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Abstract

We consider the problem of understanding the properties of

β̂ = argminβ

n∑
i=1

ρ(yi −X ′
iβ) , yi = X ′

iβ0 + εi ,

where Xi is a p-dimensional vector of observed predictors, yi is a 1-dimensional response and ρ
is a given and known convex (loss) function. We are concerned with the high-dimensional case
where p/n has a finite non-zero limit. This problem is central to understanding the behavior
of robust regression estimators in high-dimension, something that appears to not have been
studied before in statistics.

Our analysis in this paper is heuristic but grounded in rigorous methods and relies principally
on the concentration of measure phenomenon. Our derivations reveal the importance of the
geometry of Xi’s in the behavior of β̂ - a key to understanding the robustness of our results.

In the case whereXi are i.i.dN (0, Idp), β0 = 0, and εi are i.i.d, our work leads to the following

conjecture/heuristic result: ‖β̂‖ is asymptotically deterministic and if ẑε = ε+‖β̂‖N (0, 1), where

ε has the same distribution as εi, ‖β̂‖ has the property that, asymptotically as p and n grow to
infinity (while p ≤ n and lim sup p/n < 1),{

E
(
[proxc(ρ)]

′
(ẑε)

)
= 1− p

n ,
p
nE

(
‖β̂‖2

)
= E

(
[ẑε − proxc(ρ)(ẑε)]

2
)
,

where proxc denotes the prox function of ρ (at c) and c is another key parameter in the problem,
also determined by the above system. Our predictions are shown to match the results we observe
in simulations.

The paper also covers the cases where β 6= 0 and cov (Xi) 6= Id. It yields predictions about
the intricate behavior of the residuals and the fitted values. Various extensions are presented
covering more involved models.

We also show that many well-known facts about robust regression in low-dimension are
upended in high-dimension. For instance, when the errors are double-exponential, l1 regression
yields a less efficient estimator of β0 than l2 regression provided p/n is large enough.

Our work sheds light on a question raised by P.J Huber in his classic 1973 Annals of Statistics
paper.

∗Support from an Alfred P. Sloan Research Fellowship and NSF grant DMS-0847647 (CAREER) is gratefully
acknowledged. Contact : nkaroui@stat.berkeley.edu
†Support from NSF grant DMS-0907362 is gratefully acknowledged.
‡Support from NSF Grant DMS-0906808 is gratefully acknowledged. Key words and Phrases : Concentration

of measure, robust regression, high-dimensional statistics, quantile regression, elliptical distributions

1



1 Introduction

Statistics and much of data analysis is increasingly high-dimensional. As such, it is important
for practitioners and theoreticians alike to understand the behavior of classic statistical methods
in the high-dimensional setting. By high-dimensional setting, we mean that we will carry out
our study in an asymptotic framework where n the number of observations and p the number of
predictors both grow to infinity; we will assume that p/n has a finite limit which we denote by κ.

In this paper, we focus on understanding the behavior of robust regression estimators in the
high-dimensional case, which we will interchangeably call regression M-estimates. More specifically,
we are interested in the properties of

β̂ = argminβ∈Rp

n∑
i=1

ρ(yi −X ′iβ) , yi = X ′iβ0 + εi , Xi ∈ Rp,

as n and p, grow to infinity while p/n → κ. {Xi}ni=1 is the set of predictors here and {yi}ni=1 are
our responses. yi are real numbers. We will assume throughout that the loss function ρ is convex.

Robust regression estimators have a long history in statistics (see for instance Huber (1964),
Anscombe (1967), Relles (1968), Huber (1972), Andrews et al. (1972), Huber (1973), Yohai (1974),
Bickel (1975), Bickel (1981), Bickel (1984), Portnoy (1984), Portnoy (1985), Portnoy (1987), Mam-
men (1989) and for book-length treatments Huber and Ronchetti (2009), Maronna et al. (2006))
and are widely used in many fields, including econometrics (Koenker (2005)). We shall note in
passing that the interest of studying the case p/n not close to zero was already noted in Huber
(1973) (case (e) p.802 there) who also pointed out that it would be a nontrivial problem to get a
solution in the case of interest here. Our paper can be seen as shedding some light on this now old
problem.

Another interesting aspect of the problem is that it is - at its mathematical heart - a question
about the behavior of solutions of optimization problems involving random data (i.e M-estimation)
in high-dimension. For considerations close in spirit to the ones presented in this paper see El
Karoui (2010) and El Karoui (2009b) (relevant for the analysis of the least-squares problem beyond
Gaussianity assumptions, among many other things), and El Karoui and Koesters (2011) (relevant
for problems related to ridge regression and regularized discriminant analysis and is done under
weak distributional assumptions of independent interest for random matrix theory and, we believe,
high-dimensional statistics).

Though there has been a lot of classical work on asymptotics for robust regression estimators in
the classical setting i.e p/n tends to 0 (though p→∞ much slower than n was allowed), we are not
aware of work that deals with the case where p/n has a non-zero limit. Even simple questions such
as the impact of the loss function, or that of the distribution of the errors are not easy to answer.
One of the key measures we are interested in is expected squared prediction error. In other words,
for a new set of predictors Xnew and a new response ynew = εnew + X ′newβ0, we are interested in

EPE = E
(

(ynew −X ′newβ̂)2
)

. It is easy to see that under our model

EPE = σ2
ε + (β̂ − β0)′cov (Xnew) (β̂ − β0) .

After some manipulations, it turns out that to understand this problem in its general form it is
sufficient to understand the case where cov (Xi) = Idp and β0 = 0, in which case ‖β̂‖2 is the key
quantity of interest. It is also the case that, as we explain in detail later, when Xi’s are i.i.d N (0, 1),
understanding ‖β̂‖ is essentially equivalent to understanding the distribution of β̂, which justifies
further our interest in ‖β̂‖.
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Here is a brief summary of our findings. 1. When {Xi}ni=1 are i.i.d N (0, Idp), β0 = 0, and

εi are i.i.d, our work leads to the following conjecture: ‖β̂‖ is asymptotically deterministic and
if ẑε = ε + ‖β̂‖N (0, 1), where ε has the same distribution as εi and is independent of the normal
component of ẑε, ‖β̂‖ has the property that, asymptotically as p and n grow to infinity (while p ≤ n
and lim sup p/n < 1), {

E
(
[proxc(ρ)]′ (ẑε)

)
= 1− p

n ,
p
nE
(
‖β̂‖2

)
= E

(
[ẑε − proxc(ρ)(ẑε)]

2
)
,

where proxc denotes the prox function of ρ at c (see Appendix B in case definitions are needed) and
c is another key parameter in the problem, also determined by the above system. Our predictions
are shown to match the results we observe in simulations. The heuristic analysis we carry out
in this paper reveals several other unexpected features for quantities that are well understood in
low-dimension. 2. If β̂(i) is the solution of the robust regression problem with the i-th observation

removed, it is false that X ′i(β̂ − β̂(i)) ' 0. 3. The fitted values are in general non-Gaussian. 4.
We can predict the highly non-Gaussian behavior of the residuals. 5. In general, both ρ (the loss
function) and the distribution of the errors εi have a significant impact on the behavior of ‖β̂‖.
6. Last but not least, classical intuition about the connection between loss function and error
distribution is upended: it is sometimes the case that the loss function that appears natural in low-
dimension, for instance for maximum likelihood reasons (and indeed can be shown in that setting
to lead to more efficient estimators), sees its performance degrade in high-dimension and becomes
dominated by another loss function. We illustrate this phenomenon with l1 loss (median regression)
and double exponential errors. It is known that in low-dimension (i.e p/n close to 0) using l1 loss
instead of l2 loss leads to an estimator of β0 that is twice as efficient. However, as Figure 6 shows,
when p/n is large enough (roughly greater than 0.3 from the graph), it becomes more efficient to
use least squares than to use median regression, in sharp contrast with low-dimensional results and
intuition.

We propose a heuristic approach in this paper to derive such results - a rigorous mathematical
study is underway. We should note that our heuristic itself is grounded in (rigorous) theory. We
think that the method we use here is potentially widely useful and reasonably easy to work with
for a variety of problems. We also think that it will help non-specialists derive similar results in
cases of interest to them. Also, this exposition of “large p, large n” asymptotics allows us to point
out some of the key tools we think are useful and hence should have a pedagogical value for many
non-specialists. Finally, our heuristics are very well confirmed by simulations, and hence we think
they offer a lot of insight in the behavior of robust regression estimators. We should further note
that taking the high-dimensional point of view has often been in our experience a good way to get
accurate predictions for the behavior of statistical methods even when p and n are not very large.
This modern point of view tends to have value even in reasonably classical situations.

In Section 2, we present our approach and a general form of the results. A brief summary of the
most important statistical issues follows our statement of the conjecture, on p. 14. In Section 3,
we present some applications to various robust regression problems. In high-dimensional statistics
problems, it is key to understand the impact of the geometric features of the design matrix. For
that purpose we present in Section 4 an analysis pertaining to the robustness of our results and its
sensitivity to the geometry of the design matrix. We conclude in Section 5.
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2 Main results

As explained above, our analysis here is heuristic, though it is grounded in rigorous use of
concentration of measure arguments (some random matrix theory - itself intimately linked with
concentration of measure (see e.g El Karoui (2009a)) - is lurking in the background (a fact that
will be clear to experts) but our approach manages to avoid relying to it). To derive our heuristics
we use a double leave-one-out approach, which we detail below.

Our discussion here will concern the problem:

β̂ = argminβ

n∑
i=1

ρ(yi −X ′iβ) , yi = X ′iβ0 + εi , (1)

where Xi are independent N (0,Σ), and εi are i.i.d with mean 0 and independent of Xi. Here ρ is a
convex function. Our end result is a system of two equations that characterizes ‖β̂‖ (see Conjecture
1 on p. 14). In the case of Gaussian predictors, knowledge of ‖β̂‖ is sufficient to understand the
joint distribution of β̂. We also get predictions for the behavior of the residuals.

We will focus only on the case p < n because when p > n, in the situations we will be looking
at, the problem is under-determined: it is possible to find an infinite number of solutions to this
problem, since the null space of X ′X is not going to be reduced to zero. We will get back to this
point later.

2.1 Preliminaries

We remind the reader of some useful facts that we will use repeatedly in the derivation of our
heuristics.

2.1.1 Invariance remarks for Gaussian predictors

Reduction of the problem to 0 signal and Id-covariance situation
We can rewrite the objective function

n∑
i=1

ρ(yi −X ′iβ)

as
n∑
i=1

ρ(εi −X ′i(β − β0)) =
n∑
i=1

ρ(εi − (β − β0)′Σ1/2XId
i )

where XId
i is N (0, Idp). When p ≤ n, the vector space spanned by {Xi}ni=1 is Rp (with probability

1) and hence understanding the properties of

β̂original = argminβ∈Rp

n∑
i=1

ρ(yi −X ′iβ) , yi = X ′iβ0 + εi ,

is equivalent to understanding the properties of

β̂simple = argminβ

n∑
i=1

ρ(εi −XId
i
′β) . (2)

As a matter of fact, we have (when there is a unique minimizer to our problem)

β̂original = β0 + Σ−1/2β̂simple .

