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Abstract

We consider the performance of the bootstrap in high-dimensions for the setting of linear
regression, where p < n but p/n is not close to zero. We consider ordinary least-squares as
well as robust regression methods and adopt a minimalist performance requirement: can the
bootstrap give us good confidence intervals for a single coordinate of �? (where � is the true
regression vector).

We show through a mix of numerical and theoretical work that the bootstrap is fraught
with problems. Both of the most commonly used methods of bootstrapping for regression –
residual bootstrap and pairs bootstrap – give very poor inference on � as the ratio p/n grows.
We find that the residuals bootstrap tend to give anti-conservative estimates (inflated Type I
error), while the pairs bootstrap gives very conservative estimates (severe loss of power) as
the ratio p/n grows. We also show that the jackknife resampling technique for estimating the
variance of �̂ severely overestimates the variance in high dimensions.

We contribute alternative bootstrap procedures based on our theoretical results that miti-
gate these problems. However, the corrections depend on assumptions regarding the under-
lying data-generation model, suggesting that in high-dimensions it may be difficult to have
universal, robust bootstrapping techniques.
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1 Introduction

The bootstrap (Efron, 1979) is a ubiquitous tool in applied statistics, allowing for inference

when very little is known about the statistical properties of the data. The bootstrap is a powerful

tool in applied settings because it does not make the strong assumptions common to classical

statistical theory regarding the distribution of the data. Instead, the bootstrap resamples the ob-

served data to create an estimate, ˆF , of the unknown distribution of the data, F , which then forms

the basis of further inference.

Since its introduction, a large amount of research has explored the theoretical properties of the

bootstrap, improvements for estimating F under different scenarios, and how to most effectively

estimate different quantities from ˆF , the estimate of F (see the pioneering Bickel and Freedman

(1981) for instance and many many more references in the book-length review of Davison and

Hinkley (1997), as well as van der Vaart (1998) for a short summary of the modern point of view

on these questions). Other resampling techniques exist of course, such as subsampling, m-out-of-

n bootstrap, and jackknifing, and have been studied and much discussed (see Efron (1982), Hall

(1992), Politis et al. (1999), Bickel et al. (1997), and Efron and Tibshirani (1993) for a practical

introduction).

An important limitation for the bootstrap is the quality of ˆF ; the standard bootstrap estimate of
ˆF based on the empirical distribution of the data may be a poor estimate when the data has a non-

trivial dependency structure, when the quantity being estimated, such as quantiles, is sensitive

to the discreteness of ˆF , or when the functionals of interest are not smooth (see e.g Bickel and

Freedman (1981) for a classic reference, as well as Beran and Srivastava (1985) or Eaton and

Tyler (1991) in the context of multivariate statistics).

An area that has received less attention is the performance of the bootstrap in high dimensions

and this is the focus of our work – in particular in the setting of standard linear models where

data y
i

are drawn from the linear model

8i, y
i

= �0X
i

+ ✏
i

, 1  i  n , where X
i

2 Rp .
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The focus of our work is on the bootstrap or resampling properties of the estimator defined as

b�
⇢

= argmin

b2Rp

nX

i=1

⇢(y
i

�X 0
i

b) .

We will consider the setting where the number of predictors, p is of the same order of mag-

nitude as the number of observations, n. Very interesting work exists already in the literature

about bootstrapping regression estimators when p is allowed to grow with n (Shorack (1982),

Wu (1986), Mammen (1989), Mammen (1992), Mammen (1993), Section 3.9 of Koenker (2005),

Parzen et al. (1994)). However, they are not high-dimensional in the modern sense of the word

because in the above cited works, the assumption of high-dimensionality requires p/n ! 0 even

though p is allowed to grow with n.

One early work considered least-squares regression in the setting where p/n !  2 (0, 1):

the paper Bickel and Freedman (1983). This paper showed convincingly that there was serious

problems with the bootstrap in that setting. One striking result indicates that even for “smart”

bootstraps, there is always one projection direction of b� where the bootstrap fails (see Theorem

3.1 in that paper).

In the current paper, we take a more minimalist point of view in terms of what we require

of the bootstrap. We do not require the bootstrap distribution of the estimate to converge con-

ditionally almost surely to the sampling distribution of the estimator. This latter requirement is

usually what is required to say that the bootstrap “works” (see van der Vaart (1998) for instance).

We simply ask whether we can build, using bootstrap or other resampling method, trustworthy

confidence intervals for one coordinate of our estimator, or equivalently for the projection of our

estimator on a pre-specified direction. In particular, some of the important and interesting prob-

lems pointed out in Bickel and Freedman (1983) disappear if we ask the types of questions we

are interested in here, because our requirements are less stringent. We think that our requirements

are the minimal ones a practitioner would require from the bootstrap or other resampling plans.

We consider the two standard methods for resampling to create a bootstrap distribution in

this setting. The first is pairs resampling, where bootstrap samples are drawn from the empirical

distribution of the pairs (y
i

, X
i

). The second resampling method is residual resampling, a semi-

parametric method where the bootstrapped data consists of y⇤
i

=

b�0X
i

+ ✏̂⇤
i

, where ✏̂⇤
i

is drawn

from the empirical distribution of the estimated residuals, e
i

. Both of these methods are extremely
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flexible for linear models regardless of the method of fitting � or the error distribution of the ✏
i

.

Contributions of the paper We show, via a mixture of simulation and theoretical study, that

the performance of either of these bootstrap procedures for inference becomes highly suspect

when the dimension of X
i

’s, given by p, grows with the sample size, n, in such a way that

p/n !  > 0. In particular, pairs resampling becomes highly conservative, to the point of

being non-informative, while residual resampling of the observed residuals becomes highly anti-

conservative, wrongly rejecting the null hypothesis at very high rates. This is in sharp contrast to

the setting where p is small relative to n, which is the context for many theoretical treatments of

the bootstrap (see references above).

We show that the error in inference based on residual bootstrap resampling is due to the fact

that the distribution of the residuals e
i

are a poor estimate of the distribution of ✏
i

; we further

illustrate that common methods of standardizing the e
i

do not resolve the problem. We propose

a different method of resampling, based on scaled leave-one-out predicted errors, that seems to

perform better in our simulations.

For pairs bootstrapping we show that the expected bootstrap variance of the estimator is, even

in simple cases, very different from the variance of the sampling distribution of the estimator.

This can be explained in part by the fact that the spectral properties of weighted and unweighted

high-dimensional sample covariance matrices are very different. We demonstrate that a different

resampling scheme can alleviate the problems to a certain extent, but we also highlight the prac-

tical limitations in such a strategy, since it relies heavily on having strong knowledge about the

data-generating model.

Finally, we briefly study an alternative resampling strategy, the jackknife, and also show that

it misbehaves, similarly over-estimating the variance even in simple situations.

These results have important practical implications. Robust methods for regression based

on alternative loss functions, such as L1 or Huber loss, usually rely on resampling methods for

inference. This is especially true in high-dimension where, until recently, there was essentially

no theory about these estimators (see El Karoui et al. (2011)). Yet our results show that even in

idealized settings, the bootstrap fails in high dimensions.
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Why use the framework of p/n !  2 (0,1)? Several reasons motivate our theoretical

study in this regime. From the standpoint of moderate-sized statistical analysis (i.e n and p of a

similar order of magnitude but not extremely large), it is not always obvious whether the classical

theoretical assumption that p/n ! 0 is justified, yet the assumption is known theoretically to

have huge impact on the behavior of estimators. We think that working in the high-dimensional

regime captures better the complexity encountered even in reasonably low-dimensional practice.

In fact, asymptotic predictions based on the high-dimensional assumption can work surprisingly

well in very low-dimension (see Johnstone (2001)). We also think that in these high-dimensional

settings – where much is still unknown theoretically – the bootstrap is a intuitive alternative.

Hence, it is natural to study how it performs in high-dimension in the simple problems we are

starting to understand theoretically.

We first give some basic notation and background regarding the bootstrap and estimation of

linear models in high dimensions.

1.1 Inference using the Bootstrap

We consider the setting y
i

= �0X
i

+ ✏
i

, where E(✏
i

) = 0 and var(✏
i

) = �2
✏

. � is estimated as

minimizing the average loss,

b�
⇢

= argmin

b2Rp

nX

i=1

⇢(y
i

�X 0
i

b), (1)

where ⇢ defines the loss function for a single observation. ⇢ is assumed to be convex in all the pa-

per. Robust regression often involves choosing the loss function ⇢ so as to be less sensitive to out-

liers or non-normal error distributions, as compared to ordinary least squares where ⇢(x) = x2.

Common choices are ⇢(x) = |x|, which defines L1 regression, a.k.a Least-Absolute-Deviation

(LAD), or Huber loss where ⇢(x) = x2 for |x| < k and ⇢(x) = |x| for values greater than k.

Bootstrap inference is particularly common in robust regression because asymptotic inference

for these losses (when available) often will require more assumptions about the data-generating

process than ordinary least squares – which may in turn defeat the desired goal of robustness.

Bootstrap methods are used in order to estimate the distribution of the estimate b�
⇢

under the

true distribution of the data, F . The bootstrap estimates this distribution with the distribution that
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would occur if the data was in fact drawn from an estimate ˆF of the data distribution. Following

standard convention, we designate this estimate b�⇤
⇢

to note that this is an estimate of � using loss

function ⇢ when the data distribution is known to be exactly equal to ˆF . Since ˆF is completely

specified, we can in principle exactly calculate the distribution of b�⇤
⇢

and use this distribution as

an approximation of the distribution of b�
⇢

under F . In practice calculation of the distribution of
b�⇤
⇢

under ˆF cannot be done explicitly. Instead we simulate B independent draws of size n from

the distribution ˆF and perform inference based on the distribution of b�⇤b
⇢

, b = 1, . . . , B.

In bootstrap inference for the linear model, there are two common methods for resampling,

which results in different estimates ˆF . In the first method, called the residual bootstrap, ˆF is

an estimate of the conditional distribution of y
i

given � and X
i

. In this case, the corresponding

resampling method is to resample ✏⇤
i

from an estimate of the distribution of ✏ and form data

y⇤
i

= X 0
i

b� + ✏⇤
i

. This method of bootstrapping assumes that the linear model is correct for the

mean of y; it is also assuming fixed X
i

design points by sampling conditional on the X
i

. In the

second method, ˆF is an estimate of the joint distribution of the vector (y
i

, X
i

) 2 Rp+1 given

by the empirical joint distribution of (y
i

, X
i

); the corresponding resampling method resamples

the pairs (y
i

, X
i

). This method makes no assumption about the mean structure of y and, by

resampling the X
i

, also does not condition on the values of X
i

. For this reason, pairs resampling

is often considered to be more robust than residuals resampling - see e.g Davison and Hinkley

(1997).

1.2 High-dimensional inference of linear models

Recent research shows that b�
⇢

has very different properties when p/n has a limit  that is

bounded away from zero than it does in the classical setting where p/n ! 0. A simple example

is that the vector b�
⇢

is no longer consistent in Euclidean norm. This has important impact on

theoretical analysis of linear models, since traditional theoretical results come from perturbation

analyses that assume that b�
⇢

is close to � in Euclidean norm for large enough n – an assumption

that does not hold true for high dimensional problems. We should be clear, however, that pro-

jections on fixed non-random directions, i.e v0b�
⇢

are still
p
n consistent. This includes estimates

of each coordinate entry of b�
⇢

, meaning that in practice the estimate of b�
⇢

is still a reasonable

quantity of interest (moreover, the estimator is generally consistent in k·k2+✏

for ✏ > 0).
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Another important impact of  > 0 which is of particular interest for robust regression is that

the optimal loss function ⇢ for a given error distribution is no longer given by the log-likelihood

of the error distribution (Bean et al., 2013). For example, when the errors are double-exponential

the optimal loss function in high dimensions is not the L1 penalty, and in fact ordinary least

squares has better performance than L1, provided  is large enough (Bean et al. (2013) gives

an expression for the optimal loss-function under assumptions about the behavior of the design

matrix).

The theoretical consistency of bootstrap estimates has been extensively studied, as mentioned

above. With a few exceptions, this work has been in the classical, low-dimensional setting where

either p is held fixed or p grows slowly relative to n ( = 0). For instance, in Mammen (1993), it is

shown that under mild technical conditions and assuming that p1+�/n ! 0, � > 0, the bootstrap

distribution of linear contrasts v0(b�⇤ � b�) is in fact very close to the sampling distribution of

v0(b� � �) with high-probability, when using least-squares. Other results such as Shorack (1982)

and Mammen (1989), also allow for increasing dimensions for e.g linear contrasts in robust

regression, by making assumptions on the diagonal entries of the hat matrix – which in our

context would be true only if p/n ! 0 – hence those interesting results do not apply to the

present study. We also note that Hall (1992) contains on p. 167 cautionary notes about using the

bootstrap in high-dimension.

