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Penalized robust regression in high-dimension

Abstract

We discuss the behavior of penalized robust
regression estimators in high-dimension and
compare our theoretical predictions to simu-
lations. Our results show the importance of
the geometry of the dataset and shed light on
the theoretical behavior of LASSO and much
more involved methods.

1 Introduction

We consider the problem of understanding the prop-
erties of

b� = argmin�2Rp

nX

i=1

⇢(yi �X 0
i�) + ⌧P (�) ,

yi = X 0
i�0 + ✏i ,

where Xi is a p-dimensional vector of observed predic-
tors, ✏i is a vector of (unobserved) errors which we as-
sume are independent of {Xi}n

i=1, yi is a 1-dimensional
response, ⇢ is a given and known function. P is a
penalty function. We are concerned with the high-
dimensional case where p/n has a finite non-zero limit.
P (�) is a penalty function and �0 is an unknown vector
which we are trying to estimate.

The problem we are considering is very general, as it
includes generic robust regression (Huber (1973)) as a
subcase (case where ⌧ = 0), as well as methods which
have recently received much attention such as LASSO
(Tibshirani (1995)). In that latter case, ⇢(x) = x2/2
and P (�) = k�k1.

There is currently much interest in statistics in the
high-dimensional case, where p/n (the ratio of num-
ber of predictors over number of observations) is not
close to zero. In that setting, it is interesting but non
trivial to try to understand the behavior of b� � �0, as
well as for instance that of the residuals. In particu-
lar, natural questions concern the impact of the loss
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function, ⇢, on the results, the interaction of the distri-
bution of ✏i’s and ⇢, as well as the role of the penalty
function P and ⌧ .

We are particularly interested in understanding the
expected squared prediction error (conditional on the
data we have seen). Hence, for new observations
(Xnew, ynew) (independent of the ones we have used to
construct the estimator) we would like to understand

EPE = E
⇣
(ynew �X 0

new
b�)2|(y1, X1), . . . , (yn, Xn)

⌘
.

Clearly, if ynew follows our model, we have

EPE = var(✏new) + (b� � �0)0cov(Xnew)(b� � �0) .

In particular, when cov(Xnew) = Idp, this amounts to
understanding kb� � �0k.

In this note, we propose an advanced heuristic
(grounded in rigorous theory) to answer these ques-
tions. In particular, under assumptions that will be
detailed below we are able to:

• find a system of 3 non-linear equations for 3 pa-
rameters to characterize kb� � �0k

• characterize the behavior of the residuals.

• understand the impact of the loss function, the
distribution of the errors and the penalty

• make clear that low-dimensional intuition is up-
ended in high-dimension. For instance, if the dis-
tribution of the errors is known, the natural loss
function to use in low-dimension is related to the
log of the error density. In high-dimension, it is
sometime the case that another loss performs bet-
ter. We illustrate this with double exponential
errors and median vs least-squares regression pe-
nalized in both cases with an `2 penalty.

2 Characterization of the solution

2.1 Assumptions

For the purpose of this paper, we make the following
assumptions.

• Xi are i.i.d can be written Xi = �iXi, where �i

is a random variable independent of Xi and Xi is
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N (0, Idp). Furthermore, E
�
�2

i

�
= 1. In particu-

lar, cov(Xi) = Idp.

• ⇢ is convex (and closed and proper).

• P (�) =
Pp

k=1 fk(�k), i.e P works coordinate-wise
on �. fk is convex (and closed and proper).

• {✏i}n
i=1 are independent of {Xi}n

i=1.

The convexity of ⇢ and fk’s is needed to insure that
certain functions that will appear below exist, and to
guarantee uniqueness of the solution of our original
M -estimation problem.

2.2 Results

Before we state the results, we need to present a short
reminder concerning the prox function of convex opti-
mization.

The prox function Suppose that ⇢ is a proper,
closed, convex function (see Rockafellar (1997)). Then,
following Moreau (1965), we denote by proxc the
unique solution of

proxc(⇢)(x) = argminu

1
2c

(u� x)2 + ⇢(u) .

A key property of the prox is that if ⇢ has a subdi↵er-
ential  ,

proxc(⇢)(x) = (Id + c )�1(x) .

In other words, despite the fact that  is potentially
multivalued, (Id + c )�1 is single valued. We refer
the reader to Rockafellar (1997) and Lemaréchal and
Sagastizábal (1997) for more information about the
prox function.

2.2.1 The system

Our aim is to characterize kb� � �0k. To do so, we
need to introduce two extra parameters, which we call
c⌧ > 0 and ⌫(⌧). We will also need another parameter
K⌧ = ⌧c⌧

n⌫(⌧) .

We call Ri the i-th residual (i.e Ri = yi � X 0
i
b�),

ri,[k] the i-th residual we obtain by not using the k-
th predictor {Xi(k)}n

i=1 in a regression where we have
changed the response yi by removing the influence of
Xi(k) on it (namely the “new” response in this regres-
sion is yi � �0(k)Xi(k)). And we call  the subdi↵er-
ential of ⇢.

We will also need to introduce the random variables

Zk =

"
�0(k) +

1
⌫(⌧)

1
n

nX

i=1

Xi(k)c⌧ (ri,[k])

#
.

Result 1. The heuristic manipulations made in the
supplementary material lead to the following results.
We assume that p/n tends to a finite non-zero limit.
We also assume that all the entries of �0 are of com-
parable size.

kb� � �0k, c⌧ , ⌫(⌧) are asymptotically deterministic.
Furthermore,

• Call r̃i,(i) = ✏i + �iN (0, kb� � �0k), where �i is
independent of the normal variable that multiplies
it.

