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Abstract

Background: Somatic mutation-calling based on DNA from matched tumor-normal

patient samples is one of the key tasks carried by many cancer genome projects. One

such large-scale project is The Cancer Genome Atlas (TCGA), which is now routinely

compiling catalogs of somatic mutations from hundreds of paired tumor-normal DNA

exome-sequence data. Nonetheless, mutation calling is still very challenging. TCGA

benchmark studies revealed that even relatively recent mutation callers from major

centers showed substantial discrepancies. Evaluation of the mutation callers or un-

derstanding the sources of discrepancies is not straightforward, since for most tumor

studies, validation data based on independent whole-exome DNA sequencing is not

available, only partial validation data for a selected (ascertained) subset of sites.

Results: We have analyzed two sets of mutation-calling data from multiple centers

and their partial validation data. Various aspects of the mutation-calling outputs were

explored to characterize the discrepancies in detail. To assess the performances of

multiple callers, we introduce four approaches utilizing the external sequence data to

varying degrees, ranging from having independent DNA-seq pairs, RNA-seq for tumor

samples only, the original exome-seq pairs only, or none of those.

Conclusions: Our analyses provide guidelines to visualizing and understanding the

discrepancies among the outputs from multiple callers. Furthermore, applying the four

evaluation approaches to the whole exome data, we illustrate the challenges and high-

light the various circumstances that require extra caution in assessing the performances

of multiple callers.

Keywords: cancer genome, next-generation sequencing, somatic mutation-calling,

methods comparison, validation
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Background

Cancer is driven by genomic alterations. Such somatic alterations include nucleotide sub-

stitutions (often called ‘point mutations’), small insertions and deletions, copy number al-

terations, and large structural variations. Recent advances in high-throughput sequencing

technologies allows identification of somatic alterations at an unprecedented resolution [1–4].

In particular, numerous large-scale cancer projects scan for somatic mutations in various tu-

mor types, prior to conducting downstream analyses such as detecting significantly mutated

genes or pathways [5–9], inferring clonal history [10,11], and characterizing the landscape of

the somatic mutations [12–14].

Nonetheless, accurate somatic mutation-calling using high-throughput sequence data re-

mains one of the major challenges in cancer genomics. For somatic mutation-calling, one

looks for a site in which a variant allele exists in the tumor sample but not in the normal sam-

ple. Even with the sequence data from a normal sample, variant calling in high-throughput

sequencing data is challenging due to various sources of errors such as artifacts occurring dur-

ing PCR amplification or targeted capture (eg. exome-capture), machine sequencing errors,

incorrect local alignments of reads [15–18]. Tumor heterogeneity and normal contamination

add additional challenges for the tumor samples.

Understanding mutation-calling errors is constrained by the availability of the validation

data. False positives can be learned by validating every called site, but experimentally

validating all such sites across a whole exome or genome is laborious and expensive. Learning

about false negatives can be even more difficult. Even independent sequencing at a much

higher sequencing depth or using a different sequencing technology does not guarantee the

finding of all true mutations. Comparing outputs from multiple callers and learning from

their discrepancies, however, can be a fast and practical solution to study calling errors to

some extent. False negatives from one caller could be revealed by mutations detected by
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other callers. Calls that are uniquely detected by a certain caller are likely to reveal at least

a partial set of false positives from that caller.

The Cancer Genome Atlas (TCGA) project has been conducting large-scale cancer studies,

usually generating hundreds of tumor-normal exome-sequencing data for each tumor type

[19–22]. A great deal of efforts is made to maintain the quality of published mutations.

Nonetheless, the speed of generating the data is ever increasing, and complete validation

is infeasible. Thus, TCGA conducted mutation-calling benchmark comparison studies to

assess the degrees of discrepancy among the major mutation-callers as well as to learn about

the sources causing the discrepancies, which will eventually benefit all callers.