Directly relevant to the problem we study is Bickel and Freedman (1983). In that paper,

the authors consider the least-squares problem, bootstrapping scaled residuals. They show (see

Theorem 3.1 p.39 in Bickel and Freedman (1983)) that when p/n !  2 (0, 1), there exists

a direction �, such that �0b�⇤ does not have the correct distribution, i.e its distribution is not

conditionally in probability close to the sampling distribution of �0b�. Furthermore, they show

that when the errors in the model are Gaussian, under the assumption that the diagonal entries

of the hat matrix are not all close to a constant, the empirical distribution of the residuals is a

scaled-mixture of Gaussian, which is not close to the original error distribution. As we discuss

below, we have less stringent requirements for the bootstrap to work and in the case of the design

matrix X having i.i.d Gaussian entries, the diagonal entries of the hat matrix are actually close

to a constant. Hence, our work complements the work of Bickel and Freedman (1983) and is not

redundant with it.
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Comment An important consideration in interpreting theoretical work on linear models in high

dimensions is the role of the design matrix X . Unlike much classical theory, the assumptions in

most theoretical results in the high dimensional setting are not stated as conditions of a specific

design matrix X , but instead are assumptions that X is generated according to certain classes

of distributions. Theoretical work in the literature usually allows for a fairly general class of

distributions for the individual elements of X
i

and handle covariance between the predictor vari-

ables. However, the X
i

are generally considered i.i.d., which limits the ability of any X
i

to be

too influential in the fit of the model. El Karoui (2009) shows that many theoretical results in

random matrix theory can be quite fragile to violations of these geometric properties; for exam-

ple, simply scaling each X
i

by a different value �
i

(hence getting an elliptical distribution) can

alter the asymptotic properties of estimators (see also in different statistical contexts Diaconis

and Freedman (1984); Hall et al. (2005)).

1.3 Results of Paper

The rest of the paper is laid out as follows. In Section 2 we demonstrate that in high di-

mensions bootstrapping the residuals – or even appropriately standardized residuals – results in

extremely poor inference on � with error rates much higher than the reported Type I error. In

Section 2.2 we give theoretical results that help explain this behavior and in 2.3 we introduce al-

ternative bootstrap methods based on leave-one-out predicted errors that appear to be more robust

in high dimensions. In Section 3 we examine bootstrapping pairs and show that bootstrapping

the pairs has very poor performance as well but in the opposite direction. We prove in the case

of L2 loss, that the variance of the bootstrapped b�⇤ is greater than that of b�, leading to the overly

conservative performance we see in simulations. We propose some remedies for these problems

based on our theoretical understanding and discuss the limits of our solutions. In Section 4, we

discuss an alternative resampling technique, the jackknife estimate of variance, and we show that

it has similarly poor behavior in high dimensions. In the case of L2 loss with Gaussian design

matrices, we further prove that the jackknife estimator over estimates the variance by a factor of

n/(n� p); we briefly mention other corrections for other losses.

We focus throughout the exposition on inference of �1 (the first element of �) as exemplary of

a contrast of interest, rather than the entire vector of � (which in general in high dimensions does
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not have a consistent estimator in L2). Another reason to focus on this quantity is because we feel

that the minimal requirement we can ask of an inferential method is to perform correctly on one

coordinate of the parameter of interest or on any pre-specified contrast vector. This is a much less

stringent requirement than doing well on complicated functionals of the whole parameter vector.

We rely on simulation results to demonstrate the practical impact of the failure of the boot-

strap. The settings for our simulations and corresponding theoretical analyses are idealized,

without many of the common problems of heteroskedasticity, dependency, outliers and so forth

that are known to be a problem for robust bootstrapping. This is intentional, since even these

idealized settings are sufficient to demonstrate that the standard bootstrap methods have poor

performance. For brevity, we give only brief descriptions of the simulations in what follows;

detailed descriptions can be found in Supplementary Text, Section S1.

Similarly, we focus on the basic implementations of the bootstrap for linear models. While

there are many alternatives proposed – often for specific loss functions or for specific settings –

the standard methods are most commonly used in practice. Furthermore, to our knowledge none

of the alternatives specifically address the underlying theoretical problems that appear in high

dimensions and therefore are likely to suffer from the same fate.

Notations and default conventions When referring to the Huber loss in a numerical context,

we refer (unless otherwise noted) to the default implementation in the rlm package in R, where

the transition from quadratic to linear behavior is at x = 1.345. We call X the design matrix

and {X
i

}n
i=1 its rows. We have X

i

2 Rp. � denotes the true regression vector, i.e the population

parameter. b�
⇢

refers to estimate of � using loss ⇢; from this point on, however, we will often

drop the ⇢, unless for clarity we need to emphasize that the estimate could be from any loss ⇢.

We denote generically by  = lim

n!1 p/n. We restrict ourselves to  2 (0, 1). The standard

notation b�(i) refers to the leave-one-out estimate of b� where the i-th pair (y
i

, X
i

) is excluded from

the regression. Throughout the paper, we assume that the linear model holds, i.e y
i

= X 0
i

� + ✏
i

for some fixed � 2 Rp and that ✏
i

’s are i.i.d with mean 0 and var (✏
i

) = �2
✏

. e
i

denotes the

i-th residual, i.e e
i

= y
i

� X 0
i

b�. ẽ
i(i) , y

i

� X 0
i

b�(i) is the i-th predicted error (based on the

leave-one-out estimate of b�). We also use the notation ẽ
j(i) , y

j

� X 0
j

b�(i). The hat matrix

is of course H = X(X 0X)

�1X 0. o

P

denotes a “little-oh” in probability, a standard notation

(see van der Vaart (1998)). When we say that we work with a Gaussian design, we mean that
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X
i

iidv N (0, Id
p

). Throughout the paper, the loss function ⇢ is assumed to be convex, R 7! R+.

We use the standard notation  = ⇢0. We finally assume that ⇢ is such that there is a unique

solution to the robust regression problem - an assumption that applies to all classical losses in the

context of our paper.

2 Bootstrapping the error distribution

We first focus on the method of bootstrap resampling where ˆF is the conditional distribution

y|b�, X. In this case the distribution of b�⇤ under ˆF is formed by repeated resampling of ✏⇤
i

from

an estimate of the distribution of ✏. Then new data y⇤
i

are formed as y⇤
i

= X 0
i

b� + ✏⇤
i

and the

model is fitted to this new data to get b�⇤. Generally the estimate of the error distribution is taken

to be empirical distribution of the observed residuals, so that the ✏⇤
i

are found by sampling with

replacement from the e
i

.

Yet, even a cursory evaluation of e
i

in the simple case of least-squares regression (L2 loss)

reveals that the empirical distribution of the e
i

may be a poor approximation to the error distribu-

tion of ✏
i

; in particular, it is well known that e
i

has variance equal to �2
✏

(1 � h
i

) where h
i

is the

ith diagonal element of the hat matrix. This problem becomes particularly pronounced in high

dimensions. For instance, if X
i

⇠ N (0,⌃), h
i

= p/n + o

P

(1) so that e
i

has variance approx-

imately �2
✏

(1 � p/n), i.e. generally much smaller than the true variance of ✏ for lim p/n > 0.

This fact is also true in much greater generality for the distribution of the design matrix X (see

e.g Wachter (1978), Haff (1979), Silverstein (1995), Pajor and Pastur (2009), El Karoui (2010),

El Karoui and Koesters (2011), where the main results of some of these papers require minor

adjustments to get this result).

In Figure 1, we plot the error rate of 95% bootstrap confidence intervals based on resampling

from the residuals for different loss functions, based on a simulation when the entries of X are

i.i.d N (0, 1) and ✏ ⇠ N(0, 1). Even in this idealized situation, as the ratio of p/n increases

the error rate of the confidence intervals in least squares regression increases well beyond the

expected 5%: error rates of 10-15% for p/n = 0.3 and approximately 20% for p/n = 0.5 (Table

S1). We see similar error rates for other robust methods, such as L1 and Huber loss, and also

for different error distributions and distributions of X (Supplementary Figures S1 and S2). We
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Figure 1: Performance of 95% confidence intervals of �1 : Here we show the coverage
error rates for 95% confidence intervals for n = 500 based on applying common resampling-
based methods to simulated data: pairs bootstrap (red), residual bootstrap (blue), and jackknife
estimates of variance (yellow). These bootstrap methods are applied with three different loss
functions shown in the three plots above: (a) L1, (b) Huber, and (c) L2. For L2 and Huber loss,
we also show the performance of methods for standardizing the residuals before bootstrapping
described in the text (blue, dashed line). If accurate, all of these methods should have an error
rate of 0.05 (shown as a horizontal black line). The error rates are based on 1,000 simulations,
see the description in Supplementary Text, Section S1 for more details; exact values are given in
Table S1. Error rates above 5% correspond to anti-conservative methods. Error rates below 5%
correspond to conservative methods.

explain some of the reasons for these problems in Subsection 2.2 below.

2.1 Bootstrapping from Corrected Residuals

While resampling directly from the uncorrected residuals is widespread and often given as a

standard bootstrap procedure (e.g. Koenker (2005); Chernick (1999)), the discrepancy between

the distribution of ✏
i

and e
i

has led more refined recommendation in the case of L2 loss: form

corrected residuals r
i

= e
i

/
p
1� h

i

and sample the ✏⇤
i

from the empirical distribution of the

r
i

� r̄ (see e.g Davison and Hinkley (1997)).

This correction is known to exactly align the variance of r
i

with that of ✏
i

regardless of the

design values X
i

or the true error distribution, using simply the fact that the hat matrix is a rank
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min(n, p) orthogonal projection matrix. We see that for L2 loss it corrects the error in bootstrap

inference in our simulations (Figure 1). This is not so surprising, given that with L2 loss, the

error distribution impacts the estimator only through �2
✏

(in the case of homoskedastic errors; we

note that the standard representation of b� � � in the case of least-squares in connection with the

Lindeberg-Feller Theorem (Stroock, 1993) show that v0(b� � �) is asymptotically normal in the

situations we consider in this paper and many other).

However, this adjustment of the residuals is a correction specific to using a L2 loss function.

Similar corrections for robust estimation procedures using a loss function ⇢ are given by McKean

et al. (1993) with standardized residuals r
i

given by,

r
i

=

e
ip

1� dh
i

, where d =

2

P
e0
j

 (e0
j

)

P
 (e0

j

)

�
P
 (e0

j

)

2

(

P
 (e0

j

))

2
, (2)

where e0
j

= e
j

/s, s is a estimate of �, and  is the derivative of ⇢, assuming  is a bounded and

odd function (see Davison and Hinkley (1997) for a complete description of its implementation

for the bootstrap and McKean et al. (1993) for a full description of regularity conditions)

Unlike the correction in L2 loss, however, the above correction for the residuals is an ap-

proximate correction and the approximation depends on assumptions that that do not hold true in

higher dimensions. The error rate of confidence intervals in our simulations based on this correc-

tion show no improvement in high dimensions over that of simple bootstrapping of the residuals,

unlike that of L2 (Figure 1). This could be explained by the fact that standard perturbation ana-

lytic methods used for the analysis of M-estimators in low-dimension fail in high-dimension (see

El Karoui et al. (2013); El Karoui (2013) and compare to e.g van der Vaart (1998)).

2.2 Understanding the behavior of residual bootstrap

We can understand the behavior of residual bootstrapping in high dimensions better by mak-

ing use of previous work on the behavior of robust estimation procedures in high dimensions

(El Karoui et al., 2013; El Karoui, 2013).

At a high-level, this misbehavior of the residual bootstrap can be explained by the fact that

in high-dimension, the residuals tend to have a very different distribution from that of the true

errors. This is in general true both in terms of simple properties such as variance and in terms of
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more general aspects, such as the whole marginal distribution. Let us now be more precise.

Let b�(i) be the estimate of � based on fitting the linear model of equation (1) without us-

ing observation i, and ẽ
j(i) be the error of observation j from this model (the leave-one-out or

predicted error), i.e ẽ
j(i) = y

j

�X 0
j

b�(i)
In general in high-dimension, the distribution of ẽ

i(i) is going to be more closely related to

the distribution of the ✏
i

than that of e
i

. In the above cited work, the authors gave asymptotic

approximations to the distribution of ẽ
i(i) and a general asymptotic relationship between e

i

and

ẽ
i(i) for any sufficiently smooth loss function ⇢ and any size dimension where p/n !  < 1.