• We have Ri ' ri,[k] for all k and Ri '
proxc⌧ �2

i
(⇢)(r̃i,(i)). Furthermore, c (Ri) ' r̃i,(i)�

Ri.

• Call Zk the random variables defined above and
note that their marginal distribution is, when ✏i

are i.i.d, (L= is used to denote equality in law)

Zk
L=

N
 
�0(k),

1
n⌫(⌧)2

E

 
([proxc⌧ �2

i
(⇢)](r̃i,(i))� r̃i,(i))2

�2
i

!!
.

We have the relationships
8
<

:

1
n

Pn
i=1[proxc⌧ �2

i
(⇢)]0(r̃i,(i)) ' 1� ⌫(⌧) ,

p
n

1
p

Pp
k=1[proxK⌧

(fk)]0(Zk) ' ⌫(⌧) ,

81  k  p , proxK⌧
(fk) [Zk] ' b�k .

The last p equations relate kb� � �0k2 (and
E
⇣
kb� � �0k2

⌘
) and to ⌫(⌧) and c⌧ , giving us a system

of 3 equations in the three unknowns kb� � �0k, ⌫(⌧)
and c⌧ .

Examples of solutions to this system are given in Sec-
tion 3.

2.2.2 Comments on the system and model

Choice of the model, impact of geometry We
chose to model the predictors as Xi = �iXi to study
the sensitivity of our results to the geometry of the de-
sign matrix. As a matter of fact, when Xi is normal,
standard results in concentration of measure theory
tell us that for any given deterministic matrix A, we
have supi=1,...,n |X 0

i AXi/p�trace (A) /p| ' 0, provided
the largest eigenvalue of A is much smaller than pp
(see Ledoux (2001)), lim p/n =  > 0 is bounded and
p and n are su�ciently large. Taking A = Idp, we
realize that this means that the points Xi are close to
the unit sphere in Rp, a well-known fact about high-
dimensional Gaussian data. In fact they are close to
the surface of any given ellipsoid (since those are de-
fined by a positive-definite A). Hence, the Gaussian



predictor model is extremely constraining geometri-
cally. The model we look at allows to break somewhat
these constraints. Indeed, our points are not close to
a sphere if �i’s are allowed to vary. However, they are
still nearly orthogonal to one another, just like high-
dimensional Gaussian random vectors. What the sys-
tem shows is that our asymptotic results are quite sen-
sitive to the underlying geometric assumptions made
by the model about the data.

Interaction ✏i and ⇢ The system makes clear that
in general the results will depend on the distribution
of ✏i and ⇢. An exception to this rule is the case where
⇢(x) = x2/2, i.e penalized least squares. An important
subcase is LASSO, which is `1 penalized least squares.
This follows from properties of the prox function that
are detailed below.

Residuals One of the results of our manipulations
is the fact that Ri = proxc⌧ �2

i
(r̃i,(i)). The distribution

of r̃i,(i) is extremely simple, since it is a sum of two
independent random variables (though in general it is
not Gaussian). Hence, this relationship between Ri

and r̃i,(i) tells us pretty much everything about the
marginal distribution of the residuals. It should also
be noted that if b�(i) denotes the estimator we get when
the i-th observation has been removed, we have r̃i,(i) =
✏i + X 0

i(b�(i) � �0). (Note that asymptotically, kb�(i) �
�0k ' kb�� �0k, hence the approximation made in the
statement of our result.)

Beyond cov(Xi) = Idp The methods we use to get
at the system above should work a priori for more com-
plicated models for the data. However, the computa-
tions are much more involved and we do not present
them here. We note however that the reasonably sim-
ple structure of the first two equations of our system
likely to be shattered when cov(Xi) 6= Idp. Also, we
rely very strongly for the representation of b�p very
strongly on the fact that the penalty acts coordinate-
wise. More complicated functions do not yield as sim-
ple a representation.

Robustness to distributional assumptions In
our arguments, the normality of Xi plays a minor role.
However, the concentration properties of the normal
distribution are very important. We expect that the
same results hold when we replace the normality as-
sumption by assumptions guaranteeing concentration
of quadratic forms.

About the entries of �0 It seems that the assump-
tion that the entries of �0 are all of comparable size
is not a strong requirement for the argument to go
through. In particular, if �0 is sparse, the same anal-

ysis should go through. (Our analysis is really about
the entries of b� that correspond to small entries of �0.
The large entries of �0 need to be treated separately
but if there are few of them, it seems that they will not
(in general) create much problem for global quantities
such as kb� � �0k.)

Final simplifications The sums taken in the first
two equations are large sums taken over weakly corre-
lated random variables, so we expect that they stabi-
lize and converge to their expectation. In the case of
i.i.d errors, the system can therefore be simplified to
8
><

>:

E
⇣
[proxc⌧ �2

i
(⇢)]0(r̃i,(i))

⌘
' 1� ⌫(⌧) ,

p
n

1
p

Pp
k=1 E

�
[proxK⌧

(fk)]0(Zk)
�
' ⌫(⌧) ,

81  k  p ,proxK⌧
(fk) [Zk] ' b�k .

Further comments At this point, we have empiri-
cal evidence that the previous system can be solved in
certain cases. However, we do not have a proof of exis-
tence and uniqueness of a solution to our 3-parameter
system. We are actively working on making all of our
assertions fully rigorous (including of course the valid-
ity of the system).

Particular values The case of no penalty is inter-
esting, too. In this case, ⌧ = 0, and fk = 0. Therefore,
the second equation gives us ⌫(⌧) = p/n. We also see
that K⌧ = 0. and we are left with a system with two
parameters only that is the same as the one we found
in our previous work.