We have analyzed two datasets generated for TCGA benchmark studies. One dataset was

generated by applying four mutation-callers to Illumina exome-seq pairs from 16 lung squa-

mous cell carcinoma (LUSC) patients. The other dataset was generated by applying three

callers to SOLiD exome-seq pairs from 6 rectum adenocarcinoma (READ) patients. For each

dataset, partial validation data exists. For the LUSC dataset, 76 genes were independently

sequenced at a higher coverage by the Illumina technology, allowing in-depth investigation

of called sites within the 76 genes. For the READ dataset, validation information based on

the 454 sequence technology was available for 721 sites.

Substantial discrepancies exist among the calls from different mutation-callers in both

datasets. We aim to characterize these discrepancies beyond the Venn diagram summaries

and provide guidelines for more illuminating analyses. Furthermore, based on the insights

gained by analyzing these data, we introduce four approaches to comparing the relative per-

formances of multiple callers. The first is using independent DNA-sequencing data, avail-

able for 76 genes for LUSC patients, to validate detected mutations. The second utilizes

the tumor RNA-seq data to validate variants in the tumor samples. The third method

uses the variant quality scores obtained by running a publicly available variant caller, the
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GATK UnifiedGenotyper [23], on the original exome-seq data, to define pseudo-positives

(presumed somatic mutations) and pseudo-negatives. The last approach estimates the sen-

sitivity and the specificity of each caller from the observed counts of mutations classified by

the detection status of the multiple callers, using the statistical method called latent class

models [24, 25].

Results

TCGA benchmark studies generated mutation-calling outputs by applying multiple callers

on the same sequence alignments (BAMs [26]) for a selected list of samples. We have analyzed

two datasets, one based on lung squamous cell carcinoma (LUSC) samples and the other

based on 6 rectum adenocarcinoma (READ) samples. The callers used and the types of

available sequence data are described below as well as summarized in Additional file 1.

LUSC dataset Mutation calling was done by four callers (Caller A, B, C and D) using

Illumina exome-seq tumor-normal pairs from 16 LUSC patients. Two kinds of additional

data exist for the same patients. One is Illumina RNA-seq data available for the 16 tumor

samples. Second is high-coverage Illumina sequencing data (∼3-fold higher coverage than the

original exome-seqs of ∼80x, and thus called as ‘deep-sequencing’ data in our manuscript)

available for tumor-normal pairs on a pre-selected set of 76 genes (540 Kb). In an effort

to create comparable calling outputs, all four callers generated calls only within the agreed

exome regions.

READ dataset Mutation calling was done by three callers (Caller H, I, and J) using

SOLiD exome-seq tumor-normal pairs from 6 READ patients. Three kinds of additional
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data exist. One is Illumina RNA-sequence data available for the 6 tumor samples. A second

is Illumina exome-seq tumor-normal pairs for all 6 patients. The last one is information

available for 721 sites, for which validation was done using the 454 technology.

Outputs were provided in a modified Variant Call Format (VCF [27]), which reports the

genomic position, somatic status, filter status, sequence information from each tumor and

normal sample. The filter status indicates whether the variant (candidate mutation) passes

all the filters implemented by each caller or not. The full details of all filters were not given

in the VCF files though, partly because the mutation-callers and the modified VCF format

were under constant development.

Note that all the mutation-calling outputs were generated before July 2011, and no current

mutation-caller will be the same as those used in this study, which is a part of the reason for

using anonymized callers. Even though indels and other structural variants are important

kinds of somatic variants, in this paper we focus on comparing single nucleotide variant

(SNV) type somatic mutations, which comprise the majority of somatic variants.

Detecting a variant in an aligned sequence (BAM) is looking for the existence of a variant

allele that is different from the reference allele. In principle, the more reads carrying the

variant allele, the stronger the evidence for it being a true variant. Thus, the fraction of

reads carrying the variant allele (called the variant allele fraction, ‘vaf’) is frequently used

in variant calling analyses. For somatic mutation-calling, the tumor and its matched normal

sample are considered together. Therefore, a variant is determined by the joint status in

tumor-normal sequence pairs: ‘somatic’ (the variant allele is found in the tumor sample

but not in the normal), ‘germline’ (variant allele found in both the tumor and the normal

sample), and ‘wildtype’ (no variant allele found in either the tumor or the normal sample).