Hence, in the rest of the paper, we study only the properties of β̂simple.
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Rotational invariance of the law of β̂ when predictors are i.i.d N (0, Idp): Let us focus
for a moment on this form of the problem. When Xi is N (0, Idp), if O is an orthogonal matrix,

Xi
L
= OXi. Now clearly, if

β̂({Xi}) = argminβ

n∑
i=1

ρ(εi −XId
i
′β) ,

and O is an orthogonal matrix, β̂({OXi}; {εi}) = Oβ̂({Xi}; {εi}). We conclude that when εi is
independent of Xi, for any O, and when there is a unique minimizer to our problem,

β̂
L
= Oβ̂ .

The distribution of β̂ is therefore invariant by rotation. It is standard (see Eaton (2007), pp.235-237,
Proposition 7.3 and comments) to conclude that

‖β̂‖ and
β̂

‖β̂‖
are independent .

Also,

β̂

‖β̂‖
is uniformly distributed on the sphere of radius 1 in dimension p .

The same is true when Xi are of the form Xi = λiX
Id
i , where λi are random variables indepen-

dent of Xi (provided that Card {i : |λi| > 0} ≥ p), by the same arguments. (In particular, λi could
be deterministic.)

2.1.2 A quick reminder on concentration of measure

The concentration of measure phenomenon (Ledoux (2001)) is a key building block in our
modern understanding of high-dimensional probability and statistics. For the purpose of this
paper, we will mostly need the following approximate equality: under regularity condition on the
deterministic symmetric matrix A, if X is N (0, Id), we have

X ′AX

p
' trace (A)

p
. (3)

As a matter of fact, if λi(A) are the eigenvalues of A,

X ′AX
L
=

p∑
i=1

λi(A)Z2
i

where Zi are i.i.d N (0, 1). Hence, var (X ′AX) = 2trace
(
A2
)
. And therefore, var (X ′AX) /p2 → 0

whenever trace
(
A2
)
/p2 → 0. This is the type of regularity conditions we have in mind. We also

note that if A is stochastic but independent of X, similar statements can be made (by conditioning
first on A), though they require a bit more care to be carried out rigorously. (The careful reader
will have noticed that A should be indexed by p and the limiting statements we just made are
really about sequences of matrices. However, we did not make this precise to avoid cumbersome
notations.)
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It should be noted that the approximate equality in Equation (3) holds when X has a much more
general distribution than just a Gaussian one. It is true as long as the distribution of X satisfies
concentration inequalities for convex 1-Lipschitz (with respect to Euclidian norm) functions of X.
We refer to Ledoux (2001) for examples of such distributions - see also El Karoui (2009a) for a
collection of examples essentially extracted from various parts of Ledoux’s monograph. Finally, we
note that the concentration of measure phenomenon (often) entails the stronger approximation

sup
i=1,...,n

∣∣∣∣X ′iAXi

p
− trace (A)

p

∣∣∣∣→ 0 ,

in probability when p
n → κ ∈ (0,∞) (again under various regularity conditions satisfied by the

Gaussian distribution). When we approximate quadratic forms in Xi below by their trace without
worrying about doing this over ever increasing collections of examples, we essentially appeal to this
stronger version of the approximation.

2.1.3 A linear algebraic identity

We will make repeated use in the heuristic derivation that follows of the Sherman-Morrison-
Woodbury formula, in its simplest, rank-1 version (see Horn and Johnson (1990), p.19). This
formula gives the following identity: if A is an invertible matrix, and u is a vector, we have the
rank-1 update formula:

(A+ uu′)−1 = A−1 − A−1uu′A−1

1 + u′A−1u
.

In particular,

(A+ uu′)−1u =
A−1u

1 + u′A−1u
and u′(A+ uu′)−1u = 1− 1

1 + u′A−1u
.

• Consequences for forms in (mildly) dependent random vectors and matrices
This formula will be helpful when we encounter quadratic forms involving a Gaussian random vector
and a matrix that depends on this vector. Specifically, if A is of the form A =

∑n
j=1wjXjX

′
j =

Ai +wiXiX
′
i (with say Xi i.i.d N (0, Idp) and wi ≥ 0 deterministic and “well-behaved” in the sense

that they do not yield an A with small singular values - these conditions can all be made precise
by appealing to random matrix theory), we will be able to make sense of X ′iA

−1Xi by using the
fact that the previous formula gives us

wiX
′
iA
−1Xi = 1− 1

1 + wiX ′iA
−1
i Xi

.

When Ai is independent of Xi (and its smallest singular value is not too small), our previous
discussion of concentration arguments will essentially yield

wiX
′
iA
−1Xi ' 1− 1

1 + witrace
(
A−1
i

) .
Though often times it will be the case that trace

(
A−1

)
' trace

(
A−1
i

)
, one of the take-away

messages of these calculations should be that the dependence between A and Xi (which is often
mild, for instance when wi = 1

n for all i) makes the tempting “X ′iA
−1Xi ' trace

(
A−1

)
” (which

amounts to using concentration and ignoring dependence between Xi and A) completely false. This
is one of the many subtleties we need to keep in mind when working with high-dimensional data
(or models).
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2.2 Leave-one out approaches

We present a double leave-one out approach which will allow us to conjecture the behavior
of ‖β̂‖ in Equation (2) (see p.14 for a statement of the conjecture). The idea of systematically
using leave-one-out methods is tied to our experience in random matrix theory, which is very much
hidden in the background of all the derivations that follow.

In the derivation, we will assume that we can take derivatives as we wish, so ρ is smooth (and
convex, which we assume throughout). (Later on, our conjecture - verified in simulations - will
cover the case of non-smooth ρ.) In accordance with the usage in robust statistics, we call

ψ(x) = ρ′(x) .

We now work with the simplified version of the problem, namely Equation (2); we can do so
without loss of generality, as explained above. The gradient characterization of β̂ (a.k.a normal
equations) is ∑

Xiψ(εi −X ′iβ̂) = 0 . (4)

We call the fitted values for this problem ŷi = X ′iβ̂ and call the residuals

Ri = εi −X ′iβ̂ = yi − ŷi ,

since in the simplified problem, β0 = 0 so yi = εi.

2.2.1 Leaving out an observation

Let us call β̂(i) the usual leave one out estimator (i.e the estimator we get by not using Xi in
our regression problem). It solves ∑

j 6=i
Xjψ(εj −X ′j β̂(i)) = 0 . (5)

Note that when {Xi}ni=1 are independent, β̂(i) is independent of Xi. For all j, 1 ≤ j ≤ n, we call
r̃j,(i)

r̃j,(i) = εj −X ′j β̂(i) .

When j 6= i, these are the residuals from this leave-one-out situation. For j = i, r̃i,(i) is the
prediction error for observation i.

Intuitively, it is reasonable to assume that, when Xi’s are i.i.d, for i 6= j, Rj ' r̃j,(i). On the
other hand, it is easy to convince oneself (by looking e.g at the least-squares situation) that r̃i,(i)
is very different from Ri in high-dimension. The expansion we will get below will indeed confirm
this fact in a more general setting than least-squares.

Using this approximation for j 6= i, we can do a Taylor expansion in Equation (5). Taking the
difference between Equations (4) and (5) we get (assuming that we can neglect the higher order
terms)

Xiψ(εi −X ′iβ̂) +
∑
j 6=i

ψ′(r̃j,(i))XjX
′
j(β̂(i) − β̂) ' 0 .

We call
Si =

∑
j 6=i

ψ′(r̃j,(i))XjX
′
j .
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This suggests that
β̂ − β̂(i) ' S−1

i Xiψ(εi −X ′iβ̂) .

Note that Si is independent of Xi. Hence, multiplying the previous expression by X ′i, we get, using
the approximation given in Equation (3) (which amounts to assuming that the largest eigenvalue
of S−1

i is not too large),
Ri − r̃i,(i) ' −trace

(
S−1
i

)
ψ(Ri) .

Our experience in random matrix theory and the form of the matrix Si suggest that it is not
impossible that trace

(
S−1
i

)
could have a deterministic limit. Then, by symmetry between the

observations, all trace
(
S−1
i

)
should be approximately the same, i.e,

trace
(
S−1
i

)
' c ,

in which case we would get

Ri − r̃i,(i) ' −cψ(Ri) . (6)

Note that since Xi and β̂(i) are independent when {Xi}ni=1 are independent, much can be said about
the distribution of r̃i,(i). However, at this point it is not clear what the value of c should be. As we
will see below, it is possible, from the definition of c to find another equation that characterizes it
and links it to ‖β̂‖. We now look for further information concerning this latter quantity.

2.2.2 Leaving out a predictor

Let us consider what happens when we leave the p-th predictor out (this is in part motivated
by the fact that the last column of X is independent of its first (p-1) columns). Because we are
assuming that Xi is N (0, Idp), all the predictors play a symmetric role, so we pick the p-th to
simplify notations. There is nothing particular about it.

Let us call γ̂ the corresponding optimal regression vector (corresponding to the loss function ρ;
of course γ̂ ∈ Rp−1) and use the notations

Xi =

[
Vi

Xi(p)

]
, where Vi is a (p− 1) dimensional vector, and

β̂ =

[
β̂Sp
β̂p

]
.

Naturally, γ̂ satisfies
n∑
i=1

Viψ(εi − V ′i γ̂) = 0 .

We call
ri,[p] = εi − V ′i γ̂ ,

i.e the residuals based on p− 1 predictors. Note that {ri,[p]}ni=1 is independent of {Xi(p)}ni=1 under
our assumptions (because Vi is independent of Xi(p) and the Xi’s are i.i.d).

It is intuitively clear that Ri ' ri,[p], for all i, since adding a predictor will not help us much in
estimating the 0 vector (the true regression vector in the situation we investigate), and hence the
residuals should not be much affected by the addition of one predictor. Taking the difference of
the equations defining β̂ and γ̂, we get∑

i

Xiψ(εi −X ′iβ̂)−
[
Vi
0

]
ψ(εi − V ′i γ̂) = 0 .
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This p-dimensional equation separates into a scalar and a vector equation, namely,∑
i

Xi(p)ψ(εi −X ′iβ̂) = 0 ,∑
i

Vi[ψ(Ri)− ψ(ri,[p])] = 0p−1 .

Using a Taylor expansion of ψ(Ri) around ψ(ri,[p]) and noting that Ri−ri,[p] = V ′i (γ̂−β̂Sp)−Xi(p)β̂p,
we can transform the first equation above into (neglecting the higher-order terms)∑

i

Xi(p)
[
ψ(ri,[p]) + ψ′(ri,[p])(V

′
i (γ̂ − β̂Sp)−Xi(p)β̂p)

]
' 0 .

This in turns gives the near identity

β̂p '
∑
Xi(p)[ψ(ri,[p]) + ψ′(ri,[p])V

′
i (γ̂ − β̂Sp)]∑

X2
i (p)ψ′(ri,[p])

.