3 Examples

Penalized regression methods have become increas-
ingly popular in statistics for handling high dimen-
sional data. Understanding the behavior of these es-
timates in high dimensions is therefore of great theo-
retical and practical interest. A key quantity to un-
derstand is k�̂ � �0k22. We show that the functional
system can be solved to yield results for k�̂ � �0k22 in
these cases:

1. fk(x) = x2/2, ⇢(x) = x2/2 (Ridge regression);

2. fk(x) = x2/2, ⇢(x) = |x| (`2-penalized median
regression);

3. fk(x) = |x|, ⇢(x) = x2/2 (LASSO);

4. fk(x) = |x|, ⇢(x) = |x| (`1-penalized median re-
gression).

We then validate these results through simulations.
We make extensive use of the following ideas:
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Notes on the prox function. The prox function has
a simple form for both the square and absolute value
function, and the zero function:

1. For f(x) = x2/2 we have [proxc(f)](x) = x
1+c and

hence the derivative of the prox is the constant
1

1+c

2. For f(x) = |x|, [proxc(f)](x) = sgn(x)(c �
|x|)+; i.e. the prox of the absolute value func-
tion corresponds to soft-thresholding at c. Also,
[proxc(f)]0(x) = 1[|x|>c].

3. For f ⌘ 0, [proxc(f)](x) = x.

Stein’s identity. We make frequent use of Stein’s
identity: for Z ⇠ N (0, 1) and di↵erentiable func-
tion f , we have (under mild regularity conditions)
E(Zf(Z)) = E(f 0(Z)). (In fact, this holds for any
N (0,�2) random variable). These special cases are
particularly important:

1. E(Z21[|Z|�c]) = 2c�(c) + P(|Z| � c), where � is
the standard normal density

2. E(Z1[Z�c]) = �(c).

3.1 `2 Penalization, Gaussian Predictors

Simplify the system into two equations. In the
case of Gaussian predictors �i = 1 for all i, consider-
ably simplifying the functional system. For the case
of `2 penalties, we aim to further simplify the system
into a system of two equations in two unknowns: c⌧

and k�̂ � �0k22. Recall that the prox for x2/2 at c is
the function x/(1 + c). This makes the second equa-
tion in the functional system n⌫(⌧) = p/(1 + K⌧ ),
from which we obtain the simple relation ⌫(⌧) =
p/n � ⌧c⌧/n. Now let v2 = E ([proxc⌧ (⇢)](r̃)� r̃)2.
Note that Zk

L= beta0(k) + vZ/sqrtn for Z ⇠ N (0, 1).
Thus by equation 3 of the system, E(�̂k � �0(k))2 =
r2/n

(p/n)2 + (⌧c⌧/p)2 �0(k)2. This yields a functional sys-
tem of two equations for `2-penalized M-estimates:

8
>><

>>:

E ([proxc⌧ (⇢)]0(r̃)) = 1� p

n
� ⌧

n
c⌧ ,

Ek�̂ � �0k22 =
n

p
r2 +

✓
⌧c⌧

p

◆2

k�0k22

3.1.1 Case: ⇢(x) = x2/2; ridge regression

Though ridge regression can be analyzed more di-
rectly with random matrix methods (see ? (citation
masked)), we investigate our functional system’s pre-
diction for k�̂��0k. Use the fact that the derivative of
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Figure 1: Ridge regression over a grid of 50 values of
⌧/n. Predictions vs realized values of k�̂ � �k22 based
on 1000 simulations. Errors are N (0, 1). �0 was drawn
uniformly from the unit sphere.

the prox of x2/ is constant to obtain c⌧ as the positive
root of 1/(1+c⌧ ) = 1�p/n+⌧c⌧/n. Rewrite this equa-
tion as ⌧c⌧/p = 1� n

p
c⌧

1+c⌧
. Moreover we can simplify

v2 to the form
⇣

c⌧
1+c⌧

⌘2
(�✏ + Ek�̂ � �0k22). Plugging

these relations into the other equation yields:

Ek�̂ � �0k22 =
p
n

⇣
c⌧

1+c⌧

⌘2
�2

✏ +
⇣
1� n

p
c⌧

1+c⌧

⌘2
k�0k22

1� p
n

⇣
c⌧

1+c⌧

⌘2 .

Simulation results validate the above analytic expres-
sion, as seen in Figure (1). We note that k�̂ � �0k for
ridge regression is the same for any error distribution
with variance �2.

3.1.2 Case: ⇢(x) = |x|; `2-penalized median
regression

Simplify to Gaussian errors. Because of the sim-
ple form of the prox of f(x) = x2/2, when the loss
is `2 the distribution of the errors ✏i enters into the
functional system only through E(✏2) = �2

✏ . How-
ever, for general loss functions ⇢, including ⇢(x) = |x|,
higher order parameters of the distribution of ✏ appear
in the system. While it is certainly of theoretical in-
terest to investigate the e↵ect of non-Gaussian errors
on the system, we know from experience that this can
take significant time and resources. In the interest of



presenting worked examples, we make the simplifying
assumption of Gaussian errors. Therefore, the distri-
bution of the random variables r̃ is N (0, s2) where
s2 = �2

✏ + Ek�̂ � �0k22.

In light of the above simplification, we have P(|Z| �
c⌧/s) = 1 � p/n + ⌧c⌧/n (recall that the derivative
of the prox of f(x) = |x| is an indicator function,
so its expectation is a probability). Writing ��1 for
the standard normal quantile function, we get c⌧

s =
��1

�
1
2 (1 + p

n �
⌧
nc⌧

�
, a relation between s and c⌧ .