In our manuscript, a mutation or variant ‘site’ refers to a position only for the particular

patient carrying the variant.
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Discrepancies observed in the benchmark data

LUSC dataset From each caller’s raw mutation-calling output (VCF), we extracted a final

set of somatic mutations. To have a broad picture, we gathered all such mutations from all

16 LUSC patients. An immediate Venn diagram summary reveals substantial discrepancies

among the mutations from the four callers (Figure 1A). For example, 491 and 427 mutations

were detected by Caller A only and Caller D only, while 1,667 mutations were discovered by

all four callers. There are many mutations that were missed by a single caller. For example,

716 mutations were detected by all but Caller B, and 104 were detected by all but Caller C.

We also categorized mutations based on the degree of agreement (Figure 1B). In total, 5,380

mutations were called by one or more callers, and 31%, 28%, 16%, and 25% of those were

detected by all, three, two, and a single caller(s). A similar categorization of the mutations

detected by each caller suggests that Caller B is stringent, since it detected a relatively small

number of mutations, most of which were detected by the other callers. Callers A, C, and

D reported a similar number of mutations, a good proportion of which are caller-specific.

We attempted to further characterize the discrepancies among the callers using those

mutations called by a single caller only (1,352) or missed by a single caller only (1,494). To a

large extent, discrepancies occurred due to different variant call status on the tumor sample.

Variant calling in the normal sample seems to be highly accurate, hence mis-classification

between somatic mutations and germline mutations explain only very few discrepancies. The

distribution of the coverages and the variant allele fractions in the tumor exome-seqs vary

significantly across the mutation sets defined based on the detection status of the four callers

(Figure 2). For example, the set of mutations detected by Caller A only is somewhat enriched

for positions of medium- to low-sequencing depth (e.g., < 40x), while the set detected by

Caller D only has many sites with very high depth (> 100x) but have very low vaf (< 10%).

The characteristics of mutations that were missed by a single center are different. A large
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fraction of mutations that were missed by Caller B only have tumor vaf < 20%. Almost all

the mutations detected by all but Caller D have very high depth (>200x), and most of them

have vaf > 20%. The mutations missed by Caller A only have medium-to-high coverage

(> 40x) and medium-to-high vaf > 20%. The number of mutations that were missed by

Caller C is significantly lower than those missed by other callers only. Overall, many of the

mutations detected by a single caller only and those missed by Caller B only have relatively

low sequencing depth or low vaf, which presumably poses difficulty in detecting existence of

alternative allele in the tumor sample, while mutations missed by Caller A, C, and D only

tend to have high sequencing depth and show good support of the existence of a variant

allele. Thus, for these mutations, it’s likely that the single caller employed a certain filter

that was different from the others.

To better understand the sources of discrepancies, we examined all variants in the VCF

files. (We note that the VCF files were produced for the benchmark study only, and the

output formats were under constant development.) The classes of variants and the number

of variants reported in the VCF files differ significantly among the callers (Additional file

2A). Caller D reported only somatic variants. Caller A, B, and C reported both somatic

and germline variants but the numbers vary. Our main interest is in the somatic variants

that successfully pass all the filters implemented by each caller, which comprise the final set

of mutations. Nonetheless, information of the somatic variants that did not pass filters can

be used for comparison purposes. For example, for each caller, we screen the corresponding

VCF file to check whether the mutations missed by the caller only are reported in the file,

and then find the reasons for them being filtered out. Around 60% of mutations that were

missed by Caller B only are not reported in the VCF file from Caller B (Additional file 2B),

suggesting that initial requirement to be scanned by Caller B might be more stringent than

others. The scale of mutation quality scores reported in the VCF varies across the callers

as well (Additional file 3). Mutations that were detected by all callers tend to have high
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quality and those that were detected by a single caller tend to have low mutation quality.

Nevertheless, pairwise comparison of mutation quality scores between callers shows some

but not a very high level of agreement (Additional file 4). Furthermore, such scores from

all callers are available only for a limited subset of mutations. Thus ranking all mutations

detected by any caller is not feasible based on these mutation quality scores.