Working similarly on the equations involving Vi, we get∑
i

ψ′(ri,[p])Vi[Ri − ri,[p]] ' 0 .

Since Ri − ri,[p] = −β̂pXi(p) + V ′i (γ̂ − β̂Sp), the previous equation reads[∑
i

ψ′(ri,[p])ViV
′
i

]
(γ̂ − β̂Sp)− β̂p

∑
i

ψ′(ri,[p])ViXi(p) ' 0 .

Calling

Sp =
∑
i

ψ′(ri,[p])ViV
′
i , and up =

∑
i

ψ′(ri,[p])ViXi(p) ,

we see that
(γ̂ − β̂Sp) ' β̂pS−1

p up .

Therefore, after we plug this approximation in the previous equation for β̂p, we have

β̂p '
∑
Xi(p)ψ(ri,[p])∑
X2
i (p)ψ′(ri,[p])

+ β̂p
u′pS

−1
p up∑

X2
i (p)ψ′(ri,[p])

,

and finally

β̂p '
∑
Xi(p)ψ(ri,[p])∑

X2
i (p)ψ′(ri,[p])− u′pS−1

p up
. (7)

(As an aside, it is interesting to notice that the first ratio in the penultimate formula above is very
similar to the classical case where p/n→ 0.)

On u′pS
−1
p up

If D is a diagonal matrix with diagonal ψ′(ri,[p]), we see that Sp = V ′DV , where V is the
n× (p− 1) dimensional matrix containing the Vi’s as rows. With these notations, we can write up
in matrix form as

up = V ′DX(p) ,
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where X(p) is the n-dimensional vector whose i-th coordinate is Xi(p). So, if we call B = D1/2V
and A = (DV )(V ′DV )−1V ′D, we have A = D1/2B(B′B)−1B′D1/2, and

u′pS
−1
p up = X(p)′AX(p) ,

Conditional on {Vi, εi}ni=1, u′pS
−1
p up is therefore a weighted χ2. In high-dimension, if the eigenvalues

of A are not dominated by a few ones, we can write (essentially appealing to a concentration of
measure argument - see Equation (3))

X(p)′AX(p) ' trace (A) =

n∑
i=1

ψ′(ri,[p])pii ,

where pii is the i-th entry on the diagonal of P , the projection matrix P = B(B′B)−1B′. Using
this approximation, we see (based on Equation (7)) that

β̂p '
∑
Xi(p)ψ(ri,[p])∑

X2
i (p)ψ′(ri,[p])(1− pii)

. (8)

Work on this denominator
{Xi(p)}ni=1 is independent of {ri,[p]}ni=1 and {pii}ni=1, and it is reasonable to expect (at least for
well-behaved ψ′) by exchangeability that a law of large number phenomenon might happen and
help us understand the denominator. In that case, we might be able to replace {X2

i (p)}pi=1 by
their expected value, namely 1, to understand the behavior of the sum (this amounts to taking an
expectation conditional on {ri,[p]}ni=1 and {pii}ni=1). In other words, we expect that

1

n

∑
X2
i (p)ψ′(ri,[p])(1− pii) '

1

n

∑
ψ′(ri,[p])(1− pii) .

Using the rank-1 update formula for matrix inversion (see Horn and Johnson (1990), p. 19 and
our discussion above), if we call Sp(i) = Sp − ψ′(ri,[p])ViV ′i , we have

pii = ψ′(ri,[p])
V ′i [Sp(i)]

−1Vi
1 + ψ′(ri,[p])V

′
i [Sp(i)]−1Vi

and therefore

1− pii =
1

1 + ψ′(ri,[p])V
′
i [Sp(i)]−1Vi

.

Sp(i) is not independent of Vi, because Vi plays a role in the computation of {rj,[p]}j 6=i. However,
it is perhaps not unreasonable to believe that, at least for well-behaved ψ′, the diagonal matrix
with entries {ψ′(rj,[p])}j 6=i could be approximated by another diagonal matrix, which would be
independent of Vi (to do this rigorously, we will essentially have to do a leave-one-observation-out
type of argument, leaving out Vi and working on the corresponding diagonal matrix).

In that case, we would be inclined to think that, for well-behaved ψ′ functions, by Equation (3)
(concentration of measure, again),

V ′i [Sp(i)]
−1Vi ' trace

(
[Sp(i)]

−1
)
' trace

(
S−1
p

)
' c .

(The second near equality comes from applying the rank-1 update formula to S−1
p and realizing

that if trace
(
[Sp(i)]

−1
)

is of order 1, then trace
(
[Sp(i)]

−2
)

should be close to 0.)

10



Because P is a projection matrix, which we expect (for well-behaved ψ′ and Xi having a
continuous distribution) to be of rank p− 1, we have

n∑
i=1

(1− pii) = n− (p− 1) ' n− p .

Therefore, we also expect that (given our arguments leading to 1− pii ' 1/(1 + ψ′(ri,[p])c)),

1

n

∑ 1

1 + ψ′(ri,[p])c
' 1− p

n
. (9)

In particular,

1

n

n∑
i=1

ψ′(ri,[p])(1− pii) '
1

n

∑ ψ′(ri,[p])

1 + cψ′(ri,[p])
=

1

c

1

n

∑
[1− 1

1 + cψ′(ri,[p])
] ' 1

c

1

n

∑
pii '

p

n c
.

Recalling that we expect that 1
n

∑
X2
i (p)ψ′(ri,[p])(1 − pii) ' 1

n

∑
ψ′(ri,[p])(1 − pii), we finally get,

after plugging all these approximations in Equation (8), that

β̂p '
1

p
trace

(
S−1
p

)∑
Xi(p)ψ(ri,[p]) '

c

p

∑
Xi(p)ψ(ri,[p]) . (Approx)

Since ri,[p] is independent of Xi(p) and {Xi(p)}ni=1 are independent of each other, we have

E
(
β̂2
p |{Vi, εi}ni=1

)
=

1

p

n

p

[
1

n

∑
c2ψ2(ri,[p])

]
' 1

p

n

p

[
1

n

∑
c2ψ2(Ri)

]
,

where the last approximate equality relies on ri,[p] ' Ri and ψ2 being smooth (“most of the time”).
In fact, our argument had nothing to do with the last coordinate and can be repeated for all

coordinates of β̂. Doing so and summing over all coordinates, we have the approximation

E
(
‖β̂‖2

)
' n

p

[
1

n

∑
E
(
c2ψ2(Ri)

)]
. (10)

We also note that if we assume that {cψ(Ri)}ni=1 is well-behaved (so a few terms do not dominate
the others in the L2 sense) and it has a (deterministic) limiting distribution with a finite second
moment, we could drop the expectation in the right hand side of the previous expression.

It should also be noted that Equation (Approx) gives us a distributional approximation for β̂p
(!).

2.2.3 Asymptotically deterministic character of ‖β̂‖

It is also reasonable, given the approximate stochastic representation we have for β̂p in Equation

(Approx), to gather that ‖β̂‖ should have a deterministic limit. We give now an argument tied to
our derivation, though this could also be seen as coming from more general principles tied to the
Efron-Stein inequality and some of our earlier approximations.

Indeed, for well-behaved ψ, the independence of ri,[p] and Xi(p) gives (assuming the approxi-
mation (Approx)) that

p√
n
β̂p =⇒ N

(
0,
c2

n

n∑
i=1

ψ2(ri,[p])

)
,

11



where we are also implicitly assuming that c2

n

∑n
i=1 ψ

2(ri,[p]) converges in probability to a determin-
istic limit (as usual, =⇒ denotes weak convergence). If that is the case, the rotational invariance
of β̂ (see Subsubsection 2.1.1) guarantees that ‖β̂‖ is asymptotically deterministic. As a matter of
fact, we know (according to Subsubsection 2.1.1) that, in the case where Xi are i.i.d N (0, Id),

β̂p
L
= ‖β̂‖νp ,

where νp is independent of ‖β̂‖ and νp is the last coordinate of a vector taken at random on

the unit sphere. Hence, νp
L
= Zp/

√
Z2
p + χ2

p−1, where Zp is N (0, 1) and independent of χ2
p−1.

Consequently,
√
pνp is asymptotically N (0, 1). Therefore,

√
pβ̂p has in general a scale mixture of

normal distribution, and the only way it can be asymptotically normal is when ‖β̂‖ is asymptotically
deterministic. (To do this formally, one can compare the 4-th moment of β̂p to its second moment,

use normality of β̂p to draw a relation between the two and conclude that the only way this relation

can be true is when var
(
‖β̂‖2

)
' 0.)

2.2.4 Summary of our approximations

Recall the notations

r̃i,(i) = εi −X ′iβ̂(i)

Ri = εi −X ′iβ̂ .

The work of the previous section gives us the following intuition: we should have, according to
Equations (6), (9), (Approx), and the approximation ψ′(ri,[p]) ' ψ′(Ri),

r̃i,(i) = Ri + cψ(Ri) ,

1

n

∑ 1

1 + ψ′(Ri)c
' 1− p

n
, and

E
(
‖β̂‖2

)
' n

p

[
1

n

∑
c2ψ2(Ri)

]
,

where c is

c = trace

∑
j 6=i

ψ′(r̃j,(i))XjX
′
j

−1 ,

and r̃j,(i) = εj −X ′j β̂(i).
The key idea is the following: we note that when Xi are i.i.d N (0, Idp) (as they have been

assumed to be to get the previous equations),

r̃i,(i) ∼ εi − ‖β̂(i)‖Z

where Z is N (0, 1). It is also reasonable to expect that ‖β̂(i)‖ ' ‖β̂‖ as n and p tend to infinity.
Hence, the law of r̃i,(i) is going to be approximable by

r̃i,(i) ∼ εi − ‖β̂‖Z where Z ∼ N (0, 1)

So from all these heuristics we are going to extract a system of two equations in two (deterministic)
unknowns, c and ‖β̂‖ and solve it.

12



2.3 Setting up the system of equations for c and ‖β̂‖

As we have argued before, we expect (when our approximations are valid) that ‖β̂‖ will be

asymptotically deterministic. So we will from now on replace quantities like E
(
‖β̂‖k

)
by ‖β̂‖k.

2.3.1 First attempt at characterizing the solution

Let us call
gc(x) = x+ cψ(x) , (11)

where c is the particular quantity we referred to before with this notation (not a dummy variable).
Note that c is unknown at this point, but c > 0 given its definition. Also, if ρ is convex, ψ
is increasing so gc is invertible. The equation r̃i,(i) = Ri + cψ(Ri) (Equation (6) above) can be
rewritten

Ri = g−1
c (r̃i,(i)) . (12)

We now make the following important remark (which is easily verified in hindsight but considerably
harder to see a priori - indeed, it was probably the single hardest step in discovering our conjectured
solution to the problem): Equation (9) means in this language (assuming the r̃i,(i) are not too
correlated so we can replace the empirical expectation by the population version) that

E
((
g−1
c

)′
(r̃i,(i))

)
' 1− p

n
, (13)

since g′c(x) = 1 + cψ′(x). Finally, Equation (10) can be rewritten

p

n
E
(
‖β̂‖2

)
' E

(
(r̃i,(i) − g−1

c (r̃i,(i)))
2
)
. (14)

So our new problem is the following: find c and ‖β̂‖, two constants, such that for gc defined
above in Equation (11), E

((
g−1
c

)′
(r̃i,(i))

)
' 1− p

n ,

p
nE
(
‖β̂‖2

)
' E

(
(r̃i,(i) − g−1

c (r̃i,(i)))
2
)
.