There, X
i

is assumed for simplicity of exposition to have an elliptical distribution, X
i

= �
i

�
i

,

where �
i

⇠ N(0,⌃), though similar results apply when �
i

= ⌃

1/2⇠
i

, with ⇠
i

having i.i.d non-

Gaussian entries, satisfying a few technical requirements.

For simplicity in restating their results, we will assume ⌃ = Id

p

, but equivalent statements

can be made for arbitrary ⌃. With this assumption, the relationship between e
i

and the true error

✏
i

can be summarized as,

ẽ
i(i) = ✏

i

+ |�
i

|||b�
⇢(i) � �||2Zi

+ o

P

(u
n

) (3)

e
i

+ c
i

�2
i

 (e
i

) = ẽ
i(i) + o

P

(u
n

) (4)

where Z
i

is a random variable distributed N(0, 1) and independent of ✏
i

. u
n

is a sequence of

numbers tending to 0 - see El Karoui (2013) for details. The scalar c
i

is given as 1
n

trace
�
S�1
i

�
,

where S
i

=

1
n

P
j 6=i

 0
(ẽ

j(i))Xj

X 0
j

. For p, n large the c
i

’s are approximately equal; furthermore

c
i

can be approximated by X 0
i

S�1
i

X
i

/n. Note that when ⇢ is either non-differentiable at all points

(L1) or not twice differentiable (Huber), arguments can be made that make these expressions valid

(see El Karoui et al. (2013)), using for instance the notion of sub-differential for  (Hiriart-Urruty

and Lemaréchal, 2001).

These equations give theoretical underpinnings as to why bootstrap resampling of the residu-

als can perform so badly: the distribution of the e
i

is far removed from that of the ✏
i

. The residuals

e
i

have a non-linear relationship with the predicted errors, which themselves are not distributed

the same as ✏ but are a convolution of the true error distribution and an independent scale mixture

of Normals.

The importance of these discrepancies for bootstrapping is not equivalent for all dimensions,

13



error distributions, or loss functions. It depends on the constant c
i

and the risk, ||b�(i) � �||2, both

of which are highly dependent on the dimensions of the problem, as well as the distribution of

the errors and choice of loss function. We now discuss some of these issues.

Least Squares regression In the case of least squares regression, the relationships given in

equation (3) are exact, i.e u
n

= 0. Further,  (x) = x, and c
i

= h
i

/(1 � h
i

), giving the well

known linear relationship that e
i

= (1 � h
i

)ẽ
i(i). This linear relationship is exact regardless of

dimension, though the dimensionality aspects are captured by h
i

. This expression can be used

to show that asymptotically E (

P
n

i=1 e
2
i

) = �2
✏

(n � p), if ✏
i

’s have the same variance. Hence,

sampling at random from the residuals results in a distribution that underestimates the variance

of the errors by a factor 1 � p/n. The corresponding bootstrap confidence intervals are then

naturally too small, and hence the error rate increases far from the nominal 5% - as we observed

in Figure 1c. On the other hand, standardizing the residuals yield a distribution with variance

�2
✏

, i.e the correct variance, regardless of dimensionality (though of course the standardization

factor is itself dimension-dependent). Because the performance of the least-squares estimator

depends on the error distribution only through its variance, it is clear that this approach should

fix the dimensionality issues for the problems we are considering. (For finer problems with the

standardized-residual bootstrap, associated with more demanding inferential requirements for

high-dimensional least-squares, we refer to (Bickel and Freedman, 1983))

The case of p/n ! 0: In this setting, c
i

! 0 and therefore the residuals e
i

are approximately

equal in distribution to the predicted errors (ẽ
i(i)). Similarly, b�

⇢

is L2 consistent when p/n ! 0,

and so ||b�
⇢(i)��||22 ! 0. This assumption is key to many theoretical analyses of robust regression,

and underlies the derivation of corrected residuals r
i

of McKean et al. (1993) given in equation

(2) above.

More general robust regression The situation is much more complicated for general robust

regression estimators, for two reasons. First, as we have discussed above, the relationship be-

tween the residuals and the errors is very non-linear. Second, the systems described in El Karoui

et al. (2013) show that the characteristics of the error distribution that impact kb�
⇢

� �k2 go well

beyond �2
✏

. In particular, two error distributions with the same variance might yield b�
⇢

with
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quite different risks. Hence, simply rescaling the residuals should not in general result in a error

distribution that will give b�⇤
⇢

with similar characteristics to that of b�
⇢

.

2.3 Approximating ✏i from scaled predicted errors

The relationship in Equation (3) suggests that an alternative for calculating the error distribu-

tion for bootstrapping would be to calculate the predicted errors, ẽ
i(i), estimate |�

i

|||b�(i) � �||2,

and deconvolve the error term ✏
i

from the normal Z
i

. Deconvolution problems are known to be

very difficult (see Fan (1991), Theorem 1 p. 1260, with 1/ log(n)� rates of convergence), and the

resulting deconvolved errors are likely to be quite noisy estimates of ✏
i

. However, it is possible

that while individual estimates are poor, the distribution of the deconvolved errors is estimated

well enough to form a reasonable ˆF for the bootstrap procedure. This would be the case if the

distribution of the deconvolved errors captured the key characteristics driving the performance of
b�
⇢

in the systems of equations described in El Karoui et al. (2013).

Proposal: bootstrapping from scaled ẽ
i(i) A simpler alternative is bootstrapping from the

predicted error terms, ẽ
i(i), without deconvolution. On the face of it, this seems problematic,

since Equation (3) demonstrates that ẽ
i(i) has the wrong distribution. However, we might ask

how much practical effect does this have – is ẽ
i(i) close enough? Specifically, we standardize ẽ

i(i)

so that its first two moments align with that of ✏
i

,

r̃
i(i) =

�̂

dvar(ẽ
i(i))

ẽ
i(i), (5)

where dvarẽ
i(i) is an estimate of the variance of ẽ

i(i) and �̂ is an estimate of �. Will such a

transformation result in an estimate ˆF of the distribution of ✏
i

that is sufficiently close for the

purposes of estimating b�⇤
⇢

for bootstrapping inference?

Clearly a few cases exist where r̃
i(i) should work well. We have already noted that as p/n !

0, the effect of the convolution with the Gaussian disappears since b�
⇢

is consistent, so that r̃
i(i) are

good estimates of ✏
i

(as are the original residuals e
i

). Similarly, in the case of ✏
i

’s having normal

errors, ẽ
i(i) are also marginally normally distributed, so that correcting the variance should result

in r̃
i(i) having the same distribution as ✏

i

, at least when X
i,j

are i.i.d.

More surprisingly, as p/n ! 1 we find that using r̃
i(i) gives equivalent estimates of b�

⇢

as
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when using ✏
i

. This is unexpected, since equation (3) shows that as p/n ! 1, r̃
i(i) is essentially

distributed N(0, kb���k22), regardless of the original distribution of ✏
i

- though the distribution of

✏
i

could in principle influence kb� � �k22. (We note that in the asymptotics we consider kb� � �k2
can be treated as non-random.) We can understand this phenomena by looking at the risk of

our estimate b�
⇢

under different error distributions, with the idea that a minimal requirement for

reasonable inference under our resampling distribution is that the risk be close to that of the risk

under ✏
i

. El Karoui et al. (2013) resulted in a system of equations, the solution of which quantifies

the risk of b�
⇢

for any loss, error and and dimension (under some technical conditions detailed in

El Karoui (2013)). Studying this system when p/n ! 1 shows that regardless of the true error

distribution ✏
i

, the risk of b�
⇢

will be equivalent so long as the variance of the distribution of ✏
i

’s

is the same.

Theorem 2.1. Suppose we are working with robust regression estimators, and p/n ! . Assume

for instance that the design is Gaussian. Then, under the assumptions stated in El Karoui (2013),

kb�
⇢

� �k22 ⇠!1
�2
✏

1� 
,

provided ⇢ is differentiable near 0 and ⇢0(x) ⇠ x near 0.

See Supplementary Text, Section S2 for the proof of this statement. Note that log-concave den-

sities such as those corresponding to double exponential or Gaussian errors fall within the scope

of this theorem.

Note that the previous theorem implies that when p/n is close to 1, all robust regression

estimators with ⇢ smooth enough and symmetric at 0 perform like the least-squares estimator,

at least at the level of equivalence between two diverging sequences. Note also that the only

characteristic of the error distribution that matters in this result is its variance. Hence, two error

distributions that are different but have the same variance will result in estimators that perform

roughly the same. We should then expect that bootstrapping from the predicted errors should

perform reasonably well for p/n quite close to 1.

Thus, as p/n ! 1, r̃
i(i) will diverge from the correct distribution, but inference of � will

be increasingly less reliant on features of the distribution beyond the first two moments; and as

p/n ! 0 the inference of � relies heavily on the distribution beyond the first two moments,
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but the distribution of r̃
i(i) approaches the correct distribution. Between these two extremes it

is difficult to predict the tradeoff. In Figure 2 we plot the average risk of b� based on simulated

data under the convolution distribution of r̃
i(i) in Equation (3) relative to the true risk of b� under

✏
i

(with accurate risk of b� again being a proxy for the performance of inference procedures). In

these simulations, ✏
i

’s have a double exponential, aka Laplacian, distribution. As expected, we

see that for large p/n both the convolution and a pure normal distribution with the right variance

converge to the true risk. As p/n ! 0, the risk of a normal distribution with the correct variance

diverges dramatically from the true risk while that of the convolution approaches the truth. We

see that for Laplacian errors, L1 and Huber (which is Huber1 in this simulation) both show that

the risk using r̃
i(i) converges to the true risk on the extremes but varies from the truth in the range

of 0.2 � 0.5. For Huber, the divergence is at most 8%, but the difference is larger for L1 (12%),

probably due to the fact that normal error has a larger effect on the risk for L1.

Performance in bootstrap inference To further quantify the performance of these error dis-

tributions, we implement bootstrap procedures for both the deconvolution of the predicted errors

and the standardized predicted errors. Both methods require an estimator of � that is consistent

irregardless of dimension and error distribution. As we have seen, we cannot generally rely on

the observed residuals e
i

nor on ẽ
i(i). The exception is L2, where the standard estimate of �2

✏

that

includes a degrees of freedom correction is always a consistent estimator of �, assuming i.i.d er-

rors and mild moment requirements. In what follows, therefore, we estimate � using the standard

estimate of � based on an L2 fit. We calculate predicted errors by manually rerunning fits leaving

out the ith residual; in practice equation (3) gives an approximation that could be used for those

e
i

where ⇢ is twice differentiable to speed up calculation.

For the deconvolution strategy, we used the deconvolution algorithm in the decon package

in R (Wang and Wang, 2011) to estimate the distribution of ✏
i

. For simplicity in reusing existing

bootstrapping code, for each simulation we draw a single sample from this distribution and then

bootstrap the errors from this draw. The deconvolution algorithm requires the value of the vari-

ance of the Gaussian that is convolved with the ✏
i

, which we estimate as dvar(ẽ
i(i))� �̂2. We note

that this makes assumptions of homoskedastic errors, which is true in our simulations but may

not be true in practice. We further note that we used a Gaussian design, and hence did not have to

estimate �
i

’s in the notation of Equation (3). In El Karoui (2010), the author proposed estimators
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Figure 2: Relative Risk of b� for scaled predicted errors vs original errors - population ver-
sion: (a) Plotted with a solid line is the ratio of the average of kb�

⇢

� �k2 under the “convolution
error distribution”, i.e errors of the form ⌘

i

= �
✏

(✏
i

+ �Z
i

)/
p
�2
✏

+ �2, where Z
i

⇠ N (0, 1),
independent of ✏

i

, and � = E
⇣
kb�

⇢

� �k2
⌘

- computed using the “correct” error distribution,

i.e errors ✏
i

- to the average of kb�
⇢

� �k2 under the “true” error distribution i.e, errors ✏
i

. This
latter quantity is of course �. (b) Added to the plot in (a) is the relative risk of b�(⇢) for errors
⌘
i

⇠ N (0, �2
✏

) vs the original errors ✏
i

(dotted line). The y-axis gives the relative risk, and the
x-axis is the ratio p/n, with n fixed at 500. Blue/triangle plotting symbols indicate L1 loss;
red/circle plotting symbols indicate Huber loss. The average risk is calculated over 500 simula-
tions. The true error distribution is the standard Laplacian distribution (�2

✏

= 2). Each simulation
uses the standard estimate of �2

✏

from the generated ✏
i

’s. � was computed using a first run of
simulations using the “true” error distribution. The Huber loss in this plot is Huber1 and not the
default R Huber, which is Huber1.345.

for these quantities, which could then be used in the decon package.