READ dataset From the mutation-calling outputs (VCFs) of the three callers (Caller H,

I, and J), we extracted the final set of somatic mutations. The mutations detected by each

caller are stratified by the number of callers detecting those mutations (Additional file 5).

Caller I tends to be stringent, in that it calls a small number of mutations but most of those

are shared by the other two callers. Notably, among the mutations that were detected by

one or more callers, a very large fraction (median of 78%) were detected by a single caller,

especially by Caller H or Caller J only. The relative numbers of mutations called by each

caller varies across the 6 READ patients. Specificially, for READ-1, READ-4, and READ-5,

Caller H and J detected a similar number of mutations. For READ-2 and READ-6, Caller

H detected around three times as many calls as Caller J. READ-3 is unique in the sense that

Caller I and J detected relatively many more mutations compared to other cases.

Since many mutations were detected by a single caller only, we explored such mutations

further. First, we checked whether each mutation detected by a single caller was reported

in the VCF files of other callers. Additional file 6 shows that it is the case for majority of

the mutations. That says, those mutations were initially considered for variant detection by

at least one more caller but filtered out. Unfortunately, as mentioned earlier, the full details

of all filters were not available for further exploration. We also examined the coverage and

the vaf of the tumor sample of such mutations. Almost all calls detected by Caller J only

have very low vaf, less than 10%. The tumor vaf of the mutations detected by Caller H only

covers the whole spectrum of allele fractions, and more than 80% of those are larger than
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10% (data not shown).

Analysis of validation data

LUSC dataset Deep-sequencing data was available for 76 genes for all LUSC patients.

We used it to determine the validation status of any variant in the VCF files that are within

the 76 genes. A variant is called ‘somatic’ if the tumor vaf in the deep-seq data is > 10%

and the normal vaf in the deep-seq data is < 2%, otherwise, ‘non-somatic’. (This specific

validation rule is determined based on our examination of the deep-sequencing data while

constructing an evaluation dataset. Further details are described below). The validation

results are summarized by each mutation set, defined based on the detection status by the

four callers (Table 1). Notice that mutations that were detected by two or more callers tend

to have a high accuracy. For example, all the 13 mutations detected by all but Caller A, or

all the 6 mutations detected by Caller A and C are validated as ‘somatic’. Mutations that

were called by a single caller tend to be enriched for false positives but some of those turned

out to be false negatives for the other three callers, suggesting that a non-negligible number

of sites posed difficulties in mutation-calling. For example, among the 11 mutations that

were called by Caller D only, five of them are validated as ‘somatic’, i.e., Caller A, B, and C

failed to detect these mutations.

The individual validation status of all the 138 mutations is shown in Figure 3. Mutations

are marked as ‘Strand bias’ if more than 95% or less than 5% of the reads carrying the variant

allele are on the forward strand. Out of 13 such mutations, 11 overlap with those mutations

that were detected by a single caller or missed by a single caller. Not surprisingly, many

of the mutations validated as ‘non-somatic’ have low tumor vaf (less than 15%). Manual

examination of the five mutations validated as ‘non-somatic’ but having tumor vaf > 20%

suggested that four of them are likely to be ‘germline’ mutations. Mutations in each mutation
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set (e.g., ‘detected by Caller A only’ or ‘detected by Caller D only’) tend to scatter around

across a large range of tumor vafs. One exception is the set ‘detected by All but Caller B’,

for which many of them are clustered by having a low vaf.

We further interrogated false positive and false negative sites by exploring alignment of

nearby regions, distribution of base scores of the variant and the reference allele, cover-

age, and variant allele fraction. Some of such details for each mutation are summarized in

Additional file 7. Each discrepancy has a very specific reason but broadly, there are two

explanations accounting for the false positives and false negatives. One is when a mutation

has low-quality information (low vaf in the tumor sample, or low coverage, or low map-

ping quality, or low base quality scores for the variant allele). The other is when different

pre- and post-filtering criteria were applied to high or intermediate-quality mutations, i.e.,

mutations showing clear signs of the existence of the variant allele, but may show strand

bias, repeatedly appear in the first or last few bases of the reads, etc. Nonetheless, detailed

characterization couldn’t be performed, since full details of the filters were not available.