(Key Functional System)

Of course, and this is crucial, the distribution of r̃i,(i) is known (up to ‖β̂‖ and it is a convolution
of a normal (with unknown variance) and εi).

The first of this equation will give us a functional relationship between ‖β̂‖ and c. Plugging
that in the second one, we should or might be able to obtain c and/or ‖β̂‖.

2.3.2 A formulation for more general ρ: final version of the system

It is of course of great interest for statisticians to be able to work with non-differentiable
functions ρ: this happens for instance in quantile regression Koenker (2005). However, because in
the derivation of our system we had to use ψ′, it is not clear, even heuristically, what one should
do or guess when the loss function ρ is not differentiable.

However, it is well-known in optimization that, if ∂f is the subdifferential of a closed proper
convex function f (and hence a multivalued function), (Id+t∂f)−1 is a single valued function. This
function is closely related to the Moreau-Yosida regularization of a convex function (see Moreau
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(1965), Rockafellar (1997), Hiriart-Urruty and Lemaréchal (2001)) and is often called the prox-
function or proximal mapping. We give more background (based on Moreau (1965)) on it in the
Appendix, subsubsection B-1.

Hence a better conjecture is derived from the following definitions. We consider for t > 0,

ft(y;u) =

{
f(u) +

1

2t
(u− y)2

}
and call

proxt(f)(y) = argminu ft(y;u)

Under regularity conditions, namely when f is a closed proper convex function, there is a unique
minimizer to ft(y;u) at t and y given. Note that proxt(f) can be defined even when f is not
differentiable, as is the case when working with l1 loss.

We are now in position to state our conjecture.

Heuristic Result 1. Consider

β̂ = argminβ∈Rp

n∑
i=1

ρ(εi −X ′iβ) ,

where εi are i.i.d and independent of Xi, which are i.i.d N (0, Idp). εi are also assumed to be
reasonably nice, for instance they have infinitely many moments. Assume further that p ≤ n and
p/n stays bounded away from 1 (i.e lim sup p/n < 1).

Then ‖β̂‖ is asymptotically deterministic (as n and p tend to infinity) and is characterized
through the following system of equations.

If c is another deterministic parameter and if ẑε ∼ N (0, ‖β̂‖2) + ε, where ε has the same
distribution as εi and is independent of the normal component of ẑε,{

E
(
(proxc(ρ))′ (ẑε)

)
' 1− p

n ,
p
nE
(
‖β̂‖2

)
' E

(
(ẑε − proxc(ρ)(ẑε))

2
)
.

(KeyProxSystem)

We further conjecture that this result remains true when Xi satisfies mild concentration requirements
for quadratic forms as outlined above.

We will discuss a lack of robustness conjecture below. We recall that c is conjectured to be the

limit of c = trace
(∑

j 6=i(ψ
′(r̃j,(i))XjX

′
j)
−1
)
,.

Finally, it should also be noted that the system can be reformulated by using only ρ∗, the
(Fenchel-Legendre) conjugate of ρ, for we have the identity x− proxc(ρ)(x) = prox1((cρ)∗)(x) (see
Appendix B). Hence the first equation in our system reads p/n = E ([prox1((cρ)∗)]′(ẑε)).

Joint distributional behavior of β̂ : We also recall that by invariance, when Xi are i.i.d
N (0, Idp), β̂/‖β̂‖ is uniformly distributed on the unit sphere in dimension p and is independent

of ‖β̂‖. Hence, our conjecture, if and when verified would completely characterize the joint(!)
distributional behavior of β̂.

Dealing with β0 6= 0 and cov (Xi) = Σ : A few simple observations are in order: for the
original problem, where yi = X ′iβ0 + εi, Xi are i.i.d N (0,Σ), and β̂ = argminβ

∑n
i=1 ρ(yi −X ′iβ),

the previous conjecture completely characterizes Σ1/2(β̂ − β0). We also note that our invariance
arguments (Subsubsection 2.1.1) give a complete characterization of the law of Σ1/2(β̂ − β0), at
least in the Gaussian case. Our experience with random matrix theory suggests that a number
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of those properties will be conserved when we replace the Gaussianity assumption on Xi by an
assumption on concentration of quadratic forms in Xi, i.e a guarantee that for A independent of
Xi, X

′
iAXi ' trace (A) when Xi has covariance Idp.

Remarks on the residuals and the fitted values: It should also be noted that as a by-
product of the heuristic analysis, we obtain a conjecture for the distributions of the residuals and
the fitted values. These distributions turn out to be in general quite complicated. For the residuals,
which we called earlier Ri, we had Ri ' proxc(ρ)(r̃i,(i)) and hence the marginal distribution of the

residuals should converge to proxc(ρ)(ẑε) where ẑε = ε+N (0, ‖β̂‖2).
For the fitted values, we can use the representation X ′iβ̂ = X ′i(β̂ − β̂(i)) +X ′iβ̂(i) and our approxi-
mations to see that

X ′iβ̂ ' εi − proxc(ρ)(r̃i,(i)) ,

where r̃i,(i) ' εi + ‖β̂‖Z and Z is N (0, 1). In general, the distribution of the fitted values is going
to be very different from a normal distribution - a fact already pointed out in the least squares
case in Huber (1973), pp. 802-804. (In the least-squares situation, one can look at X ′iβ̂LS and
use the rank-1 update formula to arrive at this conclusion rigorously and find the corresponding
distribution.)
This might be a bit surprising at first, given that we have argued that the finite dimensional
distributions of β̂ are going to be normal (indeed more is true when the predictors are Gaussian).
However, this can be understood as a manifestation of the fact that β̂ (and in particular the
angle β̂/‖β̂‖) is correlated (in a non-negligible fashion) with each individual Xi’s and we cannot
neglect this dependence when projecting β̂ along Xi. In other words, in high-dimension, there is no
asymptotic independence between the two. This is at a high level similar to the dependence issues
we hinted at in Subsubsection 2.1.3.

2.3.3 Other possible approaches

We tried a variety of approaches to understand the behavior of β̂, at this point all heuristics,
and were unsuccessful with the other attempts we made.

We tried a belief-propagation approach (Mézard and Montanari (2009)), which has been suc-
cessfully applied to understand the behavior of Lasso (Donoho et al. (2009b) and the related Donoho
et al. (2009a)), but in our applications gave only the right prediction for Gaussian errors and l2 loss.
Indeed it seemed to predict in the general case that neither ρ nor the distribution of εi mattered.
However, we are not experts in this method and it is possible that someone who is very used to it
might be able to successfully use it (or one of its variants) in our setting. (Of course, understanding
of the applicability of heuristics varies greatly with fields and experience.)

We also tried to look at relevant computations in the spin-glass literature, specifically in Ta-
lagrand (2003). The questions tackled there can be seen as studying the properties of random
probability distributions some of which having density of the form

f(x) =
1

Z
exp[−t

n∑
i=1

ρ(X ′ix)] ,

over certain domains for x (for instance {−1, 1}p) and for various ρ’s. However, we were unsuccessful
(after a limited amount of time) in extracting heuristics that could guide us to a result for our
problem (which could be seen (at least heuristically) as a limiting case of a difficult spin glass
problem) from the very precise, detailed, and rigorous investigations done in this book. (Of course,
this is more a measure of our current limited understanding of that subject and the techniques
used there than a reflection on the book.) We note that leave-one-out is also used in spin glass
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problems (under the name “cavity method”) but our approach to the problem seems completely
different from what is done in Talagrand (2003).

In summary, we see several benefits to the approach we have presented here: it does not rely
on heuristics such as the replica method or belief propagation techniques that still appear to us
as somewhat unclear and whose validity are difficult to assess a priori (even by some specialists it
seems, who could not answer these validity questions when we asked them at various conferences).
By contrast, what we have presented here has the benefit of simplicity, is fairly grounded in rigorous
mathematics (though of course there are gaps (in rigor) since it is only a heuristic at this point),
and clearly points to the impact of our assumptions on the results - specifically the role of the
concentration of measure phenomenon in driving the results.

2.3.4 The case p > n

The case where p > n is of course interesting and presents itself in modern data analysis. When
p > n, practitioners often like to add penalties to the problem. Our method of analysis also yields
results in this penalized situation but they will be presented in another paper. The main issue for
our current problem is that when p > n, there are infinitely many solutions because we can find
infinitely many β̂’s such that, for all i, X ′iβ0 + εi = X ′iβ̂. Therefore, one needs to make a choice

between them. A common choice is to pick in this collection of β̂’s the one with minimum l2 norm,
which generally makes sense when one is interested in controlling expected prediction error. It is
well-known that the solution to this problem is given by

β̂ = X†(Xβ0 + ε) ,

where X† is the Moore-Penrose inverse of X (see Penrose (1956) and Ben-Israel and Greville (2003),
p.109). The computation of ‖β̂‖ and ‖β̂ − β0‖ can be done using standard tools of Wishart theory
(this has effectively nothing to do with the main points of the current paper so we do not delve on
this question) and we have done it in a separate paper (not yet submitted).

3 Applications

We present here some applications of our conjecture and essentially verify it in simulations. We
will use our heuristic result to predict the behavior of

β̂ = argminβ∈Rp

n∑
i=1

ρ(εi −X ′iβ) ,

for a variety of convex functions ρ. (Some examples are in the main text. More can be found in
Appendix A, where we tackle Huber loss functions, quantile regression and a few other examples.)

This is statistically very interesting in our opinion, because it should help us shed light on the
question of the impact of the distribution of the errors on the behavior of the solution and also on
the role of the loss function ρ. These are highly non-trivial a priori.

3.1 A preliminary remark on the Gaussian error case.

Before we give concrete examples, we make the remark that the case of Gaussian errors is
particularly simple, because ẑε is then Gaussian.

Furthermore, the system (KeyProxSystem) simplifies slightly when ẑε ∼ N (0, s2). Indeed,
recalling the classic Gaussian integration by part formula (a.k.a Stein’s formula, Stein (1981),
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Lemma 1 and Equation 2.3), we know that when a random variable W is N (0, σ2), then under
mild technical conditions on the function f ,

E (Wf(W )) = σ2E
(
f ′(W )

)
.

Since the first equation of our system fixes the value of E ([proxc(ρ)]′(ẑε)) at 1 − p
n , the second

equation in the system reads, after expanding the square

p

n
E
(
‖β̂‖2

)
= s2 − 2s2(1− p

n
) + E

(
(proxc(ρ)(sZ))2

)
, where Z ∼ N (0, 1) .