In Figure 3 we show the error rate of confidence intervals based on bootstrapping from the

standardized predicted errors and from the deconvolution estimates of ✏
i

. We see that both meth-

ods control the Type I error, unlike bootstrapping from the residuals, and that both methods are

conservative. There is little difference between the two methods with this sample size, though

with n = 100, we observe the deconvolution performance to be worse in L1 (data not shown).

The deconvolution strategy, however, must depend on the distribution of the design matrix; for

elliptical designs, the error rate of the deconvolution method described above with no adaptation

for the design was similar to that of uncorrected residuals in high dimensions (i.e. > 0.25 for
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Figure 3: Bootstrap based on predicted errors: We plotted the error rate of 95% confidence
intervals for the alternative bootstrap methods described in Section 2.3: bootstrapping from stan-
dardized predicted errors (blue) and from deconvolution of predicted error (magenta). We demon-
strate its improvement over the standard residual bootstrap (green) for (a) L1 loss and (b) Huber
loss. The error distribution is double exponential and the design matrix X is Gaussian, but other-
wise the simulations parameters are as in Figure 1. The error rates on confidence intervals based
on bootstrapping from a N(0, �̂2

) (dashed curve) are as a lower bound on the problem. For the
precise error rates see Table S3.

p/n = 0.5). This was not the case for the bootstrap using standardized predicted errors, where

the Type I error for an elliptical design was only slightly higher than the target 0.05 (around 0.07,

data not shown).

3 Bootstrapping the joint distribution of (yi,Xi)

As described above, estimating the distribution ˆF from the empirical distribution of (y
i

, X
i

)

(pairs bootstrapping) is generally considered the most general and robust method of bootstrap-

ping, allowing for the linear model to be incorrectly specified. It is also considered to be slightly

more conservative compared to bootstrapping from the residuals. In the case of random design,

it makes also a lot of intuitive sense to use the pairs bootstrap, since resampling the predictors

might be interpreted as mimicking more closely the data generating process.
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However, as in residual bootstrap, it is clear that the pairs bootstrap will have problems at

least in quite high dimensions. In fact, when resampling the X
i

’s from ˆF , the number of times a

certain vector X
i0 is picked has asymptotically Poisson(1) distribution. So the expected number

of different vectors appearing in the bootstrapped design matrix X⇤ is n(1 � 1/e). When p/n

is large, with increasingly high probability the bootstrapped design matrix X⇤ will no longer be

of full rank. For example, if p/n > (1 � 1/e) ⇡ 0.63 then with probability tending to one, the

bootstrapped design matrix X⇤ is singular, even when the original design matrix X is of rank

p < n. Bootstrapping the pairs in that situation makes little statistical sense.

For smaller ratios of p/n, we evaluate the performance of pairs bootstrapping on simulated

data. We see that the performance of the bootstrap for inference also declines dramatically as the

dimension increases, becoming increasingly conservative (Figure 1). In pairs bootstrapping, the

error rates of 95%-confidence-intervals drop far below the nominal 5%, and are essentially zero

for the ratio of p/n = 0.5. Like residual bootstrap, this overall trend is seen for all the settings we

simulated under (Supplemental Figures S1, S2). In L1, even ratios as small as 0.1 are incredibly

conservative, with the error rate dropping to less than 0.01. For Huber and L2 loss, the severe

loss of power in our simulations starts for ratios of 0.3 (see Tables S1,S5, S4).

A minimal requirement for the distribution of the bootstrapped data to give reasonable in-

ferences is that the variance of the bootstrap estimator b�⇤ needs to be a good estimate of the

variance of b�. In the case of high dimensions, this is not the case. In Figure 5 we plot the ratio

of the variance of b�⇤ to the variance of b� evaluated over simulations. We see that for p/n = 0.3

and design matrices X with i.i.d. N (0, 1) entries, the bootstrap variance roughly overestimates

the correct variance by a factor 1.3 in the case of L2-regressions; for Huber and L1 the bootstrap

variance is roughly twice as large as it should be (Table S7).

In the simple case of L2, we can further quantify this loss in power by comparing the size of

the bootstrap confidence interval to the correct size based on theoretical results (Figure 4). We see

that even for ratios  as small as 0.1, the confidence intervals for some design matrices X were

15% larger for pairs bootstrap than the correct size (see the case of elliptical distributions where

�
i

is exponential). For much higher dimensions of  = 0.5, the simple case of i.i.d normal entries

for the design matrix is still 80% larger than needed; for the elliptical distributions we simulated,

the width was as much as 3.5 times larger than the correct confidence interval. Furthermore, as
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Figure 4: Comparison of width of 95% con-
fidence intervals of �1 for L2 loss: Here
we demonstrate the increase in the width of the
confidence interval due to pairs bootstrapping.
Shown on the y-axis is the percent increase of
the average confidence interval width based on
simulation (n = 500), as compared to the aver-
age for the standard confidence interval based on
normal theory in L2; the percent increase is plot-
ted against the ratio  = p/n (x-axis). Shown
are three different choices in simulating the en-
tries of the design matrix X: (1) X

ij

⇠ N(0, 1)
(2) elliptical X

ij

with �
i

⇠ N(0, 1) and (3) el-
liptical X

ij

with �
i

⇠ Exp(
p
2). The methods

of simulation are the same as described in Figure
1; exact values are given in Table S2.

we can see in Figure 1, L2 represents the best case scenario; L1 and Huber will have even worse

loss of power and at smaller values of .

3.1 Theoretical analysis for least-squares

In a limited but interesting setting, we can understand the properties of the (bootstrap) vari-

ance of v0b�⇤, and in particular its expectation. Define b�
w

as the result of regressing y on X with

random weight w
i

for each observation (y
i

, X
i

). We call b�⇤
w

the resampled version of b� where we

use random weights {w
i

}n
i=1 in the resampling of the pairs (y

i

, X
i

). Assuming the weights are

independent of {y
i

, X
i

}n
i=1, we have the equality in law b�⇤

w

=

b�
w

|{y
i

, X
i

}n
i=1. For the standard

pairs bootstrap, the estimate b�⇤ from a single resampling of the pairs is equivalent to b�⇤
w

, where

w is drawn from a multinomial distribution with expectation 1/n for each entry.

We have the following result for the expected value of the bootstrap variance of any contrast

v0b�⇤
w

where v is deterministic, assuming independent weights with a Gaussian design matrix X

and some mild conditions on the distribution of the w’s.

Theorem 3.1. Let the weights (w
i

)

n

i=1 be i.i.d. and without loss of generality that E (w
i

) = 1; we

suppose that the w
i

’s have 8 moments and for all i, w
i

> ⌘ > 0. Suppose X
i

’s are i.i.d N (0, Id
p

),

and the vector v is deterministic with kvk2 = 1.

Suppose

b� is obtained by solving a least-squares problem and y
i

= X 0
i

� + ✏
i

, ✏
i

’s being i.i.d
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mean 0, with var (✏
i

) = �2
✏

.

If lim p/n =  < 1 then the expected variance of the bootstrap estimator is, asymptotically

as n ! 1

pE
⇣
var

⇣
v0b�⇤

w

⌘⌘
= pE

⇣
var

⇣
v0b�

w

|{y
i

, X
i

}n
i=1

⌘⌘
! �2

✏

2

4 1

1� � E
⇣

1
(1+cwi)2

⌘ � 1

1� 

3

5 ,

where c is the unique solution of E
⇣

1
1+cwi

⌘
= 1� .

For a proof of this theorem and a consistent estimator of this expression, see Supplementary Text,

Section S3. We note that E
⇣

1
(1+cwi)2

⌘
�

h
E
⇣

1
1+cwi

⌘i2
= (1 � )2 - where the first inequality

comes from Jensen’s inequality, and therefore the expression we give for the expected bootstrap

variance is non-negative.

In 3.1.2 below, we discuss possible extensions of this theorem, such as different design matri-

ces or correlated predictors. Before doing so, we first will discuss the implications of this result

to pairs bootstrapping.

3.1.1 Application to Pairs Bootstrapping

In the standard pairs bootstrap, the weights are actually chosen according to a Multinomial(n, 1/n)

distribution. This violates two conditions in the previous theorem: independence of w
i

’s and the

condition w
i

> 0. We refer the reader to the corresponding discussion in El Karoui (2010) for

explanations on how to handle these two problems in our context. Effectively, the previous result

still holds in these conditions, provided (1 � 1/e) >  = lim p/n. For simplicity in the discus-

sions that follow, we analyze the case w
i

iidv Poisson(1) which is asymptotically equivalent to the

Multinomial(n, 1/n) for the quantities of interest to us.

We verified our theoretical results for Poisson(1) weights (i.e. the bootstrap) in limited simu-

lations. For Gaussian design matrix, double exponential errors, and ratios  = .1, .3, .5 we found

that the ratio of the empirical bootstrap expected variance of b�⇤
1 to our theoretical prediction was

1.0027, 1.0148, and 1.0252, respectively (here n = 500, and there were R = 1000 bootstrap

resamples for each of 1000 simulations).
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Relation to the performance of the bootstrap for inference The formula in Theorem 3.1

allows us to relate the expected variance of the bootstrap estimator and the variance of the least-

squares estimator in the Gaussian design setting, which is asymptotically /(1 � )�2
✏

(relying

on simple Wishart computations (Haff, 1979; Mardia et al., 1979) or random matrix theory). If

our bootstrap worked for estimating the variance of the quantity of interest, we should have, at

least 2

4 1

1� � E
⇣

1
(1+cwi)2

⌘ � 1

1� 

3

5
=



1� 
,

and hence should have

E

✓
1

(1 + cw
i

)

2

◆
=

1� 

1 + 
.

This is not the case for most weight distributions and in particular is not numerically verified

for the Poisson(1) distribution that corresponds to the standard pairs bootstrap. See Figure 5a for

a visual depiction of the problem, where we see that the theory predicts that the pairs bootstrap

overestimates the variance of the estimator by a factor that ranges from 1.2 to 3 as  varies

between 0.3 and 0.5.

3.1.2 Extensions of Theorem 3.1

Case of ⌃ 6= Id

p

The first extension we might think of is to move from the case where ⌃ = Id

p

to general ⌃. In the case of Gaussian design, it is clear, when p < n, that all the results apply

there, too, simply by replacing v by ⌃

�1/2v everywhere in the theoretical analysis. Since our

corrections are multiplicative, they apply in this setting, too. So the formula involving only the

weight distribution holds for ⌃ 6= Id

p

, provided ⌃ is positive definite, i.e all its eigenvalues are

strictly positive. Based on the computations in the proof provided in the Supplementary Text, it

is also possible to get a consistent estimator of this quantity when ⌃ 6= Id

p

- however, this is a bit

beside the point of our discussion here and we do not discuss the matter further.

Case of elliptical design In light of previous work on model robustness issues in high-dimensional

statistics (see e.g El Karoui (2009), El Karoui (2010)), it is natural to ask whether the central re-

sults of Theorem 3.1 still apply when X
i

L
= �

i

Z
i

, with �
i

a random variable independent of Z
i

,

and Z
i

⇠ N (0, Id
p

). We require E (�2
i

) = 1 so that cov (X
i

) = Id

p

, as in the assumptions
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Figure 5: Factor by which standard pairs bootstrap over-estimates the variance: (a) plotted
is the ratio of the value of the expected bootstrap variance computed from Theorem 3.1 using
Poisson(1) weights to the asymptotic variance /(1 � )�2

✏

. (b) boxplots of the ratio of the
bootstrap variance of b�⇤

1 to the variance b�1, as calculated over 1000 simulations (i.e. var
⇣
b�
⌘

is
estimated across simulated design matrices X , and not conditional on X). The theoretical pre-
diction for the mean of the distribution from Theorem 3.1 is marked with a ‘X’ for L2 regression.
Simulations were performed with normal design matrix X and normal error ✏

i

with values of
n = 500. For the median values of each boxplot, see Supplementary Table S7.

of Theorem 3.1. The types of computations done in the proof can again be performed in that

situation, though they become a bit more complicated. In light of the fact that even in the sim-

pler case of the Gaussian design the corrections are very sensitive and hence not terribly robust

(see discussion in Section 3.2), we do not present these computations here. We also note that

a simple change of variables in the original formulation of the least squares problem show that

understanding the elliptical situation is equivalent to understanding the situation of Gaussian de-

sign with heteroskedastic errors. (Effectively, the errors ✏
i

can be thought of as being replaced by

✏̃
i

= ✏
i

/�
i

, the weights w
i

being replaced by w
i

�2
i

.)