Furthermore it is easy to show v2 = c2
⌧P (|Z| � c⌧/s)+

s2E
�
Z21[|Z|c⌧ /s]

�
. Apply Stein’s identity to the right

hand side and write Ek�̂��k22 = s2��2
✏ ; then we have:

s2 � �2
✏ =

✓
⌧c⌧

p

◆2

k�0k22 +
n

p

⇢
c2
⌧P
⇣
|Z| � c⌧

s

⌘

+s2


1� P

⇣
|Z| � c⌧

s

⌘
� 2

c⌧

s
�(

c⌧

s
)
��

,

Plugging into the above display 1 � p
n � ⌧

nc⌧ for
P
�
|Z| � c⌧

s

�
, ��1

�
1
2 (1 + p

n �
⌧
nc⌧ )

�
for c⌧/s, and

�
c⌧/��1

�
1
2 (1 + p

n �
⌧
nc⌧ )

��2 for s2 yields an equation
which depends only on c⌧ . Numerically find the root
value c⇤⌧ of this equation, then plug back into the equa-
tion defining s to obtain:

Ek�̂ � �0k22 =
✓

c⇤⌧/��1

✓
1
2
(1 +

p

n
� ⌧

n
c⇤⌧ )
◆◆2

� �2
✏ .

Figure (2) shows the agreement between simulations
and our heuristic predictions.

3.2 `1-penalization, Gaussian predictors.

Regularization by the `1 norm has received consider-
able attention since this penalty produces sparse so-
lutions in regression settings. This is highly desirable
from a model selection standpoint. Applying our func-
tional system to the `1 penalty yields some interesting
results:

We can interpret ⌫(⌧). Recall that [proxc(| · |)](y)
was the soft-threshold of y at c and that [proxc(| ·
|)]0(y) = 1[(]|y| � c). Returning to the full functional
system of three equation in three unknowns (for the
Gaussian case), we see by the second equation that
n⌫(⌧) =

��{k : �̂k 6= 0}
��; that is, n⌫(⌧) counts the

number of nonzero coe�cients in �̂.

Simplification of �0 to the Gaussian case. In
light of the remark above, we see that the likelihood
that �̂j 6= 0 for a given j depends on the size of the
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Figure 2: Median regression with L2 penalty. Pre-
dictions vs realized values of k�̂ � �k22 based on 100
simulations. �0 was drawn uniformly from the unit
sphere.

true �0(j). At this point many investigations of `1
penalties impose sparsity constraints on �0 but such
assumptions seem to increase the challenge of solving
the functional system. We instead make the simpli-
fying assumption that �0(j)

iid⇠ ⌘p
pZ. Then for each k

Zk ⇠ N (0, t2) where t2 = v2/n⌫(⌧)2+⌘2/p. Assuming
concentration, the second equation in the functional
system becomes n⌫(⌧) = pP(t|Z| � K⌧ ).

Consequently, with high probability �0 will be dis-
tributed di↵usely near the unit sphere in Rp. It is
known that `1 penalization performs poorly in this sit-
uation (`2 regularization is preferable). But in making
this assumption on �0 we make the functional system
more analytically tractable, and we show that our pre-
dictions are valid even in this “worst case” setting for
`1 penalties.

3.2.1 Case: ⇢(x) = x2/2; LASSO

Some recent work has been done on the theory of
LASSO - see e.g Donoho et al. (2009). The approached
used there is completely di↵erent from ours but our re-
sults are of course consistent with our findings. We
note that we could not extend the approach taken
there to cover more general loss functions (⇢). This
is in part what lead us to this work. In that sense our
results are more general.

Recall that the derivative of the prox of x2/2 is a
constant, therefore the functional system gives 1 �
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⌫(⌧) = 1/(1 + c⌧ ). This admits the simple relation-
ship ⌫(⌧) = c⌧

1+c⌧
. Therefore, v2/⌫(⌧)2 = s2 and

t2 = s2

n + ⌘2

p . Moreover, K⌧/t = ��1 (1� n⌫(⌧)/2p).
Since K⌧ = ⌧

n(1�⌫(⌧)) this means we can express t in
terms of ⌫(⌧). Turning to the form of the distribu-
tion of �̂k given in the system we have, after several
applications of Stein’s identity,

E
⇣
�̂k � �0(k)

⌘2
= t2E

�
[proxK⌧

t
(| · |)](Z)

�2

�⌘
2

p

✓
1� 2

n

p
⌫(⌧)

◆

If we define g(z) = E
�
[proxz(fk)](Z)

�2 we can
write s2 � �2

✏ = pt2g
�
��1 (1� n⌫(⌧)/2p)

�
� ⌘2(1 �

2n⌫(⌧)/p). Moreover we have s2 = nt2 � n⌘2/p.
Plugging this into the above display and substituting
t = K⌧/��1 (1� n⌫(⌧)/2p) yields an equation in the
single unknown ⌫(⌧). Numerically find the root ⌫⇤(⌧)
and plug back in to obtain:

Ek�̂ � �0k22 = n


⌧/n [(1� ⌫⇤(⌧))]
��1

⇣
1� n

p
⌫⇤(⌧)

2

⌘
�2
� n

p
⌘2 � �2

✏ .

Note that the above computations are the same for any
error distribution with variance �2

✏ . Thus our heuris-
tics predict that the norm of �̂ � �0 for LASSO is
the same for any error distribution with variance �2

✏ .
This conjecture is is supported by simulations using
the Gaussian and Double Exponential error distribu-
tions. Figure (3) confirms the accuracy of the predic-
tions of the functional system.