3.2 Case ρ(x) = x2/2; least-squares regression

The case where ρ(x) = x2/2 amounts to solving a least-squares problem. Fortunately, in this
case the solution is known explicitly. If X is an n × p matrix whose rows are Xi, and Y is our
vector of responses,

β̂l2 = (X ′X)−1X ′Y .

In particular, when yi = εi and cov ({εi}ni=1) = σ2
ε Idn, we see that E

(
‖β̂l2‖2

)
= σ2

εE
(
trace

(
(X ′X)−1

))
.

This latter quantity is equal to σ2
ε p/(n− p) from classical Wishart theory (Muirhead (1982) or An-

derson (2003)); the result holds at least when n− p > 2.
Let us now compare this rigorous result with the predictions given by our conjecture.
In this case, ψ(x) = x, so

gc(x) = (1 + c)x .

Hence

g−1
c (y) =

1

1 + c
y .

Also, y − g−1
c (y) = c/(1 + c)y. Equation (13) becomes

E

(
1

1 + c

)
= 1− p

n
=

1

1 + c
.

Equation (14) becomes

p

n
E
(
‖β̂‖2

)
=

(
c

1 + c

)2

E
(
ẑ2
ε

)
=

(
c

1 + c

)2 (
E
(
‖β̂‖2

)
+ σ2

ε

)
.

So we get

cl2 =
p
n

1− p
n

and

E
(
‖β̂l2‖2

)
'

p
n

1− p
n

σ2
ε .

Hence our conjecture agrees with classical results derived from Wishart theory. The analysis and
implementation of our conjecture also clearly shows why the distribution of εi should not matter
beyond the value of the variance, σ2

ε .

17



3.3 Case ρ(x) = |x|; median regression

Here the Taylor expansion we relied on to derive the conjecture are very suspect, but let us see
what the system (KeyProxSystem) predicts. In this case ψ(x) = sign(x) (except at 0) and it is
well-known and easily verified that, if ρl1 is such that ρl1(x) = |x|,

proxt(ρl1)(y) = (y − t)1y≥t when y ≥ 0 .

By symmetry, proxt(ρl1)(−y) = −proxt(ρ)(y). In other words, the prox-function is the soft-
thresholding function.

Therefore, we have
y ≥ 0 : [proxt(ρl1)]′ (y) = 1y≥t ,

and the first equation of the system (KeyProxSystem) becomes

E
(
[proxc(ρl1)]′ (ẑε)

)
= E

(
1|ẑε|≥c

)
= P (|ẑε| ≥ c) ' 1− p

n
. (15)

The reader might be potentially concerned about our taking the derivative of the soft-thresholding
function. However, since ẑε has a density which is the convolution of a Gaussian density and an-
other density, the fact that proxt(ρl1) is not differentiable at t and −t does not cause any trouble
in computing the expectation.

3.3.1 The case of Gaussian errors

The Gaussian error case, ẑε ∼ N (0, ‖β̂‖2 + σ2
ε ). Calling

s2 = ‖β̂‖2 + σ2
ε ,

our first relation between ‖β̂‖ (or s) and c, i.e Equation (15) becomes

P (|Z| ≥ c

s
) = 1− p

n
, where Z ∼ N (0, 1) .

After some algebra, we get that
c

s
= Φ−1

(
1

2

[
1 +

p

n

])
,

where Φ−1 is the quantile function for N (0, 1).
Now, when y ≥ 0,

y − proxc(ρl1)(y) = y1y≤c + c1y≥c ,

and therefore
[y − proxc(ρl1)(y)]2 = y21y≤c + c21y≥c .

We hence have

E
(

(ẑε − proxc(ρl1)(ẑε))
2
)

= s2E
(
Z21|Z|≤ c

s

)
+ c2P (|Z| ≥ c

s
) .

Recall that c/s is such that P (|Z| ≥ c/s) = 1− p
n . Also,

E
(
Z21|Z|≤c/s

)
=

1√
2π

∫ c/s

−c/s
x2 exp(−x2/2)dx = P

(
|Z| ≤ c

s

)
− 2√

2π

c

s
exp(−c2/(2s2)) ,
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by integration by parts, and we saw above that c/s = Φ−1
(

1
2

(
1 + p

n

))
so we can substitute c/s by

an explicit function of p/n.
Calling, for t ∈ [0, 1],

h (t) = t−
√

2

π
Φ−1([1 + t]/2) exp(−[Φ−1([1 + t]/2)]2/2) ,

we have as interpretation of Equation (14),

p

n
E
(
‖β̂‖2

)
= s2h

( p
n

)
+ c2

(
1− p

n

)
,

= s2

[
h
( p
n

)
+
(

1− p

n

)(
Φ−1

[
1

2

(
1 +

p

n

)])2
]
.

Since E
(
‖β̂‖2

)
= s2 − σ2

ε , we can solve for s2: calling, for t ∈ [0, 1],

ζ(t) = 2Φ−1(t)
(
ϕ[Φ−1(t)]− Φ−1(t)(1− t)

)
,

where ϕ is the standard normal density, we have after some algebra:

s2 =
p
n

ζ([1 + p
n ]/2)

σ2
ε

and

E
(
‖β̂l1‖2

)
'

p
n − ζ([1 + p

n ]/2)

ζ([1 + p
n ]/2)

σ2
ε .

It is possible and not very hard to verify that ζ(t) ≥ 0 if t ∈ [1/2, 1] and 2t − 1 − ζ(t) ≥ 0 on the
same interval, which insures that the prediction is positive.

We present some simulations below (Figures 1 and 2) to compare the results of our predictions
and that of numerical experiments.

3.3.2 Further remarks on l1-regression with symmetric error distribution

Our prox-function computations show that we need to solve for c such that

P (|ẑε| ≥ c) = 1− p

n
,

and then we have
p

n
E
(
‖β̂‖2

)
= E

(
ẑ2
ε 1|ẑε|≤c

)
+ c2(1− p

n
) .

Since E
(
ẑ2
ε 1|ẑε|≤c

)
= E

(
ẑ2
ε

)
−E

(
ẑ2
ε 1|ẑε|≥c

)
, we see that

(1− p

n
)E
(
‖β̂‖2

)
= E

(
ẑ2
ε 1|ẑε|≥c

)
− σ2

ε − c2(1− p

n
) .

Let us call r = ‖β̂‖, which we now treat as an unknown constant. Let us call fr the density of ẑε,
which we assume exists. When εi are symmetric, so is ẑε. Hence,

E
(
ẑ2
ε 1|ẑε|≥c

)
= 2E

(
ẑ2
ε 1ẑε≥c

)
= 2

∫ ∞
c

y2fr(y)dy .
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Figure 2: Relative errors:
|E(‖β̂‖2)−prediction|

prediction ,
Gaussian errors, l1 loss, 1000 simulations

We call F̄r(t) = P (ẑε ≥ t) and have P (|ẑε| ≥ c) = 2P (ẑε ≥ c) = 2F̄r(c) = 1− p
n , by using symmetry

of ẑε. Integrating by parts the previous display, we see that∫ ∞
c

y2fr(y)dy = c2F̄r(c) + 2

∫ ∞
c

xF̄r(x)dx = c2 1− p
n

2
+ 2

∫ ∞
c

xF̄r(x)dx .

Therefore,

E
(
ẑ2
ε 1|ẑε|≥c

)
= c2(1− p

n
) + 4

∫ ∞
c

xF̄r(x)dx .

Of course, c = F̄−1
r ((1− p

n)/2), so putting everything together we finally get that

(1− p

n
)r2 = 4

∫ ∞
F̄−1
r ((1− p

n
)/2)

xF̄r(x)dx− σ2
ε (16)

We have to solve this equation in r for general error distributions. Analytically, it is a priori quite
difficult (even establishing existence and uniqueness of the solution may not be simple).

A case of particular interest for l1 regression is that of double-exponential errors, since we know
that in that case it is more efficient in low-dimension to use l1 rather than l2 regression. (The
l1 objective function also corresponds to the log-likelihood of the data conditional on {Xi} when
{εi}ni=1 are i.i.d double exponential.)

Case of double exponential errors
As we have seen the only problem is to compute the cdf of rZ+εi. When εi are double exponential,
if we call Fr(t) = P (rZ + εi ≤ t), we have after a simple computation

Fr(t) = Φ

[
t

r

]
+

exp(r2/2)

2

(
exp(t)Φ

[
− t+ r2

r

]
− exp(−t)Φ

[
t− r2

r

])
.
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Figure 4: Relative errors:
|E(‖β̂‖2)−prediction|

prediction ,
double exponential errors, l1 loss, 1000 simula-
tions.

Furthermore, when εi are double exponential, σ2
ε = 2, and hence the equation we have to solve is

(1− p

n
)r2 − 4

∫ ∞
F̄−1
r ((1− p

n
)/2)

xF̄r(x)dx+ 2 = 0 .

We found numerical solutions of this equation by doing a dichotomous search for its zeroes. Our
numerical results follow. It should be noted that one needs to be careful with the numerical
aspects of these questions: our experience was that naive and somewhat unrefined (or careless)
implementations yielded poor results. Also, the numerics in the case p/n small become delicate
and were a source of extra difficulty. It is not completely surprising since we are also potentially in
that case in a different asymptotic regime. We refer the reader to Figures 3 and 4 for illustration.

A general remark about numerics
We note that a slightly better numerical implementation (especially for small p/n) might make
use of the fact that r2 + σ2

ε = 4
∫∞

0 xF̄r(x)dx (this is just a second moment computation) so that
Equation (16) reads

p

n
r2 = 4

∫ F̄−1
r ((1− p

n
)/2)

0
xF̄r(x)dx ,

and the integration bounds are now finite. However, our numerical illustrations come from a straight
implementation of Equation (16).

3.3.3 Comparison between l1-regression and ordinary least squares

A focus of our work is understanding how various estimators behave in high-dimension when
the distribution of the errors changes and which loss function we should use for regression, if we
happen to have some information about the errors. We now make these comparisons numerically
and verify that our predictions remain accurate for the corresponding relative error measures.
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rather than l1-regression when the errors are
double-exponential and p

n is sufficiently large.

Figure 6 (p. 22) is particularly interesting as it shows that, even for double exponential errors,
the performance of l1 regression (supposedly adapted to the case of double exponential errors inves-
tigated there) becomes worse than that of ordinary least squares regression when p/n is sufficiently
large (roughly p/n > 0.3). This is a surprising fact because it is well-known that when p/n is close
to zero and the errors are double exponential, l1-regression leads to estimate of β̂ that are more
efficient than l2 regression. Hence, classical low-dimensional intuition is upended in high-dimension.

On the other hand, Figure 5 shows that least-squares regression performs better than median
regression when the errors are Gaussian, over the whole range of p/n.

3.4 Further examples

We present further examples of solutions of our system in Appendix A.