Going beyond the Gaussian design As explained in several papers in random matrix theory,

a number of the quantities appearing in our theorems will converge to the same limit when i.i.d

Gaussian predictors are replaced by i.i.d predictors with mean 0 and variance 1 and “enough
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moments”. Hence, the results we present here should be fairly robust to changing normality

assumptions to i.i.d-ness assumptions for the entries of the design matrix X . However, as has

been explained in previous works - see e.g Diaconis and Freedman (1984); Hall et al. (2005); El

Karoui (2009) - the assumption of Gaussian (or i.i.d) entries for the predictors is very limiting

geometrically. It basically implies that the predictors X
i

’s are almost orthogonal to each other

and that kX
i

k/pp is almost constant across i’s, i.e the predictors live near a sphere. Ellipticity

is a natural way to break this geometric constraint, but arguably does not capture an extremely

wide variety of models.

3.2 Alternative weight distributions for resampling

The formula given in Theorem 3.1 suggests that resampling from a distribution ˆF defined us-

ing weights other than i.i.d Poisson(1) (or, equivalently for our asymptotics, Multinominal(n,1/n))

should give us better bootstrap estimators. In fact, we should require, at least, that the bootstrap

expected variance of these estimators match the correct variance /(1 � )�2
✏

(for the Gaussian

design).

We note that if we use w
i

= 1, 8i, the bootstrap variance will be 0, since we are not changing

anything to the problem between each bootstrap repetition. On the other hand, we have seen that

with w
i

⇠ Poisson(1), the expected bootstrap variance was too large compared to /(1� )�2
✏

.

Because the formula in Theorem 3.1 appears fairly “continuous” in the weight distribution,

we tried to find a parameter ↵ such that if

w
i

iidv 1� ↵ + ↵Poisson(1) , (6)

the expected bootstrap variance would match the theoretical value of /(1� )�2
✏

. The rationale

for this approach is that for ↵ = 0, the expected bootstrap variance is 0 and for ↵ = 1, the

expected bootstrap variance is greater than the target value of /(1 � )�2
✏

, as we saw working

on the standard bootstrap.

We solved numerically this problem to find ↵() (see Supplementary Table S6 and Supple-

mentary Text, Subsection S3.1 for details of computation). We then used these values and per-

formed bootstrap resampling using the weights defined in Equation (6). We evaluated bootstrap
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
.1 .2 .3 .5

↵ .9875 .9688 .9426 .9203
Error Rate of 95% CIs 0.051 0.06 0.061 0.057

Ratio of Variances 1.0119 1.0236 0.9931 0.9992

Table 1: Summary of weight-adjusted bootstrap simulations for L2 : Given are the results of
performing bootstrap resampling for n = 500 according to the estimate of ˆF given by the weights
in Equation (6). “Error Rate of 95% CIs” denotes the percent of bootstrap confidence intervals
that did not containing the correct value of the parameter �1. “Ratio of Variances” gives the ratio
of the empirical expected bootstrap variance over our simulations divided by the theoretical value
�2
✏

/(1 � ). Results are based on 1000 simulations, with a Gaussian random design and errors
distributed as double exponential.

estimate of var(b�1) as well as the confidence interval coverage of the true value. We find that this

adjustment of the weights in estimating ˆF restores the performance of the bootstrap estimates,

resulting in accurate estimates of variance and appropriate levels of confidence interval coverage

(Table 1).

Nonetheless, finding a good weight distribution to use in resampling requires knowing a great

deal about the distribution of the design matrix or making many assumptions about the design

matrix (see Subsubsection 3.1.2 for more on this). Another issue is the fact that small changes

in the choice of ↵ can result in fairly large changes in E
⇣
var

⇣
v0b�

w

|X, ✏
⌘⌘

. For instance, for

 = .5, using e↵() = .95 (fairly close to the correct value for  = .3 and arguably pretty close to

.92, the correct value for  = .5), results in an expected bootstrap variance roughly 30% larger

than /(1� )�2
✏

.

We think that with some more work, we could extend the results of Theorem 3.1 to the case

of robust regression, with independent errors and most likely in the elliptical design case. If such

results were obtained, then it would be in principle possible to find new weight distributions to

use in bootstrapping. Those would of course be dependent on dimensionality, properties of the

design and the error distributions as well as the loss function. In other words, they would be

strongly dependent on assuming a particular statistical model - in which case asymptotic analysis

is possible. This goes against the very premise of using resampling methods, which are advocated

for situations where the statistician is not willing to assume a statistical model.

Hence the work we just presented on finding new weight distributions for bootstrapping gives
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a proof of principle that this type of resampling ideas could be used in high-dimension, but

important practical details would depend strongly on the statistical model that is assumed. This

is in sharp contrast with the low-dimensional situation, where a unique and model-free technique

works for a wide variety of models, and hence is trustworthy in a broad variety of situations.

4 The Jackknife

In the context we are investigating, where we know that the distribution of b�1 is asymptotically

normal (see arguments in El Karoui et al. (2013)), it is natural to ask whether we could simply

use the jackknife to estimate the variance of b�1. The jackknife relies on leave-one-out procedures

to estimate var(b�1), only the estimate of variance is based on b�(i): for a fixed vector v,

dvar
JACK

(v0b�) = varJACK =

n� 1

n

nX

i=1

(v0[b�(i) � ˜�])2

where ˜� is the mean of the b�(i). The case of b�1 corresponds to picking v = e1, i.e the first

canonical basis vector.

Given the problems we just documented with the pairs bootstrap, it is natural to ask whether

the jackknife fixes some of them, even though the jackknife is known to have its own problems

(Efron (1982) or Koenker (2005), p.105). We note that at first glance, the results and expansions

in El Karoui et al. (2013) and El Karoui (2013) might suggest that the jackknife is more robust

to dimensionality issues than the standard pairs bootstrap for instance, since the leave-one-out

ideas used in these papers are relatively robust to dimensionality. This is in sharp contrast with

standard perturbation-analytic methods used to derive central limit theorems for standard M-

estimators (see e.g van der Vaart (1998)) which can be used to show the validity of the bootstrap

in lower dimensions that we consider here (see Mammen (1989), p. 385).

Perhaps surprisingly in light of these arguments, it turns out that the jackknife estimate of

variance performs quite poorly. Again, the jackknife overestimates the variance of v0b� leading to

extremely poor inference (Figure 1). For L2 and Huber loss, the jackknife estimate of variance

is 10-15% too large for p/n = 0.1, and for p/n = 0.5 the jackknife estimate of variance is

2-2.5 times larger than it should be (Figure 6 and Supplementary table S7). In the case of L1
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Figure 6: Factor by which jack-
knife over-estimates the variance:
boxplots of the ratio of the jack-
knife estimate of the variance b�1 to
the variance of b�1 as calculated over
1000 simulations. Simulations were
with normal design matrix X and
normal error ✏

i

with values of n =

500. Note that because the L1 jack-
knife estimates so wildly overesti-
mate the variance, in order to put
all the methods on the same plot the
boxplot of ratio is on log-scale; y-
axis labels give the corresponding
ratio to which the log values cor-
respond. For the median values of
each boxplot, see Supplementary Ta-
ble S7.

loss, the jackknife variance is completely erratic, even in low dimensions; this is not completely

surprising given the known problems with the jackknife for the median (Koenker, 2005). Even

for p/n = 0.01, the estimate is not unbiased for L1, with median estimates twice as large as they

should be and enormous variance in the estimates of variance. Higher dimensions only worsen

the behavior with jackknife estimates being 15 times larger than they should.

Again, in the case of least-squares regression, we can theoretically evaluate the behavior of

the jackknife. The proof of the following theorem is given in the supplementary material, Section

S4.

Theorem 4.1. Let us call varJACK the jackknife estimate of variance of

b�1, the first coordinate

of

b�. Suppose the design matrix X is such that X
i,j

⇠ N (0, 1). Suppose

b� is computed using

least-squares and the errors ✏ have a variance. Then we have, as n, p ! 1 and p/n !  < 1,

E (varJACK)

var

⇣
b�1
⌘ ! 1

1� 
.

The same result is true for the jackknife estimate of variance of v0b�, for any deterministic vector

v with kvk2 = 1.

We note that the proof given in the supplementary material and previous results such as those

28



in El Karoui (2010) and El Karoui (2013) show that a similar analysis could be carried out in

the case of elliptical X
i

. This would result in a limiting result involving both the dimensionality

factor  and the distribution of the elliptical factors. It is also clear, since all these results rely

on random matrix techniques, that a similar analysis could be carried out in the case where X
i,j

are i.i.d with a non-Gaussian distribution, provided that distribution has enough moments (see

e.g Pajor and Pastur (2009) or El Karoui and Koesters (2011) for examples of such techniques,

actually going beyond the case of i.i.d entries for the design matrix).

We illustrate in Figure 7 the fact that correcting the jackknife estimate of variance by mul-

tiplying it by 1 � p/n yields correct confidence intervals for the setting of our theorem (normal

X design matrix, L2 loss). However, it is not a fix for all situations. In particular when the X

matrix follows an elliptical distribution the correction of 1 � p/n from Theorem 4.1 gives little

improvement even though the loss is still L2, which demonstrates the sensitivity of the result on

the assumptions on X (or more generally the geometric characteristics of the design matrix).

Corrections for more general settings For more general design distributions and loss func-

tions, preliminary computations suggest an alternative result. Let S be the random matrix defined

by

S =

1

n

nX

i=1

 0
(e

i

)X
i

X 0
i

.

Then in the asymptotic limit, when ⌃ = Id

p

, preliminary heuristic calculations suggest to correct

varJACK by dividing it by the factor

correction Factor =
trace (S�2

) /p

[trace (S�1
) /p]2

. (7)

Note that this conforms to our result in Theorem 4.1.

Equation (7) assumes that the loss function can be twice differentiated, which is not the case

for either Huber or L1 loss. In the case of non-differentiable ⇢ and  , we can use appropriate

regularizations to make sense of those functions. For ⇢ = Huber
k

, i.e a Huber function that

transitions from quadratic to linear at |x| = k,  0 should be understood as  0
(x) = 1|x|k

. For L1

loss,  0 should be understood as  0
(x) = 1

x=0.

We rescale the jackknife estimate of variance by numerically calculating the expected value
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design matrix X (blue); and re-scaling based on the heuristic in equation (7) for those settings
not covered by the assumptions of Theorem 4.1 (magenta).

of the right hand side of Equation (7) and scaling the jackknife estimates of variance (Figure 7)

(theoretical considerations suggest that for nice enough ⇢’s, the correction factor in Equation (7)

is asymptotically deterministic and hence close to its mean).

In the case of least-squares with an elliptical design matrix, this correction, which directly

uses the distribution of the observed X matrix, leads to a definite improvement in our confidence

intervals. For the Huber loss (with k = 1.345, the default in R), it is less clear. We see a

definite improvement as compared to the standard jackknife estimate, but the variance appears to

be still too large leading to somewhat conservative inference. The improvement over the simpler

correction of 1 � p/n is also not clear, perhaps owing to the fact that this Huber loss is not that

different from the squared error loss.

It should be noted that the quality of the correction seem to depend on how smooth  is. In

particular, even using the previous interpretations, the correction does not perform well for L1 (at
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least for n = 1000 and  = .1, .3, .5, data not shown) - though as we mentioned Figure 6 shows

that jackknifing in L1-regression is probably not a good idea; see also Koenker (2005), Section

3.9.

4.1 Extensions of Theorem 4.1 and case of ⌃ 6= Idp

As discussed in the pairs bootstrap case, some more technical work based on previously

published techniques should permit extensions of the results to the case of X
i,j

being i.i.d with a

“nice” mean 0, variance 1 distribution.

The case of ⌃ 6= Id

p

is also tractable. For least squares, the correction factor is unchanged,

since it is effectively enough to replace v = e1 by u1 = ⌃

�1/2v1 everywhere, and consider the

problem of the Jackknife estimate of variance for u0
1
b� in the null case ⌃ = Id

p

. The situation is

more complicated for robust regression estimates. The value of the correction factor is the same

regardless of ⌃ - however the expression we gave above depends on ⌃ being the identity and will

not work in general when ⌃ 6= Id

p

. With a bit of technical work, it is fairly easy to modify the

correction factor to estimate it from the data when ⌃ 6= Id

p

, but since this is quite tangential to

the main thrust of our interests in this paper, we leave this for future work.