3.2.2 Case: ⇢(x) = |x|; `1-penalized median
regression

For further simplification assume the errors are Gaus-
sian and that ⌘ = 0; that is, the model is fully
sparse. Then c⌧/s = ��1 ((1 + ⌫(⌧))/2). Recall
K⌧/t = ��1 (1� n⌫(⌧)/2p). Dividing the first equa-
tion by the second and using the definition of K⌧ gives:

t

s
=

⌧

n⌫(⌧)
��1

�
1
2 (1 + ⌫(⌧))

�

��1
⇣
1� n

p
⌫(⌧)

2

⌘ .

Now write v2 = s2E
⇣
[prox c⌧

s
(⇢)](Z)� Z

⌘2
. Defining

the function h(z) = E ([proxz(⇢)](Z)� Z)2 we have
the equation:

v2

s2
= h

�
��1 ((1 + ⌫(⌧))/2)

�
.
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Figure 3: LASSO. Prediction vs realized values of k�̂�
�0k22 for 500 simulations. For each run �0 ⇠ Z/
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p

where Z is a vector of i.i.d. N (0, 1) random variables.

Since ⌘ = 0 we have (t/v)2 = 1/(n⌫(⌧)2); on the other
hand, (t/v)2 = (t/s)2 (s/v)2. We showed both ratios
on the right hand side depend on ⌫(⌧) only. This gives
an equation that depends solely on ⌫(⌧). Solve numer-
ically to find the root ⌫⇤(⌧). Noting that the identity
s2 � �2

✏ = pt2g
�
��1 (1� n⌫(⌧)/2p)

�
derived in the

LASSO case holds in this situation as well, it follows
that we can obtain s by solving:

1� �2
✏

s2
=

p

n

2

4 ⌧p
n⌫⇤(⌧)

��1
�

1
2 (1 + ⌫⇤(⌧))

�

��1
⇣
1� n

p
⌫⇤(⌧)

2

⌘

3

5
2

⇥g

✓
��1

✓
1� n⌫⇤(⌧)

2p

◆◆
.

Upon solving for s we obtain: Ek�̂ � �0k22 = s2 � �2
✏ .

Simulation results (omitted) confirm the accuracy of
our predictions.

3.2.3 LASSO with elliptical predictors

As our system indicates, the theoretical predictions we
are making are sensitive to our implicit assumptions
about the underlying geometry of the dataset. In par-
ticular, it is clear that doing computations in the Gaus-
sian predictor case is not enough: these results will not
generalize to datasets with a more complicated geome-
try, though they might generalize to distributions that
share the concentration properties of the Gaussian dis-
tribution. These distributions may be in appearance
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Figure 4: Impact of geometry on Lasso predic-
tions In these simulations, �i are i.i.d N (0, 1). n =
250, p = 125 and the errors were normal. There were
N = 100 simulations. �0 was drawn independently
for each simulations, each entry being i.i.d N (0, 1/p).
Each curve represent the average over our 100 sim-
ulations of kb�LASSO � �0k. Our simulations clearly
illustrate the impact of the geometry on the LASSO
results: the behavior of the solution is di↵erent accord-
ing to whether the predictors are elliptical or Gaussian.

di↵erent from the normal (for instance, we might be
able to replace the requirement that the entries of Xi

be i.i.d Gaussian by the requirement that they be i.i.d
entries with mean 0 and be bounded), but e↵ectively
share a common geometry for the dataset (in the case
of i.i.d bounded entries we can see it by applying Ta-
lagrand’s concentration inequality (see Ledoux (2001),
Corollary 4.10).

So we investigate the LASSO situation when the pre-
dictors are elliptical. We assume (to make computa-
tions simpler) that �0 has i.i.d entries with �0(1) =
⌘p
pN (0, 1). The same caveats as the ones discussed

above in a similar situation apply for this model.
The computations in this case are more complicated
than in the Gaussian predictor case, but nonetheless
quite doable. Using the fact that proxc(| · |2/2)(x) =
x/(1 + c), the first equation of our system becomes
E
�
1/(1 + c⌧�

2
i )
�

= 1� ⌫(⌧). Hence, if c⌧ is given, we
can numerically solve for ⌫(⌧). (This also gives us the
value of K⌧ .) We also have r̃i,(i) � proxc⌧ �2

i
(r̃i,(i)) =

[c⌧�
2
i /(1 + c⌧�

2
i )]r̃i,(i) and therefore Zk = �0(k)/pp +

N (0,�2
Ellip) with �2

Ellip = kb���0k2
n⌫2(⌧) E

⇣
c2

⌧ �4
i

(1+c⌧ �2
i )2

⌘
+

�2
✏

n⌫2(⌧)E
⇣

c2
⌧ �2

i

(1+c⌧ �2
i )2

⌘
. As was noted above, with our

assumptions on �0, if we call s2
1 = ⌘2

p +�2
Ellip, we have

the approximation

s1 ' K⌧/��1(1� n⌫(⌧)/2p) .

Once again, if c⌧ is given (and hence ⌫(⌧) is known),
we can extract s1 from the above equation - since we
already know K⌧ .

Working with the equations defining the b�k’s we also
arrive at

kb� � �0k2 ' ps2
1G(K⌧/s1)� 2⌘2 n

p
⌫(⌧) + ⌘2 ,

where G(T ) = E
�
(|Z|� T )2+

�
, where Z is N (0, 1).

After we remark that EZ2
k = s2

1 (where this expecta-
tion is unconditional on �0(k), we can relate s2

1 and
kb� � �0k2. Working on this relation and injecting
s1 ' K⌧/��1(1� n⌫(⌧)/2p) in it, we get

E
✓

�4
i

(1 + c⌧�2
i )2

◆
kb� � �0k2 '

2

64
⌧2

n
h
��1(1� n⌫(⌧)

2p )
i2 �

⌧2⌘2

npK2
⌧

� �2
✏E
✓

�2
i

(1 + c⌧�2
i )2

◆
3

75

We can now replace kb� � �0k2 and s1 in the previous
equation by their value in terms of ⌫(⌧) which we have
found earlier. This gives us a single equation in terms
of ⌫(⌧) which we can solve numerically and propagate
the results to find kb� � �0k2. For space reasons, these
results will be presented elsewhere.