4 Robustness questions and extensions of the conjecture

We investigate two types of robustness questions for our proposed system of equations: we
consider the impact of our distributional assumptions (distributional robustness) and that of the
dimensionality assumptions. In the first case, we check that a meaningful perturbation of our
assumptions yields a change in the system of equations one needs to solve. In the second case, we
check that our system of equations allows us to recover classical results when p/n is small.
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4.1 Impact of geometry

Because the conjecture relies heavily on the use of the concentration of measure phenomenon
(for Gaussian random vectors) at a few key points, it is important to have an idea of the sensitivity
of the conjecture to the implicit geometric assumptions that are made.

To make those more explicit, let us note that ifXi are i.i.dN (0, Idp) and A is a p×p deterministic
symmetric matrix with |||A|||2 < C for some C > 0 and independent of p, we have

sup
i=1,...,n

|1
p
X ′iAXi −

trace (A)

p
| → 0 in probability, when p/n→ κ ∈ (0,∞) .

This is an easy consequence of the concentration of measure phenomenon for 1-Lipschitz function
of Gaussian random vectors. This can be shown through elementary moment computation here.
For a more general view, we refer the reader to Ledoux (2001) or El Karoui (2009a) for specific
interest in these questions. Taking A = Idp, we see that the previous remark implies that

sup
i=1,...,n

|‖Xi‖2

p
− 1| → 0 in probability .

It is also easy to see that another choice of A implies that

sup
i 6=j
| X ′iXj

‖Xi‖‖Xj‖
| → 0 in probability .

In other words, our Gaussianity assumptions (and really concentration assumptions) amount to
assuming - among many other things - that the data vectors live near a sphere (of radius

√
p) and

are nearly orthogonal to one another (in fact, the same argument we made for a sphere can be made
for the surface of many ellipsoids - for the sphere we picked A = Idp but a different A would yield
a different ellipsoid; the conditions on A for the concentration arguments to go through are very
mild). As explained in the works referenced above, this is also true for Gaussian random vectors
having covariance Σ 6= Idp, as long as, for instance, |||Σ|||2 does not grow too fast with p, and
more generally for a host of distributions having concentration properties for convex 1-Lipschitz
functions.

4.1.1 Work with elliptical models

To depart from Gaussian-like geometry, we move from a Gaussian design matrix to an elliptical
one. So we now assume that

Xi = λiXi
where λi is a random variable independent of Xi and Xi is N (0, Idp). We refer to Anderson (2003)
for information on elliptical models and El Karoui (2009a) and El Karoui and Koesters (2011)
for a longer discussion about the relevance of these models in high-dimensional statistics (see also
Diaconis and Freedman (1984) for similar considerations in a different context). The elliptical
model described here has a (genuinely) different geometry from the Gaussian model studied before
because ‖Xi‖/

√
p is not close to a constant; indeed, it is close to |λi|, which is a random variable.

In that sense, the model allows us to change the geometry of the dataset.
We also make the simple remark that if X is an n× p matrix whose rows are Xi, we have

X = DλX ,
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where Dλ is a diagonal matrix whose (i, i) entry is λi, and X is an n× p whose rows are Xi. (We
note that the argument that follows is essentially done conditional on Dλ and just assumes that
Dλ is independent of X . Therefore, beyond just the standard elliptical case where λi are i.i.d, the
analysis applies to the case where Dλ is deterministic and also to the situation where its entries are
not independent. What is crucial about Dλ is that some of the statistics that depend on the λi’s
below become asymptotically deterministic. For this to happen, it will generally suffice that the
empirical distribution of the diagonal of Dλ converges weakly to a limit and that we do not have
too many “outliers” in the λi’s. We refer the interested reader to El Karoui (2010) were similar
issues arise and are treated in (rigorous) detail.)

Let us recall the central results of our leave-one-out analyses. We ascertained and asserted that:

β̂ − β̂(i) ' S−1
i Xiψ(Ri) ,

β̂p '
∑n

i=1Xi(p)ψ(ri,[p])∑n
i=1X

2
i (p)ψ′(ri,[p])− u′pS−1

p up
,

u′pS
−1
p up = X(p)′AX(p), A = D1/2PVD

1/2, PV = D1/2V (V ′DV )−1V ′D1/2 ,

where D is a diagonal matrix with D(i, i) = ψ′(ri,[p]). Multiplying by X ′i the first equation, and
using the fact that it is elliptical, we get

Ri − r̃i,(i) ' −λ2
i cψ(Ri)

where

c = trace

(
(
n∑
i=1

ψ′(Ri)XiX
′
i)
−1

)
.

Work on the denominator of β̂p

Using the rank-1 update for matrix inversion, we see that

PV (i, i) = 1− 1

1 + ψ′(ri,[p])V
′
i [Sp(i)]−1Vi

' 1− 1

1 + λ2
iψ
′(ri,[p])trace ([Sp(i)]−1)

.

Therefore, using the fact that PV is a projection matrix, and the approximations trace
(
[Sp(i)]

−1
)
'

c, and ri,[p] ' Ri, the fact that trace (PV ) = p− 1 now reads

1

n

n∑
i=1

1

1 + λ2
i cψ

′(ri,[p])
' 1− p

n
.

Using concentration properties of Xi, conditional on {λi}ni=1, we have

1

n
X(p)′AX(p) =

1

n
X (p)′DλADλX (p) ' 1

n
trace (DλADλ) ' 1

n

n∑
i=1

λ2
iψ
′(ri,[p])PV (i, i) .

As noted above, we also have,

1− PV (i, i) =
1

1 + ψ′(ri,[p])V
′
iS(p, i)−1Vi

' 1

1 + λ2
i cψ

′(ri,[p])
.

We also use the approximation

1

n

n∑
i=1

X2
i (p)ψ′(ri,[p]) =

1

n

n∑
i=1

X 2
i (p)λ2

iψ
′(ri,[p]) '

1

n

n∑
i=1

λ2
iψ
′(ri,[p]) ,
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Hence, the denominator of β̂p, divided by n is such that

1

n

n∑
i=1

X2
i (p)ψ′(ri,[p])−

1

n
u′pS

−1
p up '

1

n

n∑
i=1

λ2
iψ
′(ri,[p])(1− PV (i, i))

Replacing 1− PV (i, i) by its value, we get that

1

n

n∑
i=1

X2
i (p)ψ′(ri,[p])−

1

n
u′pS

−1
p up '

1

n

n∑
i=1

λ2
iψ
′(ri,[p])

1 + cλ2
iψ
′(ri,[p])

=
1

c

(
1− 1

n

n∑
i=1

1

1 + cλ2
iψ
′(ri,[p])

)
' 1

c

p

n
.

So finally,

β̂p '
∑
Xi(p)ψ(ri,[p])/n

p
n/c

' c1

p

n∑
i=1

λiψ(ri,[p])Xi(p) .

After elementary algebraic manipulations, we see (using again ψ(ri,[p]) ' ψ(Ri)) that

E
(
‖β̂‖2

)
' n

p
E
(
c2λ2

iψ
2(Ri)

)
,

where we used the notation E
(
c2λ2

iψ
2(Ri)

)
as a shortcut for 1

n

∑n
i=1 c

2λ2
iψ

2(Ri), which we assume
has a deterministic limit in our asymptotics.

Hence, with our notations from before, we see that the system to solve in the elliptical case is
the following: with r̃i,[p] = εi − λi‖β̂‖N (0, 1), and gcλ2i

(x) = x+ cλ2
iψ(x), we have

Ri = proxcλ2i
(ρ)(r̃i,(i)) , and cλiψ(Ri) =

r̃i,(i) − proxcλ2i
(ρ)(r̃i,(i))

λi
.

System formulation for elliptical data
The first equation of the system (KeyProxSystem) becomes

E
(

[proxcλ2i
(ρ)]′(r̃i,(i))

)
= 1− p

n
,

where the expectation also has to be taken with respect to the distribution of λi.
The second equation in this system (characterizing ‖β̂‖2) is now

p

n
E
(
‖β̂‖2

)
' E

(
[r̃i,(i) − proxcλ2i

(ρ)(r̃i,(i))]
2

λ2
i

)
.

The conclusion is that the system of equations we have to solve is sensitive to the geometry of
the data, since it depends on the distribution of λi. We note that in this setting we still have

‖β̂‖2 ' E
(
‖β̂‖2

)
.

We also note that when λ2
i = 1, we recover the system we postulated in the Gaussian predictor

case.

4.1.2 Extensions of the conjecture: heteroskedasticity and weighted robust regression

Heteroskedasticity A look at our arguments reveals that we do not make strong use at any
point of the assumption that the εi’s are i.i.d. Our effective assumptions are more concerned with
the fact that a few points do not drive the behavior of the solution. When the εi’s are not i.i.d
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but have reasonably similar distributions (something that will be made clearer when we give a
mathematical proof of all this) the system becomes, when β0 = 0 and cov (Xi) = Idp,{

E
(
[proxc(ρ)]′(r̃i,(i))

)
= 1− p

n ,
p
nE
(
‖β̂‖2

)
' E

(
[r̃i,(i) − proxc(ρ)(r̃i,(i))]

2
)
,

where r̃i,(i) = ‖β̂‖Zi + εi, Zi’s are i.i.d N (0, 1) and the expectation has to take into account the
fact that there is effectively a prior on the distributions of εi’s.
Weighted robust regression One may also ask what happens when we solve

β̂ = argminβ

n∑
i=1

wiρ(εi −X ′iβ) , wi ≥ 0 ,

and the wi’s are not all equal. This is very relevant for a proper treatment of heteroskedasticity
issues, where one might be inclined to resort to this sort of modifications of the original question.
In this brief discussion, we only consider the case where ρ(tx) = t1/αρ(x), for t > 0. This is clearly
relevant to the examples we have looked at. In this case, we can rewrite the objective function as

n∑
i=1

wiρ(εi −X ′iβ) =
n∑
i=1

ρ(wαi εi − wαi X ′iβ) .

Hence, if wi were picked in such a way that wαi εi are i.i.d and Xi were N (0, Idp), the problem would
effectively be - as the second formulation makes clear - a problem with homoskedastic errors and
elliptical-like predictors.
In general, it is clear that the weighted robust regression problems (with ρ such that ρ(tx) =
t1/αρ(x), t > 0) is effectively going to be a standard robust regression problem with heteroskedastic
errors and elliptical (or elliptical-like) predictors. The system we conjectured in the elliptical case
should be able to handle some amount of heteroskedasticity by following the same guidelines we just
outlined, i.e the expectation should be interpreted as an expectation over the Gaussian component
of r̃i,(i), a prior on λi’s and a prior on εi’s.
Beyond the weighted case Naturally, the next (mathematical) step would be to consider the
problem

β̂ = argminβ

n∑
i=1

ρi(εi −X ′iβ) .

