fropt,ε(x)
.

Since ψopt is defined up to a positive scaling factor,

ψ̃opt

(
x+ r2opt

f ′ropt,ε(x)

fropt,ε(x)

)
= −

f ′ropt,ε(x)

fropt,ε(x)

is an equally valid choice.
Interestingly, for κ = lim p/n near 0, ropt will be near zero

too, and the previous equation shows that ψ̃opt will be essen-
tially −f ′ε/fε, the objective derived from maximum likelihood
theory.
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13. Prékopa, A. (1973). On logarithmic concave measures and
functions. Acta Sci. Math. (Szeged) 34, 335–343.

14. Rockafellar, R. T. (1997). Convex analysis. Princeton
Landmarks in Mathematics. Princeton University Press,
Princeton, NJ. Reprint of the 1970 original, Princeton Pa-
perbacks.

15. Stam, A. J. (1959). Some inequalities satisfied by the
quantities of information of Fisher and Shannon. Infor-
mation and Control 2, 101–112.

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author