3.3 Results

Main results. In the special case that the predic-
tors are Gaussian and that the loss function, or the
penalty function, is either the `2 norm or the `1 norm,
simulation results strongly suggest that the behavior
of k�̂ � �0k22 is governed by our functional system. At
the heart of this system is the behavior of the prox
transformation of convex functions. Both x2/2 and
|x| have simple prox transformations which make the
functional system more tractable. Since the `2 and
`1 norms are popular amongst statisticians and data
practitioners, our findings in these examples may be
of significant interest.

`2 penalties. The especially simple form of the prox
of x2/2 allows us to simplify the original functional sys-
tem of three equations in three unknown to a system
of two equations in two unknowns. Simulations vali-
dated the predictions of the functional system in the
case of �0 di↵use on the sphere, a situation in which
it is known that `2 penalization performs well.



Manuscript under review by AISTATS 2012

1. Ridge. Putting ⇢(x) = x2/2 for the loss function
further simplifies the functional system. We ob-
tained an analytic expression for k�̂ � �k22. The
behavior of k�̂ � �0k22 is the same for all error
distributions with equal variance.

2. `2-penalized median regression. It is possible
to numerically solve for k�̂ � �0k22.

`1 penalties. This case is of considerable interest due
to the increasing popularity of `1 penalization meth-
ods. The unknown constant ⌫(⌧) in our functional
system becomes interpretable as the number of �̂j ’s
not equal to zero divided by n. However the equa-
tions are di�cult to solve for general �0. We assumed
�0(j) ⇠ ⌘Z/

p
p for each j, which leads to di↵use �0’s,

a scenario in which `1 penalization fares poorly. How-
ever, simulations validated the predictions of the func-
tional system even in these cases.

1. LASSO:It is possible to solve for k�̂��k22 numer-
ically. Our heuristic suggest that the behavior of
this quantity is unchanged for error distributions
with equal variance, a somewhat surprising result
confirmed in simulations.

2. `1-regularized median regression: The func-
tional system is very complicated for this method.
It is possible to numerically solve the system in
the fully sparse case, i.e. �0 = 0. Simulation re-
sults, not presented, confirmed the predictions of
the functional system in this case.

Implications. Our investigation showed that robust
regression estimates behave very di↵erently in high di-
mension than in low dimensions. To fix ideas, suppose
the errors have a double exponential distribution. It
is well known that median regression is more e�cient
than least squares in low dimensions (i.e. p/n ! 0).
But this is not true for penalized robust regression es-
timates in high dimensions. Figure (5) shows Ridge
Regression performing uniformly better across ⌧ than
`2-regularized median regression when p/n = 2, even
though the errors are double exponential. Our pro-
posed functional system has the potential to explain
these di↵erences.

4 Conclusion

Our analysis sheds light on the di�cult problem of
understanding the behavior of robust regression es-
timators in high-dimension. Our work makes clear
that the geometry of the dataset drives the results.
We also linked our M-estimation problem with various
branches of optimization theory and probability.
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Figure 5: Ridge vs. L2-Regularized Median Regres-
sion with Double Exponential errors. Ridge outper-
forms the regularized median method even though the
errors have heavier tails than a Gaussian. Based on
100 simulations and a grid of 25 values of ⌧/n. �0

drawn uniformly from the sphere.

We have shown that our heuristics (which are
grounded in rigorous theory) are well verified in sim-
ulations. We should note that we have adapted them
to handle heteroskedastic errors, weighted robust re-
gression and many such variants.

The simulations also show that relying on low-
dimensional intuition to decide which method to apply
to high-dimensional data can lead to erroneous con-
clusions. Strikingly, relying on `1 loss when the er-
rors are double exponential (the correct thing to do
in low-dimension) leads to worst performance in high-
dimension than using `2 loss.

Acknowledgements

We thank funding agencies and a private foundation
for their support.

References

Donoho, D., Maleki, A., and Montanari, A.
(2009). Message-passing algorithms for compressed
sensing. PNAS 106, 18914–18919.

Huber, P. J. (1973). Robust regression: asymptotics,
conjectures and Monte Carlo. Ann. Statist. 1, 799–
821.

Ledoux, M. (2001). The concentration of measure



phenomenon, volume 89 of Mathematical Surveys
and Monographs. American Mathematical Society,
Providence, RI.
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(1997). Practical aspects of the Moreau-
Yosida regularization: theoretical prelimi-
naries. SIAM J. Optim. 7, 367–385. URL
http://dx.doi.org/10.1137/S1052623494267127.

Moreau, J.-J. (1965). Proximité et dualité dans un
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Appendix

In this appendix, we explain how to derive the system
of equations we obtained for characterizing kb� � �0k.
Our derivation is heuristic, so we make assumptions as
needed as we go along.

Recall that yi = X 0
i�0 + ✏i.

We call
b� = b� � �0 ,

and, for a scalar c,

gc(x) = x + c (x) .

In this derivation, we are assuming that �0 has all its
entries close to 0.

The gradient definition of b� is

nX

i=1

�Xi (✏i �X 0
i
b�) + ⌧rPb� = 0 . (1)

Throughout, we assume that Xi are elliptical, i.e in
matrix form

X = D�X .

X is a matrix whose entries are i.i.d N (0, 1). D� is a
diagonal matrix independent of X .

When we leave out one observation, we have
X

j 6=i

�Xj (✏j �X 0
j
b�(i)) + ⌧rPb�(i)

= 0 .