In this case, it is natural to think that we have a prior on the loss functions ρ’s. Looking at our
derivation, in the case of i.i.d errors and N (0, Idp) predictors, a natural conjecture is that ‖β̂‖ will
be asymptotically deterministic (under some conditions on this prior on functions) and will satisfy{

E
(
[proxc(ρi)]

′(r̃i,(i))
)

= 1− p
n ,

p
nE
(
‖β̂‖2

)
' E

(
[r̃i,(i) − proxc(ρi)(r̃i,(i))]

2
)
,

where now the expectation is also over the prior on ρi’s. (This prior would have to be “reasonable”
in the sense that a few ρi’s do not drive the whole regression problem).

4.2 Another example of sensitivity to our assumptions

It is important to investigate the sensitivity of our results in several directions. We assume in
this subsection that the vectors {Xi}ni=1 are i.i.d and take value {ek}pk=1 with equal probability,
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where {ek}pk=1 are the canonical basis vectors (i.e ek(j) = δj,k). We also assume for the sake of
simplicity that ψ changes sign on R and that it is continuous. In this case, the (vector) equation
defining β̂ becomes

n∑
i=1

Xiψ(εi −X ′iβ̂) =

p∑
k=1

∑
i:Xi=ek

ekψ(εi − β̂k) = 0 .

Hence the vector equation separates into p scalar equations and β̂ is defined, coordinate by coordi-
nate as

∀k, 1 ≤ k ≤ p :
∑

i:Xi=ek

ψ(εi − β̂k) = 0 .

The number of terms in each of these equations is in expectation n/p. So it is clear that the
marginal distribution of β̂k is not normal in general: indeed we can find it by conditioning on
Nk = Card {i : Xi = ek} (a binomial(n, 1/p) random variable, hence an essentially Poisson(n/p)
random variable in our asymptotics where p/n remains bounded away from 0) and solving, for
{εj}Nkj=1, independent of Nk: ∑

1≤j≤Nk

ψ(εj − β̂k) = 0 .

This will in general not be normal; even in the case of least-squares regression, β̂k is the mean the
εj ’s, which is not in general normal (recall that Nk is bounded in probability here), when εj ’s are
not normal.

This example could naturally be easily extended to the case where ρ has a subdifferential. We
leave this to the interested reader.

4.3 Connection with classical statistical theory (κ ' 0)

Recall the system (Key Functional System). If gc = x+ cψ(x), E
((
g−1
c

)′
(r̃i,(i))

)
' 1− p

n ,

p
nE
(
‖β̂‖2

)
' E

(
(r̃i,(i) − g−1

c (r̃i,(i)))
2
)
.

When p/n is very small we are back in the classical case. We therefore expect that E
(
‖β̂‖2

)
' 0

(we have an unbiased estimator for 0 that is consistent) and the first equation reads in its expanded
form

1

n

n∑
i=1

1

1 + cψ′(Ri)
= 1− p

n
,

where Ri = εi −X ′iβ̂. Hence, we also expect that c ' 0.
It is then natural to guess that g−1

c (y) = y− ηf(y), where η is small and f unknown. Plugging
this into gc(x) = x+ cψ(x), we see that

x = gc(g
−1
c (x)) = x− ηf(x) + cψ(x− ηf(x)) ' x− ηf(x) + cψ(x) ,

for smooth ψ. So it is natural to conjecture that, since c is expected to be small,

ηf(x) = cψ(x)

and
g−1
c (y) ' y − cψ(y) .
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We now take these relations as given and proceed to solve the system. Since (g−1
c )′(y) ' 1− cψ′(y),

we see that
cE
(
ψ′(r̃i,(i))

)
=
p

n
.

Now r̃i,(i) = N (0, ‖β̂‖2) + εi ' εi, since ‖β̂‖2 is about zero. So we are led to believe that

c =
p

n

1

E (ψ′(ε))
,

which is indeed small in general. Now y − g−1
c (y) = cψ(y). So the second equation gives

p

n
E
(
‖β̂‖2

)
= c2E

(
(ψ(r̃i,(i)))

2
)
'
( p
n

)2 E
(
ψ2(r̃i,(i))

)
[E (ψ′(ε))]2

'
( p
n

)2 E
(
ψ2(ε)

)
[E (ψ′(ε))]2

.

Rewriting it, we get

E
(
‖β̂‖2

)
=
p

n

E
(
ψ2(ε)

)
[E (ψ′(ε))]2

.

If one does classical perturbation analysis on this problem for very small p/n, that is the solution
one gets.

This suggests that the system (Key Functional System) (or its more general version (KeyProxSystem))
is in some sense universal in terms of dimension since we can also apply it to the case p/n small
and get the right result.

We should also add that in low dimensions, the geometric issues we pointed out (when ques-
tioning the robustness of the system (KeyProxSystem)) above are irrelevant since we are basically
able to estimate the true regression vector β0. Hence β̂ − β0 ' 0 - therefore the distribution of r̃ is
always close to that of the noise.

4.4 What is settled rigorously?

As far as we know, the least squares case is settled rigorously when the predictors are Gaussian,
by relying on classical Wishart theory (Anderson (2003)). Dealing with elliptical distributions in
the least-squares case can also be done but requires random matrix theory - in fact the results of El
Karoui (2010) and El Karoui (2009b) can be used to do so. It is also possible to move away from
the Gaussianity assumption on the predictors in the case of ridge regression and this is done in El
Karoui and Koesters (2011) under mild concentration assumptions for the predictors. The part of
the current paper on invariance is fully rigorous. We are currently working on making the rest of
the paper mathematically rigorous. However, this work, which is very near completion (indeed we
can rigorously justify many of our approximations), is not included in the paper because it is long
and would put us largely above the page limit requirements for this journal.

5 Conclusion

We have presented a double leave-one-out approach to understanding the behavior of robust
regression estimators in high-dimension. Somewhat surprisingly, our results point to the fact that
the concentration of measure phenomenon is driving this behavior. This is surprising because it
suggests that these problems have - after all - much in common with questions in high-dimensional
random matrix theory. Indeed, this is confirmed by our derivations, but was quite unexpected,
especially for problems like median regression and more generally quantile regression, which have
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certain selection features built into them (see Koenker (2005)), and are in this regard quite different
a priori from standard random matrix problems.

We have given a detailed heuristic (grounded in theory) for justifying the a priori non triv-
ial conjecture (see p.14) summarized in the System (KeyProxSystem). The conjecture gives good
results even for non-smooth loss functions, as the agreement between our l1 simulations and pre-
dictions indicates. This is also quite surprising at this point given how we arrived at the system.
It should also be noted that the conjecture gives information not only about the behavior of β̂, the
estimated regression vector, but also about the residuals, which have in general a very complicated
distribution.

It should be noted that numerically the System (KeyProxSystem) is, in general, quite hard to
solve, even when the robust regression problem is not. So it is possible that if this difficult system
turns out to have another interpretation in applied mathematics, the link we made with robust
regression might help in solving it efficiently.

Our derivation and simulations point to the fact that great care needs to be applied when
thinking about the effect of using robust regression estimators in high-dimension. We have for
instance seen that when the errors are double exponential, using median regression instead of
least-squares regression might lead to inefficiencies when p/n is sufficiently large (see Figure 6); it
is however well-known that in the classical setting (i.e p/n small) median regression outperforms
ordinary least-squares for these errors. But there is no universal rule: for Gaussian errors, using
ordinary least squares is more efficient than using median regression, as we expect from classical
theory. This leads us to believe that classical intuition and arguments might have to be taken with
a bit of suspicion in the high-dimensional setting of interest here - the two situations have little to
do with one another.

Our analysis and conjecture reveals the very complicated interaction between loss function and
distribution of the errors in determining the behavior of the solution - something that - as far as we
know - was not understood so far and is very central to improving our understanding of statistics
in high-dimension. In that respect, it should be noted that generally the whole distribution of
the errors matter, not only simple statistics like the variance. Only in the case of least-squares
regression does it seem that the variance is the only characteristic of the errors that is important.

Our work also yields quite striking formulas, such as the explicit one for median regression with
Gaussian errors, and reveal the key role of the prox function in this problem. However, a deeper
connection with convex optimization theory (upon which we stumbled) needs to be drawn.

Using the approach presented here we are able to conjecture the behavior of β̂ when we add a
penalization term (on β) to the problem, for much richer geometries of the design matrix and for
a variety of related problems involving heteroskedasticity and reweighting. We do not present all
of them here to avoid obscuring the main arguments.

Our presentation is heuristic here, but we are currently working on a fully rigorous mathe-
matical analysis. We hope however to have drawn the attention of the reader to the gist of the
various phenomena at stake and in particular would like to point out again the key role of measure
concentration in our analysis. A benefit of this analysis is that it immediately shows its limitations
and in particular the sensitivity of the results to dataset (Euclidian) geometry. Finally, we note
that as p/n tends to zero and we return to the classical setting, our predictions yield well-known
classical results.

APPENDIX
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A Further examples of solutions of our system of equations

A-1 Huber loss functions

In this situation, we have

ρδ(x) =

{
x2

2 if |x| ≤ δ ,
δ(|x| − δ

2) if |x| ≥ δ .

Hence, we have, for x ≥ 0, ψδ(x) = x1x≤δ + δ1x≥δ. It is therefore easy to verify that

proxc(ρδ)(y) =


y

1+c if y ∈ (−(1 + c)δ, (1 + c)δ) ,

y − cδ if y ≥ (1 + c)δ ,

y + cδ if y ≤ −(1 + c)δ .

After some elementary manipulations, we see that the first equation of system (KeyProxSystem)
reads

c

1 + c
P (ẑε ∈ [−(1 + c)δ, (1 + c)δ]) =

p

n
.

The second equation of system (KeyProxSystem) reads

p

n
E
(
‖β̂‖2

)
=

(
c

1 + c

)2

E
(
ẑ2
ε 1ẑε∈[−(1+c)δ,(1+c)δ]

)
+ c2δ2(1− p

n

1 + c

c
) .

Gaussian case: As usual, calling s =

√
‖β̂‖2 + σ2

ε , and α = (1 + c)δ/s, the previous equation can
be rewritten as

p

n
(s2 − σ2

ε ) =

(
c

1 + c

)2

s2 [2Φ(α)− 1− 2αφ(α)] + 2c2δ2(1− Φ(α)) ,

using the fact that if Z ∼ N (0, 1), E
(
Z21{Z∈[−α,α]}

)
= P (Z ∈ [−α, α]) − 2αφ(α). On the other

hand, the first equation in the system reads 2Φ(α)− 1 = (p/n)(1 + c)/c.
Numerically, we can try to solve our system of two equations by collapsing it into a single

equation in α. As a matter of fact, we have, using the first equation of the system (KeyProxSystem),

c =
p
n

2Φ(α)− 1− p
n

, and s =
2Φ(α)− 1

2Φ(α)− 1− p
n

δ

α
.

We can also rewrite the second equation as

p

n
(s2 − σ2

ε ) = c2δ2

[
1

α2
[2Φ(α)− 1− 2αφ(α)] + 2(1− Φ(α))

]
.

After we replace c and s by their values in terms of α, this becomes an equation in α (δ and σ2
ε are

of course given) which we can attempt to solve numerically
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A-2 Quantile regression

Quantile regression is a very popular technique used in a variety of fields and primarily in Econo-
metrics. We refer the reader to Koenker (2005) for a detailed introduction and many references.