5 Conclusion

In this paper, we studied various resampling plans in the high-dimensional setting where p/n

is not close to zero. One of our main findings is that different types of widely-used bootstraps

will yield either conservative or anti-conservative confidence intervals. This is in sharp contrast

to the low-dimensional setting where p is fixed and n ! 1 or p/n ! 0. In effect, practitioners

are left quite unsure of the statistical properties of these resampling methods, even in very simple

settings.

Under various assumptions underlying our simulations, we explained theoretically the phe-

nomena we were observing in our numerical work. At a high-level, the failure of the residuals-

bootstrap can be explained by the fact that the residuals tend to have a very different marginal

distribution in the setting we consider than the true errors. For the pairs bootstrap, an explanation

comes from the fact that spectral properties of high-dimensional weighted covariance matrices

31



are very different from those of unweighted covariance matrices. Once again this is not the case

in low-dimension.

Under those assumptions, the various resampling plans can essentially be fixed to give con-

fidence intervals with approximately correct coverage probability. We note however that under

these simple assumptions, asymptotic theory has been developed that can be used to create con-

fidence intervals without relying on resampling (El Karoui et al. (2013); Bean et al. (2013); El

Karoui (2013)). We also note that these corrections tend to be based on certain non-trivial proper-

ties of the design matrix - hence they violate the tenets of resampling approaches which promise

a simple and universal numerical method to get accurate solutions to a broad class of problems.

A possible exception is that of resampling the standardized predicted errors, which continued to

perform reasonably well for a variety of simulation settings.

We note that we have not done a completely exhaustive analysis of the many problem-specific

bootstrap methods that have been proposed in the huge literature on resampling - though we have

not seen corrections based on dimensionality before. We have nonetheless tried to use many

popular methods which are widely cited and are commonly described in research monographs.

Furthermore, we have tried more complicated ways to build confidence intervals than the simple

ones (e.g. bias correction methods), but have found them to be erratic in high-dimension.

One critique of the practical value of our work on the bootstrap is that in high dimensions,

many practitioners might prefer sparse techniques rather than the standard regression techniques

we outline here. We would first note even for fairly low ratios of p/n = 0.1, we see some

degradation in performance of the bootstrap, for example for L1 regression or even in L2 when the

design matrix X is not Gaussian. Furthermore, the problematic characteristics of the bootstrap

that we see are likely to extend into many other settings of high dimensional multivariate analysis.

Hence, the conclusion of our paper is quite unsettling in that it is very unclear how standard

resampling approaches perform in even moderately high-dimension, especially in situations that

are beyond the current reach of theoretical arguments. Those situations are of course the very set-

ting where using resampling techniques makes strong practical sense, making the problem even

more acute. The conclusion of our analyses is that resampling techniques tend to be unreliable

and perform very poorly in even simple problems where we can check their performance against

a benchmark.
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SUPPLEMENTARY MATERIAL

Supplementary Text More detailed description of simulations and proofs of the theorems stated

in main text (pdf)

Supplementary Figures Supplementary Figures referenced in the main text (pdf)

Supplementary Tables Supplementary Tables referenced in the main text (pdf)
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APPENDIX

Notations : in this appendix, we use e
i

to denote the i-th residual, i.e e
i

= y
i

�X 0
i

b�. We use
ẽ
i(i)

to denote the i-th prediction error, i.e ẽ
i(i)

= y
i

�X 0
i

b�
(i)

, where b�
(i)

is the estimate of b� with
the i-th pair (y

i

, X
i

) left out. We assume that the linear model holds so that y
i

= X 0
i

� + ✏
i

. We
assume that the errors ✏

i

are i.i.d with mean 0.

S1 Description of Simulations and other Numerics

In the simulations described in the paper, we explored variations in the distribution of the design
matrix X , the error distribution, the loss function, the sample size (n), and the ratio of  = p/n,
detailed below.

All results in the paper were based upon 1, 000 replications of our simulation routine for each
combination of these values. Each simulation consisted of

1. Simulation of data matrix X , {✏
i

}n
i=1

and construction of data y
i

= X 0� + ✏
i

. However, for
our simulations, � = 0, so y

i

= ✏
i

.

2. Estimate ˆ� using the corresponding loss function. For L
2

this was via the lm command in
R, for Huber via the rlm command in the MASS package with default settings (k = 1.345)
(Venables and Ripley, 2002), and for L

1

via an internal program making use of MOSEK
optimization package and accessed in R using the Rmosek package (MOSEK). The internal
L
1

program was checked to give the same results as the rq function that is part of the R
package quantreg (Koenker, 2013), but was much faster for simulations.

3. Bootstrapping according to the relevant bootstrap procedure (using the boot package) and
estimating ˆ�⇤ for each bootstrap sample. Each bootstrap resampling consisted of R = 1, 000
bootstrap samples, the minimum generally suggested for 95% confidence intervals (Davison
and Hinkley, 1997). For jackknife resampling, we wrote an internal function that left out each
observation in turn and recalculated ˆ�

(i)

. For testing the deconvolution method for residual
resampling (Section 2.3), we did not repeatedly resample from the deconvolution estimate
of the distribution of ✏

i

; instead we drew a single draw from that estimate and resampled
from that single draw. This made testing the proof of concept of the deconvolution method
easier in our existing structure using boot, but is inferior to redrawing repeatedly from the
deconvolution estimate of the distribution.

4. Construction of confidence intervals for ˆ�
1

. For bootstrap resampling, we used the function
boot.ci in the boot package to calculate confidence intervals. We calculated “basic”,
“percentile”, “normal”, and “BCA” confidence intervals (see help of boot.ci and Davison
and Hinkley (1997) for details about each of these), but all results shown in the manuscript
rely on only the percentile method. The percentile method calculates the boundaries of the
confidence intervals as the estimates of 2.5% and 97.5% percentiles of ˆ�⇤

1

(note that the esti-
mate is not exactly the observed 2.5% and 97.5% of ˆ�⇤

1

, since there is a correction term for
estimating the percentile, again see Davison and Hinkley (1997)). For the jackknife confi-
dence intervals, the confidence interval calculated was a standard normal confidence interval
(±1.96

q
dvar

Jack

(

ˆ�
1

))

1



S1.1 Values of parameters

Design Matrix For the design matrix X , we considered the following designs for the distribution
of an element X

ij

of the matrix X

• Normal: X
ij

are i.i.d N(0, 1)

• Double Exp: X
ij

are i.i.d. double exponential with variance 1.

• Elliptical: X
ij

⇠ �
i

Z
ij

where the Z
ij

are i.i.d N(0, 1) and the �
i

are i.i.d according to

– �
i

⇠ Exp(
p
2) (i.e. mean 1/

p
2)

– �
i

⇠ N(0, 1)

– �
i

⇠ Unif(0.5, 1.5)

Error Distribution We used two different distributions for the i.i.d errors ✏
i

: N(0, 1) and standard
double exponential (with variance 2).

Dimensions We simulated from n = 100, 500, and 1, 000 though we showed only n = 500 in
our results for simplicity. Except where noted, no significant difference in the results was seen for
varying sample size. The ratio  was simulated at 0.01, 0.1, 0.3, 0.5.

S1.2 Correction factors for Jackknife

We computed these quantities using the formula we mentioned in the text and Matlab. We
solve the associated regression problems with cvx (Grant and Boyd, 2014, 2008), running Mosek
(MOSEK, 2014) as our optimization engine. We used n = 500 and 1, 000 simulations to compute
the mean of the quantities we were interested in.

S1.3 Plotting of Figure 2a

This figure was generated with Matlab, using cvx and Mosek, as described above. We picked
n = 500 and did 500 simulations. p was taken in (5, 10, 30, 50, 75, 100, 125, 150, 175, 200, 225,
250, 275, 300, 350, 400, 450). We used our simulations for the case of the original errors to estimate
E
⇣
kb� � �k

2

⌘
. We used this estimate in our simulation under the convolved error distribution. The

Gaussian error simulations were made with N (0, 2) to match the variance of the double exponential
distribution.

S2 Residual bootstrap (p/n close to 1)

We analyze the problem when p/n is close to 1 and prove Theorem 2.1.

Proof of Theorem 2.1. Recall the system describing the asymptotic limit of kb�
⇢

��k when p/n ! 
and the design matrix has i.i.d mean 0, variance 1 entries, is, under some conditions on ✏

i

’s and some
mild further conditions on the design (see El Karoui et al. (2013); El Karoui (2013)): kb�

⇢

� �k !
r
⇢

() and the pair of positive and deterministic scalars (c, r
⇢

()) satisfy: if ẑ
✏

= ✏+ r
⇢

()Z, where
Z ⇠ N (0, 1) is independent of ✏, and ✏ has the same distribution as ✏

i

’s:
⇢

E ((prox(c⇢))0(ẑ
✏

)) = 1�  ,
r2

⇢

() = E
�
[ẑ

✏

� prox(c⇢)(ẑ
✏

)]

2

�
.

2



In this system, prox(c⇢) refers to Moreau’s proximal mapping of the convex function c⇢ - see
Moreau (1965) or Hiriart-Urruty and Lemaréchal (2001).

We first give an informal argument to “guess” the correct values of various quantities of interest,
namely c and of course, r

⇢

().
Note that when |x| ⌧ c, and when  (x) ⇠ x at 0, prox(c⇢)(x) ' x

1+c

. Hence, x �
prox(c⇢)(x) ' xc/(1+c). (Note that as long as  (x) is linear near 0, we can assume that  (x) ⇠ x,
since the scaling of ⇢ by a constant does not affect the performance of the estimators.)

We see that 1 �  ' 1/(1 + c), so that c ' /(1 � ) - assuming for a moment that we can
apply the previous approximations in the system . Hence, we have

r
⇢

()2 ' (c/(1 + c))2[r
⇢

()2 + �2
✏

] ' 2[r
⇢

()2 + �2
✏

] .

We can therefore conclude (informally at this point) that

r
⇢

()2 ⇠ �2
✏



1� 
⇠ �2

✏

1� 
.

Once these values are guessed, it is easy to verify that r
⇢

() ⌧ c and hence all the manipulations
above are valid if we plug these two expressions in the system driving the performance of robust
regression estimators described above. We note that our argument is not circular: we just described
a way to guess the correct result. Once this has been done, we have to make a verification argument
to show that our guess was correct.

In this particular case, the verification is done as follows: we can rewrite the expectations as
integrals and split the domain of integration into (�1,�s



), (�s


, s


), (s


,1), with s


= (1 �
)�3/4. Using our candidate values for c and r

⇢

(), we see that the corresponding bz
✏

has extremely
low probability of falling outside the interval (�s



, s


) - recall that 1 �  ! 0. Coarse bounding
of the integrands outside this interval shows the corresponding contributions to the expectations are
negligible at the scales we consider. On the interval (�s



, s


), we can on the other hand make
the approximations for prox(c⇢)(x) we discussed above and integrate them. That gives us the
verification argument we need, after somewhat tedious but simple technical arguments. (Note that
the method of propagation of errors in analysis described in (Miller, 2006) works essentially in
a similar a-posteriori-verification fashion. Also, s



could be picked as (1 � )�(1/2+�) for any
� 2 (0, 1/2) and the arguments would still go through.)

S3 On the expected Variance of the bootstrap estimator (Proof of The-
orem 3.1)

In this section, we compute the expected variance of the bootstrap estimator.
We recall that for random variables T,�, we have

var (T ) = var (E (T |�)) +E (var (T |�)) .

In our case, T = v0b�
w

, the projection of the regression estimator b�
w

obtained using the random
weights w on the contrast vector v. � represents both the design matrix and the errors. We assume
without loss of generality that kvk

2

= 1.
Hence,

var

⇣
v0b�

w

⌘
= var

⇣
v0E

⇣
b�
w

|�
⌘⌘

+E
⇣
var

⇣
v0b�

w

|�
⌘⌘

.

3



In plain English, the variance of v0b�
w

is equal to the variance of the bagged estimator plus
the expectation of the variance of the bootstrap estimator (where we randomly weight observation
(y

i

, X
i

) with weight w
i

).
For ease of exposition in what follows, we take v = e

p

, the p-th canonical basis vector. (In-
variance arguments mentioned below show that this choice is made without loss of generality in the
setting we are studying.)