Call Rj = ✏j �X 0
j
b� and r̃j,(i) = ✏j �X 0

j
b�(i).

Take the di↵erence with above, Taylor expand around
r̃j,(i) (j 6= i) and get

�Xi (Ri) +
X

j 6=i

Xj 
0(r̃j,(i))(r̃j,(i) �Rj)

+⌧H(b� � b�(i)) ' 0 .

Here H is the Hessian of P - it is computed at b�.
Of course, for the purpose of this derivation, we are
expecting thatrPb��rPb�(i)

' Hb�(i)
(b��b�(i)) ' H(b��

b�(i)). (For many losses this will be the case, for others
it will be harder to see.)

Now, since Rj � r̃j,(i) = X 0
j(b�(i) � b�), we have

�Xi (Ri)+(
X

j 6=i

 0(r̃j,(i))XjX
0
j + ⌧Hb�)(b�� b�(i)) = 0 .

So, calling Si =
P

j 6=i  
0(r̃j,(i))XjX

0
j , we have

b� � b�(i) ' (Si + ⌧H)�1Xi (Ri) .
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Multiply on the left by X 0
i and we get, if �i is the (i, i)

entry of D�,

r̃i,(i) �Ri ' �2
i trace

�
(Si + ⌧H)�1

�
 (Ri) ,

by appealing to the well known fact that if A is ma-
trix that is independent of Xi and whose eigenvalues
are well-behaved, we have X 0

iAXi ' trace (A) (see for
instance Ledoux (2001)). We are also implicitly using
the fact that H is diagonal and H ' Hb�(i)

, so we can
replace H by another matrix independent of Xi.

Calling c⌧ = trace
�
(Si + ⌧H)�1

�
, we see that

(Ri + �2
i c⌧ (Ri)) ' r̃i,(i) .

Our experience in random matrix theory suggests that
c⌧ is asymptotically deterministic. (Rigorous argu-
ments can be made but it is not the point of this con-
ference paper.)

Here, we are going to assume that the penalty acts
coordinate wise. We call Xi =

⇥
[Vi//Xi(p)

⇤
, where Vi

is p � 1 dimensional. We call b� =

"
b�Sp

b�p

#
. We call b�

the estimator we get by using only Vi’s as predictors
(so we drop the last predictor). And we call �0 the
restriction of �0 to its first p� 1 coordinates.

Using these notations, we have, if P (2) denotes the
restriction of P to its first p� 1 coordinates,

X
�Xi (✏i � V 0

i
b�Sp �Xi(p)b�p) + ⌧rPb� = 0 ,

and
X

�Vj (✏i � V 0
i (b� � �0)) + ⌧rP

(2)
b� = 0 .

In the second equation we are working with “data”
yi = ✏i + V 0

i �0,Sp . We call �0 = �0,Sp and b⇣ = b� � �0.

Because we assume that �0(p) is small, we expect
ri,[p] = ✏i � V 0

i
b⇣ to be close to Ri = ✏i �X 0

i
b�.

Now since we are assuming that on its first p� 1 coor-
dinates, P acts like P (2), the functional form of rP is
the same as that of rP2. We now expand the p-th co-
ordinate of the first equation and take di↵erence from
the others.

We get, for the last coordinate: (ep is the p-th canon-
ical basis vector)

X
�Xi(p)

⇣
 (ri,[p]) +  0(ri,[p])[�b�pXi(p)

+V 0
i (b⇣ � b�Sp)]

⌘
+ ⌧rPb�ep = 0

For the others, we get (making approximations on the
value of the gradients and the fact that we can take

the Hessian to approximate)
X

i

Vi( (ri,[p])�  (Ri)) + ⌧Hb�(b�Sp � b�) ' 0 .

In other words,
X

i

 0(Ri)Vi[V 0
i (b�Sp�b⇣)+b�pXi(p)]+⌧Hb�(b�Sp�b⇣) ' 0 .

Hence, calling Sp =
P

i  
0(Ri)ViV

0
i , up =P

 0(Ri)ViXi(p),

(Sp + ⌧Hb�)(b�Sp � b⇣) + up
b�p ' 0 .

The equation for the first line gave

�
X

Xi(p) (ri,[p]) + b�p
X

Xi(p) 0(ri,[p])

�u0p(b⇣ � b�Sp) + ⌧rPb�ep ' 0 .

So we conclude that

�
X

Xi(p) (ri,[p]) + b�p
hX

Xi(p) 0(ri,[p])

�u0p(Sp + ⌧Hb�)�1up

⇤
+ ⌧rPb�ep ' 0 .

In other words,

b�p '
P

Xi(p) (ri,[p])� ⌧rPb�epP
Xi(p) 0(ri,[p])� u0p(Sp + ⌧Hb�)�1up

.

Note that we can write up = V 0DX(p) , where D is a
diagonal matrix containing  0(ri,[p]), V is a n⇥ (p�1)
matrix with the Vi’s as its rows and X(p) is an n⇥ 1
vector. Note that we can write V = D�V, where V is
a n⇥ (p� 1) dimensional matrix with i.i.d entries.

The denominator has a simple structure: it is of the
form

X(p)0D1/2MD1/2X(p) . (2)

with

M =
h
Id�D1/2V (V 0DV + ⌧H)�1V 0D1/2

i
.

Since X(p) = D�X (p), we can also rewrite this as,
using the fact that D� is diagonal,

X (p)0D�D1/2MD1/2D�X (p) .

Because X (p) is an n dimensional vector with i.i.d
Gaussian entries, we have, using the fact that M , D�

and D are independent of X ,

X (p)0D�D1/2MD1/2D�X (p) '

trace
⇣
D�D1/2MD1/2D�

⌘
=

nX

i=1

�2
i 

0(r̃i,[p])Mi,i .