The loss function ρτ used in this method is of the form

ρτ (x) = x(τ − 1x≤0), where τ ∈ (0, 1) ,

which is not symmetric in general. (Of course, when τ = 1/2 we are back in the case of median
regression, where ρ(x) = |x|.)

Elementary computations show that the prox function has the form

proxc(ρτ (y)) =


y + c(1− τ) if y ≤ −c(1− τ)

0 if y ∈ [−c(1− τ), cτ ]
y − cτ if y ≥ cτ

and its derivative can be written as (ignoring the problems at −c(1− τ) and cτ)

(proxc(ρτ )′(y) = 1− 1y∈[−c(1−τ),cτ ] .

Hence, the first equation of the system (KeyProxSystem) can be reformulated as

P (ẑε ∈ [−c(1− τ), cτ ]) =
p

n
,

the definition of ẑε taking care of the (differentiability) problems at −c(1− τ) and cτ .
Gaussian error case In this case, we are able to pursue the matters a bit further. As usual,

we call s > 0 the standard deviation of ẑε, i.e s =

√
‖β̂‖2 + σ2

ε . Calling υτ = c/s(> 0), we see that
υτ (> 0) is defined by the equation

p

n
= P (Z ∈ [−υτ (1− τ), υττ ]) ,

where Z ∼ N (0, 1). At τ given, this equation can be easily solved numerically for υτ .
On the other hand, the second equation of the system (KeyProxSystem) reads

p

n

(
s2 − σ2

ε

)
= c2(1− τ)2P (Z ≤ −υτ (1− τ)) + c2τ2P (Z ≥ υττ) + s2E

(
Z21Z∈[−υτ (1−τ),υτ τ ]

)
.

Recalling that when Z ∼ N (0, 1), E
(
Z21Z∈(a,b)

)
= Φ(b)−Φ(a) + aφ(a)− bφ(b) = Ξ(a, b), where φ

is the standard normal density and Φ is the standard normal cdf, we can finally rewrite the previous
equation as

p

n

(
s2 − σ2

ε

)
= s2

[
υ2
τ (1− τ)2Φ(−υτ (1− τ)) + υ2

ττ
2Φ(−υττ) + Ξ(−υτ (1− τ), υττ)

]
.

Of course, almost by definition, p/n = Φ(υττ)−Φ(−υτ (1−τ)). Therefore, calling Θ(x) = −xφ(x)−
x2Φ(x), we finally have the conjecture

s2 ' p/n

Θ(−υτ (1− τ)) + Θ(−υττ)
σ2
ε ,

‖β̂‖2 ' s2 − σ2
ε .

A little work is needed to investigate whether the conjecture makes sense - and whether it does
at least give meaningful signs to the quantities of interest. It is easy to verify (using e.g integration
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by parts) that for x ≤ 0, Θ(x) ≥ 0. Since we also know that by definition, we should have s2 ≥ σ2
ε ,

we need to check that the conjectured ratio for s2/σ2
ε is greater than 1.

Calling b = υτ (1− τ) and a = −τυτ , we see that this amounts to showing that

Θ(−b) + Θ(a) ≤ Φ(b)− Φ(a) .

Calling ∆ the function such that ∆(x) = (x2 − 1)Φ(x) + xφ(x), we see that this is equivalent to
showing that

1 + ∆(−b) + ∆(a) ≥ 0 .

Elementary computations show that ∆′(x) = 2xΦ(x) which is naturally negative when x ≤ 0.
Hence, using the fact that −b ≤ 0 and a ≤ 0, we see that 1 + ∆(−b) + ∆(a) ≥ 1 + 2∆(0). Since
∆(0) = −Φ(0) = −1/2, we have shown that indeed

1 + ∆(−b) + ∆(a) ≥ 0 ,

and therefore,
p/n

Θ(−υτ (1− τ)) + Θ(−υττ)
≥ 1 .

A-3 Case ρ(x) = |x|3/3; l3 loss

The case of l3 loss is perhaps not necessarily very relevant from a robustness standpoint (l3 gives
significant weight to outliers) but it is one of the rare cases where our equations can be solved quite
explicitly, so we investigate it. It is also interesting from our standpoint of trying to contribute to
a general theory of M -estimation.

Here ρ(x) = |x|3/3 and hence ψ(x) = sign(x)x2. Therefore,

gc(x) = x+ c sign(x)x2 .

For y ≥ 0, after some algebra we get (c > 0)

proxc(ρ)(y) =
−1 +

√
1 + 4cy

2c
.

As usual proxc(ρ)(−y) = −proxc(ρ)(y), so that

∀y , proxc(ρ)(y) = sign(y)
−1 +

√
1 + 4c|y|

2c
,

and

(proxc(ρ))′(y) =
1√

1 + 4c|y|
.

Gaussian errors case: call ν = cs, where s2 = ‖β̂‖2 + σ2
ε . Recall that ẑε ∼ sZ, where Z is

N (0, 1), because εi ∼ N (0, σ2
ε ). Interpreting Equation (13) in this context, we get that ν satisfies:

E

(
1√

1 + 4ν|Z|

)
= 1− p

n
.

So at p
n given, ν can be found numerically.
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We turn to Equation (14). In the case of Gaussian errors, ẑε is N (0, s2). So we can use
integration by parts to say that

E (ẑεproxc(ρ)(ẑε)) = s2E
(
(proxc(ρ))′(ẑε)

)
= s2

(
1− p

n

)
.

We conclude that in the case of Gaussian errors, Equation (14) can be interpreted as

p

n
(s2 − σ2

ε ) = s2 − 2(1− p

n
)s2 + E

(
(proxc(ρ)(sZ))2

)
.

In the present case we have

(proxc(ρ)(y))2 =
1

4c2

(
2 + 4c|y| − 2

√
1 + 4c|y|

)
.

Taking expectation, we get, using the fact that ẑε ∼ sZ, and the notation cs = ν,

E
(
(proxc(ρ)(ẑε))

2
)

=
1

2c2

(
1 + 2ν

√
2

π
−E

(√
1 + 4ν|Z|

))
,

=
s2

2ν2

(
1 + 2ν

√
2

π
−E

(√
1 + 4ν|Z|

))
.

So finally, we can reinterpret Equation (14) as saying that

p

n
(s2 − σ2

ε ) = s2

[
(2
p

n
− 1) +

1

2ν2

(
1 + 2ν

√
2

π
−E

(√
1 + 4ν|Z|

))]
,

where ν is found by solving the equation mentioned above (therefore ν is implicitly a function of
p/n). Calling

γ(
p

n
) =

[
(2
p

n
− 1) +

1

2ν2

(
1 + 2ν

√
2

π
−E

(√
1 + 4ν|Z|

))]
,

we get

s2 =
p
n

p
n − γ( pn)

σ2
ε ,

and

E
(
‖β̂l3‖2

)
'

γ( pn)
p
n − γ( pn)

σ2
ε .

We have checked these predictions against our simulations (for a few values of p/n) and got
relative accuracy of around 1% when n was of order 1000.

A-4 Case ρ(x) = |x|1.5/1.5

We present this case as it is also one where we can be reasonably explicit about the behavior
of ‖β̂‖. Here we have

ψ(x) = sign(x)
√
x .

Therefore, for y ≥ 0, we have, after some elementary algebra

g−1
c (y) =

c2

4

(
2 +

4

c2
y − 2

√
1 +

4

c2
y

)
.
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We can deduce g−1
c (y) for y ≤ 0 by symmetry, and we have

g−1
c (y) = sign(y)g−1

c (|y|) .

We can now compute the derivative of this function and the first equation of system (KeyProxSystem)
becomes

E

 1√
1 + 4

c2
|r̃i,(i)|

 =
p

n
.

On the other hand, [y − g−1
c (y)]2 = c4

4

(
1−

√
1 + 4

c2
|y|
)2

, so the second equation reads

p

n
E
(
‖β̂‖2

)
=
c4

4
E

(1−
√

1 +
4

c2
|r̃i,(i)|

)2
 .

Gaussian error computations
As usual in the case of Gaussian errors we have r̃i,(i) = sZ, Z ∼ N (0, 1), where s = ‖β̂‖2 + σ2

ε . If
we call ν = 4s/c2, the first equation of the system now reads

E

(
1√

1 + ν|Z|

)
=
p

n
.

This can be solved numerically to find ν (which clearly depends on p/n). Once ν is known, the
second equation can be turned into an equation in s only:

p

n
(s2 − σ2

ε ) =
4s2

ν2
E
(

(1−
√

1 + ν|Z|)2
)
.

We can then finally conclude that

s2 =
p
n

p
n −

4
ν2

E
(

(1−
√

1 + ν|Z|)2
)σ2

ε .

B Basic facts on the prox function

B-1 Prox functions and dealing with non-differentiable ρ’s

Since we have been doing formal computations to derive our heuristics, we have of course taken
some liberties with non-differientable ρ among other things. In particular, if ρ(x) = |x|, a priori
ψ (“ = ρ′”) is multivalued at 0, since it is a subdifferential. However, if ∂ρ is the subdifferential
of a closed proper convex function ρ (see e.g Rockafellar (1997) for definitions, if needed), it is
well-known (since Moreau (1965)) that

(Id + t∂ρ)−1

is a single valued function, a remarkable fact.
Indeed, if

ρt(y) = min
u
ρ(u) +

1

2t
(u− y)2 and

proxt(ρ)(y) = argminu

{
ρ(u) +

1

2t
(u− y)2

}
,
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proxt(ρ)(y) is the unique minimizer of ρ(u)+ 1
2t(u−y)2 at y given (for this we need ρ to be a closed

proper convex function), and very importantly

proxt(ρ)(y) = (Id + t∂ρ)−1(y) .

See Moreau (1965), Proposition 6.a, p. 283. (Of course the prox function can be defined for
functions of vector arguments, but since we do not need this extension in this paper, we do not
present it.) The function ρt(y) is known in optimization as a Moreau-Yosida regularization of ρ.

Another important relation concerning the prox function is the following: when ρ is a closed,
proper, convex function, we have

x = prox1(ρ)(x) + prox1(ρ∗)(x) ,

where ρ∗ is the Fenchel-Legendre conjugate of ρ, namely, in the scalar case, ρ∗(x) = supy xy−ρ(y).
We again refer the reader to the original paper of Moreau (Moreau (1965)) or Rockafellar (1997)
for statements in English.

References

Anderson, T. W. (2003). An introduction to multivariate statistical analysis. Wiley Series in
Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, third edition.

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., and Tukey,
J. W. (1972). Robust estimates of location: Survey and advances. Princeton University Press,
Princeton, N.J.

Anscombe, F. J. (1967). Topics in the investigation of linear relations fitted by the method of
least squares. (With discussion.). J. Roy. Statist. Soc. Ser. B 29, 1–52.

Ben-Israel, A. and Greville, T. N. E. (2003). Generalized inverses. CMS Books in Mathe-
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