We consider the simple case where X
i

iidv N (0, Id
p

). This allows us to work with results in El
Karoui et al. (2011); El Karoui et al. (2013), El Karoui (2013). We note that by invariance - see the
aforementioned papers - theoretical considerations can be studied without loss of generality in the
case where � = 0.

Notational simplification To make the notation lighter, in what follows in this proof we use the
notation b� for b�

w

. There are no ambiguities that we are always using a weighted version of the
estimator and hence this simplification should not create any confusion.

In particular, we have, using the derivation of Equation (9) in El Karoui et al. (2013) and noting
that in the least-squares case all approximations in that paper are actually exact equalities,

b�
p

= ĉ

P
n

i=1

w
i

X
i

(p)e
i,[p]

p
.

e
i,[p]

here are the residuals based on the first p � 1 predictors, when � = 0. We note that, under
our assumptions on X

i

’s and w
i

’s, ĉ =

1

n

trace
�
S�1

w

�
+ o

L2(1), where S
w

=

1

n

P
n

i=1

w
i

X
i

X 0
i

.
It is known from work in random matrix theory (see e.g El Karoui (2009)) that 1

n

trace
�
S�1

w

�
is

asymptotically deterministic in the situation under investigation with our assumptions on w and X ,
i.e 1

n

trace
�
S�1

w

�
= c+ o

L2(1), where c = E
�
1

n

trace
�
S�1

w

��
.

We also recall the residuals representation from El Karoui et al. (2013), which are exact in the
case of least-squares : namely here,

b� � b�
(i)

=

w
i

n
S�1

i

X
i

 (e
i

) ,

which implies that, with S
i

=

1

n

P
j 6=i

w
j

X
j

X 0
j

,

ẽ
i(i)

= e
i

+ w
i

X 0
i

S�1

i

X
i

n
 (e

i

) .

In the case of least-squares,  (x) = x, so that

e
i

=

ẽ
i(i)

1 + w
i

c
i

,

where

c
i

=

X 0
i

S�1

i

X
i

n
.

These equalities also follow from simple linear algebra since we are in the least-squares case. We
note that c

i

= c+o

P

(1), as explained in e.g El Karoui (2010), El Karoui (2013). Furthermore, here
the approximation holds in L

2

because of our assumptions on w’s and existence of moments for the
inverse Wishart distribution - see e.g Haff (1979). As explained in El Karoui (2013), the same is
true for c

i,[p]

which is the same quantity computed using the first (p� 1) coordinates of X
i

, vectors
we denote generically by V

i

. We can rewrite

b�
p

= ĉ

P
n

i=1

w
i

X
i

(p)
ẽi(i),[p]

1+wici,[p]

p
.
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Let us call bb the bagged estimate. We note that ẽ
i(i),[p]

is independent of w
i

and so is c
i,[p]

. We have
already seen that ĉ is close to a constant, c. So taking expectation with respect to the weights, we
have, if w

(i)

denotes {w
j

}
j 6=i

, and using independence of the weights,

bb
p

=

1

p

nX

i=1

E
wi

✓
cw

i

1 + cw
i

◆
X

i

(p)E
w(i)

�
ẽ
i(i),[p]

�
[1 + o

L2(1)] .

Now the last term is of course the prediction error for the bagged problem, i.e

E
w(i)

�
ẽ
i(i),[p]

�
= ✏

i

� V 0
i

(bg
(i)

� �)

where bg
(i)

is the bagged estimate of b� and b� is the regression vector obtained by regressing y
i

on
the first p � 1 coordinates of X

i

. (Recall that in these theoretical considerations we are assuming
that � = 0, without loss of generality.)

So we have, since we can work in the null case where � = 0 (without loss of generality),

bb
p

=

1

p

nX

i=1

E
wi

✓
cw

i

1 + cw
i

◆
X

i

(p)
⇥
✏
i

� V 0
i

bg
(i)

⇤
(1 + o

L2(1)) .

Hence,

E
⇣
pbb2

p

⌘
=

1

p

nX

i=1


E

wi

✓
cw

i

1 + cw
i

◆�
2

(�2

✏

+E
�
kbg

(i)

k2
2

�
)(1 + o(1)) .

Now, in expectation, using e.g El Karoui (2013), E
�
kbg

(i)

k2
2

�
(1 + o(1)) = E

⇣
kbbk2

2

⌘
= pE

⇣
bb2
p

⌘
.

The last equality comes from the fact that all coordinates play a symmetric role in this problem, so
they are all equal in law.

Now, recall that according to e.g El Karoui et al. (2013), top-right equation on p. 14562, or El
Karoui (2010)

1

n

nX

i=1

1

1 + cw
i

= 1� p

n
+ o

L2(1) ,

since the previous expression effectively relates trace
�
D

w

X(X 0D
w

X)

�1X 0� to n� p, the rank of
the corresponding “hat matrix”.

Since cwi
1+cwi

= 1� 1

1+cwi
, we see that

E
wi

✓
cw

i

1 + cw
i

◆
=

p

n
+ o(1) .

Hence, for the bagged estimate, we have the equation

E
⇣
kbbk2

2

⌘
=

p

n

⇣
�2

+E
⇣
kbbk2

2

⌘⌘
(1 + o(1)) .

We conclude that
E
⇣
kbbk2

2

⌘
= (1 + o(1))



1� 
�2 .

Note that 

1�

�2

= E
⇣
kb�

sLS

k2
2

⌘
, where the latter is the standard (i.e non-weighted) least squares

estimator.
We note that the rotational invariance argument given in El Karoui et al. (2011); El Karoui et al.

(2013) still apply here, so that we have the

bb� �
L
= kbb� �ku ,

5



where u is uniform on the sphere and independent of kbb � �k (recall that this simply comes from
the fact that if X

i

is changed into OX
i

, where O is orthogonal, bb is changed into Obb - and we then
apply invariance arguments coming from rotational invariance of the distribution of X

i

). Therefore,

var

⇣
v0(bb� �)

⌘
=

kvk2

p
E
⇣
kbb� �k2

2

⌘
.

So we conclude that

pE
⇣
var

⇣
v0b�

w

|�
⌘⌘

= pvar
⇣
v0b�

w

⌘
� 

1� 
�2kvk2

2

+ o(1) .

Now, the quantity var

⇣
v0b�

w

⌘
is well understood. The rotational invariance arguments we men-

tioned before give that

var

⇣
v0b�

w

⌘
=

kvk2
2

p
E
⇣
kb�

w

� �k2
2

⌘
.

In fact, using the notation D
w

for the diagonal matrix with D
w

(i, i) = w
i

, since

b�
w

� � = (X 0D
w

X)

�1X 0D
w

✏ ,

we see that
E
⇣
kb�

w

� �k2
2

⌘
= �2

✏

E
�
trace

�
(X 0D

w

X)

�2X 0D
w

2X
��

.

(Note that under mild conditions on ✏, X and w, we also have kb�
w

� �k2
2

= E
⇣
kb�

w

� �k2
2

⌘
+

o

L2(1) - owing to concentration results for quadratic forms of vectors with independent entries; see
Ledoux (2001).)

We now need to simplify this quantity.
Analytical simplification of trace

�
(X0DwX)�2X0Dw2X

�
Of course,

trace
�
(X 0D

w

X)

�2X 0D
w

2X
�
= trace

�
D

w

X(X 0D
w

X)

�2X 0D
w

�
=

nX

i=1

w2

i

X 0
i

(X 0D
w

X)

�2X
i

.

Hence, if b⌃
w

=

1

n

P
n

i=1

w
i

X
i

X 0
i

, wi
n

X
i

X 0
i

+

b
⌃

(i)

, we have

trace
�
(X 0D

w

X)

�2X 0D
w

2X
�
=

1

n

nX

i=1

w2

i

X 0
i

b
⌃

�2X
i

n
.

Call b⌃(z) = b
⌃� zId

p

. Using the identity

(

b
⌃� zId

p

)(

b
⌃� zId

p

)

�1

= Id

p

,

we see, after taking traces, that (Silverstein (1995))

1

n

nX

i=1

w
i

X 0
i

(

b
⌃� zId

p

)

�1X
i

� ztrace
⇣
(

b
⌃� zId

p

)

�1

⌘
= p .

We call, for z 2 C, c(z) = 1

n

trace
⇣
(

b
⌃� zId

p

)

�1

⌘
and c

i

(z) = X 0
i

(

b
⌃

(i)

� zId
p

)

�1X
i

, provided z

is not an eigenvalue of b⌃.

6



Differentiating with respect to z and taking z = 0 (we know here that b⌃ is non-singular with
probability 1, so this does not create a problem), we have

1

n

nX

i=1

w
i

X 0
i

b
⌃

�2X
i

� trace
⇣
b
⌃

�1

⌘
= 0 .

Also, since, by the Sherman-Morrison-Woodbury formula (Horn and Johnson (1990)),

X 0
i

b
⌃(z)�1X

i

=

X 0
i

b
⌃

(i)

(z)�1X
i

1 + w
i

1

n

X 0
i

b
⌃

(i)

(z)�1X
i

,

we have, after differentiating,

1

n
X 0

i

b
⌃

�2X
i

=

c0
i

(0)

[1 + w
i

c
i

(0)]

2

,

where of course c0
i

(0) = X 0
i

b
⌃

�2

(i)

X
i

. Hence,

1

n

nX

i=1

w2

i

1

n
X 0

i

b
⌃

�2X
i

=

1

n

nX

i=1

w2

i

c0
i

(0)

[1 + w
i

c
i

(0)]

2

= c0(0)
1

n

nX

i=1

w2

i

[1 + w
i

c(0)]2
.

(Note that the arguments given in e.g El Karoui (2010) or El Karoui and Koesters (2011) for why
c
i

(z) = c(z)(1 + o

P

(1)) extend easily to c0
i

and c0 given our assumptions on w’s and the fact
that these functions have simple interpretations in terms of traces of powers of inverses of certain
well-behaved - under our assumptions - matrices.)

Going back to

1

n

nX

i=1

w
i

X 0
i

(

b
⌃� zId

p

)

�1X
i

� ztrace
⇣
(

b
⌃� zId

p

)

�1

⌘
= p ,

and using the previously discussed identity

w
i

n
X 0

i

(

b
⌃� zId

p

)

�1X
i

= 1� 1

1 + w
i

c
i

(z)
,

we have

n�
nX

i=1

1

1 + w
i

c
i

(z)
� znc(z) = p .

In other words,

1�  =

1

n

nX

i=1

1

1 + w
i

c
i

(z)
+ zc(z) .

Now,

c(z)
1

n

nX

i=1

w
i

1 + w
i

c(z)
=

1

n

nX

i=1

(1� 1

1 + w
i

c(z)
)

=

1

n

nX

i=1

(1� 1

1 + w
i

c
i

(z)
) + ⌘(z)

= + zc(z) + ⌘(z) ,
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where ⌘(z) is such that ⌘(z) = o

P

(1) and ⌘0(z) = o

P

(1) (⌘ has an explicit expression which allows
us to verify these claims). Therefore, by differentiation, and after simplifications,

1

n

X
w
i

1 + w
i

c(0)

�
2

c0(0) = 
c0(0)

[c(0)]2
� 1 + o

P

(1) .

Hence,

trace
�
(X 0D

w

X)

�2X 0D
w

2X
�
=

2

4
trace

⇣
b
⌃

�2

w

⌘
/n

[trace
⇣
b
⌃

�1

w

⌘
/n]2

� 1

3

5
+ o

P

(1) .

The fact that we can take expectations on both sides of this equation and that o
P

(1) is in fact o
L2(1)

come from our assumptions about w
i

’s - especially the fact that they are independent and bounded
away from 0 - and properties of the inverse Wishart distribution.

Conclusion We can now conclude that a consistent estimator of the expected variance of the
bootstrap estimator is

kvk2
2

p
�2

✏

2

4
trace

⇣
b
⌃

�2

w

⌘
/n

[trace
⇣
b
⌃

�1

w

⌘
/n]2

� 1

1� 

3

5 .

Using the fact that

1�  =

1

n

nX

i=1

1

1 + w
i

c(z)
+ zc(z) ,

we see that, since 1

n

trace
⇣
b
⌃

�2

w

⌘
= c0(0),

1

n
trace

⇣
b
⌃

�2

w

⌘
=

c(0)
1

n

P
n

i=1

w
i

/(1 + w
i

c(0))2
.

We further note that asymptotically, when w
i

are i.i.d and satisfy our assumptions, c(0) ! c,
which solves:

E
wi


1

1 + w
i

c

�
= 1�  .