It is easy to verify that the diagonal entries of M are
of the form (recall that S = V 0DV )

Mi,i = 1� diiV
0
i (S + ⌧H)�1Vi

=
1

1 + diiV 0
i (Si + ⌧H)�1Vi

,

and therefore,

X

i

1
1 + diiV 0

i (Si + ⌧H)�1Vi
=

n�
nX

i=1

diiV
0
i (S + ⌧H)�1Vi =

n� trace
�
S(S + ⌧H)�1

�
=

n� p + trace
�
⌧H(S + ⌧H)�1

�
.

From the previous expression we also see that

X

i

diiV
0
i (Si + ⌧H)�1Vi

1 + diiV 0
i (Si + ⌧H)�1Vi

= p� ⌧trace
�
H(S + ⌧H)�1

�
.

Using the usual concentration of quadratic forms trick,
we get, assuming that Hb� and D are su�ciently inde-
pendent of Vi,

X

i

diiV
0
i (Si + ⌧H)�1Vi

1 + diiV 0
i (Si + ⌧H)�1Vi

'

X

i

dii�
2
i trace

�
(S + ⌧H)�1

�

1 + diiV 0
i (Si + ⌧H)�1Vi

and hence, assuming c⌧ ' trace
�
(S + ⌧H)�1

�
,

c⌧

X

i

dii�
2
i

1 + diiV 0
i (Si + ⌧H)�1Vi

'

p� ⌧trace
�
H(S + ⌧H)�1

�
.

Recall that

X

i

dii�
2
i

1 + diiV 0
i (Si + ⌧H)�1Vi

=
X

i

dii�
2
i Mi,i

= trace
⇣
D�D1/2MD1/2D�

⌘
.

We have therefore established that

c⌧

hX
Xi(p) 0(ri,[p])� u0p(Sp + ⌧Hb�)�1up

i

' p� ⌧trace
�
H(S + ⌧H)�1

�

Let us call

⌫(⌧) =
p

n
� ⌧

n
trace

�
H(S + ⌧H)�1

�

We now have the approximation

⌫(⌧)
c⌧

b�p '
1
n

 
nX

i=1

Xi(p) (ri,[p])� ⌧rPb�ep

!
.

Hence,

⌫(⌧)
c⌧

b�p+
⌧

n
rPb�ep =

⌫(⌧)
c⌧

�0(p)+
1
n

nX

i=1

Xi(p) (ri,[p]) .

(3)
Relationship between ⌫(⌧ ) and c⌧ . The compu-
tations above essentially indicate that

⌫(⌧) ' 1� 1
n

nX

i=1

1
1 + �2

i 
0(ri,[p])c⌧

,

which we rephrase as (this is hard to find but fairly
easy to verify)

E
⇣
(g�1

c⌧ �2
i
)0(r̃i,(i))

⌘
' 1� ⌫(⌧) .

Another relationship can be derived between c⌧ and
⌫(⌧). Namely

1 ' trace
�
(⌧c⌧H + n⌫(⌧)Id)�1

�
.

We refer the reader to e.g ? (citation masked) for a
simple derivation (that includes more general cases).
In general this requires that H be independent of S
and be “well-behaved”. So 3 parameters have ap-
peared: kb� � �0k, ⌫(⌧) and c⌧ . At this point we have
2 equations relating these three parameters.
Using the structure of the penalty Suppose that
the penalty is of the form

P (�) =
pX

i=1

fi(�i) .

Then the Hessian is diagonal and the (sub-)gradient is
just

rP�ep = f 0p(�p) .

Hence, if we rewrite Equation (3) as

(Id +
⌧c⌧

⌫(⌧)n
@fp(x)
@x

)b�p

= �0(p) +
c⌧

⌫(⌧)
1
n

nX

i=1

Xi(p) (ri,[p]) ,

we get a prox function representation

b�p = prox ⌧c⌧
⌫(⌧)n

(fp)

"
�0(p) +

1
⌫(⌧)

1
n

nX

i=1

Xi(p)c⌧ (ri,[p])

#
.

We call

Zp = �0(p) +
1

⌫(⌧)
1
n

nX

i=1

Xi(p)c⌧ (ri,[p]) .
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Naturally, the random variable inside the prox is

Zp
L= N

 
�0(p),

1
n⌫(⌧)2

E

 
(g�1

c⌧ �2
i
(r̃i,(i))� r̃i,(i))2

�2
i

!!
.

Further simplification of the relationship be-
tween ⌫(⌧ ) and c⌧

Note also that when the Hessian is diagonal, the sec-
ond equation, i.e

1 ' trace (⌧c⌧ + n⌫(⌧)Id)�1

can again be interpreted as a prox relation: the equa-
tion reads (in the twice-di↵erentiable case)

n⌫(⌧) =
pX

i=1

1
1 + ⌧c⌧

⌫(⌧)nf 00k (b�k)
.

Calling

Zk =

"
�0(k) +

1
⌫(⌧)

1
n

nX

i=1

Xi(p)c⌧ (ri,[p])

#
,

we have
b�k = (Id +

⌧c⌧

⌫(⌧)n
f 0k)�1Zk ,

and therefore

1
1 + ⌧c⌧

⌫(⌧)nf 00k (b�k)
= [prox ⌧c⌧

⌫(⌧)n
(fk)]0(Zk) .

So the second equation can be rewritten as

n⌫(⌧) =
pX

k=1

[prox ⌧c⌧
⌫(⌧)n

(fk)]0(Zk) .

These are the heuristics we used to derive our system
of equations. (Work is under way to make them rigor-
ous.)