Hence, asymptotically, when w
i

’s are i.i.d and satisfy our assumptions, we have

trace
⇣
b
⌃

�2

w

⌘
/n

[trace
⇣
b
⌃

�1

w

⌘
/n]2

! 1

cE
wi [wi

/(1 + w
i

c)2]
.

Since cw
i

/(1 + cw2

i

) = 1/(1 + cw
i

)� 1/(1 + cw
i

)

2, we finally see that

cE
wi


w
i

(1 + w
i

c)2

�
= E

wi


1

1 + cw
i

�
�E

wi


1

(1 + cw
i

)

2

�
,

= 1� �E
wi


1

(1 + cw
i

)

2

�
.

So asymptotically, the expected bootstrap variance is equivalent to, when kvk
2

= 1,

�2

✏

p

2

4 1

1� �E
⇣

1

(1+cwi)
2

⌘ � 1

1� 

3

5 ,

8



where E
⇣

1

1+cwi

⌘
= 1� .

In particular, when w
i

= 1, we see, unsurprisingly that the above quantity is 0, as it should,
given that the bootstrapped estimate does not change when resampling.

We finally make note of a technical point, that is addressed in papers such as El Karoui (2010,
2013) and on which we rely here by using those papers. Essentially, theoretical considerations re-
garding quantities such as 1

p

trace
⇣
b
⌃

�k

w

⌘
are easier to handle by working rather with 1

p

trace
⇣
(

b
⌃

w

+ ⌧ Id
p

)

�k

⌘
,

for some ⌧ > 0. In the present context, it is easy to show (and done in those papers) that this ap-
proximation allows us to take the limit - even in expectation - for ⌧ ! 0 in all the expressions we
get for ⌧ > 0 and that that limit is indeed E

⇣
1

p

trace
⇣
b
⌃

�k

w

⌘⌘
. Technical details rely on using the

first resolvent identity (Kato, 1995), using moment properties of inverse Wishart distributions and
using the fact that w

i

’s are bounded below.

S3.1 On acceptable weight distributions

An acceptable weight distribution is such that the variance of the resampled estimator is equal
to the variance of the sampling distribution of the original estimator, i.e the least-squares one in the
case we are considering. Here, this variance is asymptotically /(1� )�2

✏

.
Recall that in the main text, we proposed to use

w
i

iidv 1� ↵+ ↵Poisson(1)

To determine ↵ numerically so that
2

4 1

1� �E
wi

h
1

(1+cwi)
2

i � 1

1� 

3

5
=



1� 
,

we performed a simple dichotomous search for ↵ over the interval [0, 1]. Our initial ↵ was .95. We
specified a tolerance of 10�2 for the results reported in the paper in Table S6. This means that we
stopped the algorithm when the ratio of the two terms in the previous display was within 1% of 1.
We used a sample size of 106 to estimate all the expectations.

S3.2 Numerics for Figure 5a

This figure, related to the current discussion was generated by assuming Poisson(1) weights and
computing deterministically the expectations of interest. This was easy since if W ⇠ Poisson(1),
P (W = k) = exp�1

k!

.
We truncated the expansion of the expectation at K = 100, so we neglected terms of order

1/100! or lower only. The constant c was found by dichotomous search, with tolerance 10

�6 for
matching the equation E (1/(1 +Wc)) = 1 � p/n. Once c was found, we approximated the
expectation in Theorem 3.1 in the same fashion as we just described.

Once we had computed the quantity appearing in Theorem 3.1, we divided it by /(1� ). We
repeated these computations for  = .05 to  = .5 by increments of 10�3 to produce our figure.

S4 Jackknife Variance (Proof of Theorem 4.1)

We study it in details in the least-squares case, and postpone a detailed analysis of the robust
regression case to future studies.
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According to the approximations in El Karoui et al. (2013), which are exact for least squares, or
classic results Weisberg (2014) we have:

b� � b�
(i)

=

1

n
b
⌃

�1

(i)

X
i

e
i

.

Recall also that
e
i

=

ẽ
i(i)

1 +

1

n

X 0
i

b
⌃

�1

(i)

X
i

.

Hence,

v0(b� � b�
(i)

) =

1

n
v0b⌃�1

(i)

X
i

ẽ
i(i)

1 +

1

n

X 0
i

b
⌃

�1

(i)

X
i

.

Hence,

n

nX

i=1

[v0(b� � b�
(i)

)]

2

=

1

n

nX

i=1

[v0b⌃�1

(i)

X
i

ẽ
i(i)

]

2

[1 +

1

n

X 0
i

b
⌃

�1

(i)

X
i

]

2

.

Note that at the denominator, we have

1 +

1

n
X 0

i

b
⌃

�1

(i)

X
i

= 1 +

1

n
trace

⇣
b
⌃

�1

⌘
+ o

P

(1) ,

= 1 +

p

n

1

1� p/n
+ o

P

(1) =

1

1� p/n
+ o

P

(1) .

by appealing to standard results about concentration of high-dimensional Gaussian random vari-
ables, and standard results in random matrix theory and classical multivariate statistics (see Mardia
et al. (1979); Haff (1979)). By the same arguments, this approximation works not only for each i but
for all 1  i  n at once. The approximation is also valid in expectation, using results concerning
Wishart matrices found for instance in Mardia et al. (1979).

For the numerator, we see that

T
i

= v0b⌃�1

(i)

X
i

ẽ
i(i)

= v0b⌃�1

(i)

X
i

(✏
i

�X 0
i

(

b�
(i)

� �)) .

Since ✏
i

is independent of X
i

and b
⌃

(i)

, we see that

E
�
T 2

i

�
= E

�
✏2
i

�
E
⇣
(v0b⌃�1

(i)

X
i

)

2

⌘
+E

⇣
[X 0

i

(

b�
(i)

� �)]2[v0b⌃�1

(i)

X
i

]

2

⌘
.

If ↵ and � are fixed vectors, ↵0X
i

and �0X
i

are Gaussian random variables with covariance ↵0�,
since we are working under the assumption that X

i

⇠ N (0, Id
p

). It is easy to check that if Z
1

and
Z
2

are two Gaussian random variables with covariance � and respective variances �2

1

and �2

2

, we
have

E
�
(Z

1

Z
2

)

2

�
= �2

1

�2

2

+ 2�2 .

We conclude that
E
�
(a0X

i

)

2

(b0X
i

)

2

�
= kak2

2

kbk2
2

+ 2(a0b)2 .

We note that
E
⇣
[v0b⌃�1

(i)

X
i

]

2

⌘
= E

⇣
v0b⌃�2

(i)

v
⌘

.

Classic Wishart computations give (Haff (1979), p.536 (iii)) that as n, p ! 1,

E
⇣
b
⌃

�2

(i)

⌘
= (

1

(1� p/n)3
+ o(1))Id

p

.
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Hence, in our asymptotics,

E
⇣
(v0b⌃�1

(i)

X
i

)

2

⌘
! 1

(1� p/n)3
kvk2

2

.

We also note that
E

✏

h
(v0b⌃�1

(i)

b�
(i)

)

2

i
=

1

n
v0b⌃�3

(i)

v .

Hence,
E
⇣
(v0b⌃�1

(i)

b�
(i)

)

2

⌘
= o(1)in our asymptotics .

Therefore,

E
�
T 2

1

�
=

1

(1� p/n)3
kvk2

2

�2

✏

(1 +

p/n

1� p/n
) + o(1)

since E
⇣
kb�

(i)

� �k2
2

⌘
= �2

✏

p/n

1�p/n

+ o(1).
When v = e

1

, we therefore have

E
�
T 2

1

�
= �2

✏

1

(1� p/n)4
+ o(1) .

Therefore, in that situation,

E

 
n

nX

i=1

(v0(b�
(i)

� b�)2)
!

= �2

✏

1

(1� p/n)2
+ o(1) .

In other words,

E

 
nX

i=1

(v0(b�
(i)

� b�)2)
!

=


1

1� p/n
+ o(1)

�
var

⇣
b�
1

⌘

S4.1 Dealing with the centering issue

Let us call b�· = 1

n

P
n

i=1

b�
(i)

. We have previously studied the properties of
P

n

i=1

([v0(b��b�
(i)

)]

2

)

and now need to show that the same results apply to
P

n

i=1

([v0(b�· � b�
(i)

)]

2

).
To show that replacing b� by b�

(·) does not affect the result, we consider the quantity

n2

[v0(b� � b�
(·))]

2 .

Since b� � b�
(i)

=

1

n

b
⌃

�1

(i)

X
i

e
i

, we have

b� � b�
(·) =

1

n2

nX

i=1

b
⌃

�1

(i)

X
i

e
i

.

Hence,

n2

[v0(b� � b�
(·))]

2

=

"
1

n

nX

i=1

v0b⌃�1

(i)

X
i

(✏
i

�X 0
i

(

b� � �))

#
2

.

A simple variance computation gives that 1

n

P
n

i=1

v0b⌃�1

(i)

X
i

✏
i

! 0 in L2, since each term has mean
0 and the variance of the sum goes to 0.
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Recall now that

b
⌃

�1X
i

=

b
⌃

�1

(i)

X
i

1 + c
i

,

where all c
i

’s are equal to p/n/(1� p/n) + o

P

(1). Let us call c = p/n/(1� p/n).
We conclude that

1

n

nX

i=1

v0b⌃�1

(i)

X
i

X 0
i

(

b� � �) = v0(b� � �)(1 + c+ o(1)) .

When v is given, we clearly have v0(b�� �) = o

P

(p�1/2

), given the distribution of b�� � under our
assumptions on X

i

’s and ✏
i

’s. So we conclude that

n2

[v0(b� � b�
(·))]

2 ! 0 in probability .

Because we have enough moments, the previous result is also true in expectation.

S4.2 Putting everything together

The jackknife estimate of variance of v0b� is up to a factor going to 1

n

n� 1

JACK(var

⇣
v0b�

⌘
) =

nX

i=1

[(v0b�
(i)

� b�
(·))]

2

=

nX

i=1

[(v0b�
(i)

� b�)]2 + n[v0(b� � b�
(·))]

2 .

Our previous analyses therefore imply (using v = e
1

) that

n

n� 1

E
⇣

JACK(var

⇣
b�
1

⌘
)

⌘
=


1

1� p/n
+ o(1)

�
var

⇣
b�
1

⌘
.

This completes the proof of Theorem 4.1

S4.3 Extension to more involved design and different loss functions

Our approach could be used to analyze similar problems in the case of elliptical designs. How-
ever, in that case, it seems that the factor that will appear in quantifying the amount by which the
variance is misestimated will depend in general on the ellipticity parameters. We refer to El Karoui
(2013) for computations of quantities such as v0b⌃�2v in that case, which are of course essential to
measuring mis-estimation.

In the case of robust regression, the correction factors presented here will also be problematic
and not fix the problems.

We obtained the possible correction we mentioned in the paper for these more general settings
following the ideas used in the rigorous proof we just gave, as well as approximation arguments
given in El Karoui et al. (2013) and justified in El Karoui (2013). Checking all the approximations
we made in this Jackknife computation would requires a very large amount of technical work, and
since this is tangential to our main interests in this paper, we postpone that to a future work of a
more technical nature.
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Figure S1: Performance of 95% confidence intervals of �
1

(double exponential error): Here we
show the coverage error rates for 95% confidence intervals for n = 500 with the error distribution
being double exponential (with �2

= 2) and i.i.d. normal entries of X . See the caption of Figure 1
for more details.

1



●

●

●

●

0.
00

0.
05

0.
10

0.
15

0.
20

Ratio (κ)

95
%

 C
I E

rro
r R

at
e

0.01 0.30 0.50

●

●

●

●

●

●

Residual
Jackknife
Pairs
Std. Residuals

(a) Normal X

●

●

●

●

0.
00

0.
05

0.
10

0.
15

0.
20

Ratio (κ)
95

%
 C

I E
rro

r R
at

e
0.01 0.30 0.50

●
●

●
●
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(c) Ellip. X , N(0, 1)
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(d) Ellip. X , Exp

Figure S2: Performance of 95% confidence intervals of �
1

for L
2

loss (elliptical design X):
Here we show the coverage error rates for 95% confidence intervals for n = 500 with different
distributions of the design matrix X using ordinary least squares regression: (a) N(0, 1), (b) ellip-
tical with �

i

⇠ U(.5, 1.5), (c) elliptical with �
i

⇠ N(0, 1), and (d) elliptical with Exp(
p
2). In all

of these plots, the error is distributed N(0, 1) and the loss is L
2

. See the caption of Figure 1 for
additional details.
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