READ dataset Among the mutations called for the 6 READ patients, we obtained the

validation status of 721 sites that were validated by the 454 technology. We first classified

each mutation found in any VCF file into five validation groups. It is ‘nonMAF’ if the

mutation was found in the benchmark data but did not appear in the TCGA colon working

group MAF (mutation annotation format) file as of Nov 8, 2011 nor validated by the 454

technology. Otherwise, it was classified as ‘unknown’ (in the MAF file but not validated),

‘wildtype’ (no variant allele found in either the tumor or the normal sample), ‘germline’

(variant allele found in both the tumor and the normal sample), and ‘somatic’ (the variant

allele is found in the tumor sample but not in the normal). We didn’t have information

about how sites were chosen for validation. However, classification of the mutations by

the detection status of the three callers and by the validation group suggests that only the
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variants initially called by Caller J were considered for validation, except for a few variants in

READ-4 (Additional file 8). It is important to be aware of such ascertainment. Otherwise,

one may mistakenly compute the false positive and the false negative rates of Caller H or

Caller I using the validated mutations, and may make unfair comparison with the rates of

Caller J. Note that in the set of validated mutations, if a mutation is called by Caller H,

then it implicitly implies that the mutation is called by both Caller H and Caller J due to

the ascertainment.

Validation results for the mutations that were called by Caller J are shown in Additional

file 9. Most of the calls detected by Caller J only were not considered for validation nor

included in the MAF file (i.e., ‘nonMAF’), except for the calls from patient READ-3 and

READ-4. For the two patients, numerous mutations were considered for validation and

validated as wildtype. Mutations that were detected by all callers have high validation rate

for most of the patients, except READ-3. For READ-3, around half of the mutations were

validated as wildtype. The validation results of the mutations that were detected by Caller

J and another caller also suggest somewhat unusual validation accuracy for the mutations

from two patients, READ-3 and READ-4. It is plausible that the quality of samples or the

experimental procedure for these patients provided a challenge to all three mutation callers.

Our earlier work suggested that for Illumina sequencing data, the variant quality scores

computed by the GATK UnifiedGenotyper [23] could be effectively used for visualizing over-

all and individual mutation qualities. Therefore, we first compiled the variants in any VCF

output, which was produced based on 6 SOLiD exome-seq pairs. Then for each such variant,

we obtained the signed GATK variant call quality scores using the corresponding Illumina

exome-seq pairs (for details, see Materials and Methods). The signed GATK qualities are

shown for two patients in Figure 4, and for all 6 patients in Additional file 10. We expect a

somatic mutation to have a large positive signed GATK quality score in the tumor sample

(strong support of the existence of the variant allele) and a large negative signed GATK
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quality score in the normal sample (strong support for two homozygous reference alleles).

Indeed, most of mutations validated as ‘somatic’ show such characteristics. For READ-1,

READ-2, READ-4 and READ-5, the overall distribution of the GATK quality scores sug-

gests good DNA sample quality. In this case, wildtypes, germlines, and somatic mutations

are well distinguished. However, for READ-3 and READ-4, the distribution of the GATK

quality score seems much noisier (numerous points in the area in which biologically meaning-

ful variants are not likely to be), suggesting poor DNA sample quality. Numerous wildtypes

show expected characteristics for somatic mutations, and that is likely to be the reason for

the relatively poor validation rates for these two patients in Additional file 9. Note that

mutation-calling is done based on SOLiD sequences, but the signed GATK quality scores

are computed based on the Illumina sequences. Therefore, the difficulty is not likely due

to the sequencing technology but due to sample quality. We suspect that the poor quality

DNA sample induces many artifactual variants causing high false positive rates, since those

artifactual variants do not exist in the RNA-seq tumor sample (Figure 4). Notice that all

the mutations validated as wildtypes have zero vaf in the RNA-seq data.

Analysis of the deep-sequencing data for construction of an evalu-

ation dataset

For method development, we constructed an evaluation dataset by compiling a set of candi-

date somatic variants detected based on the exome-seq data and determining their validation

status based on the deep-sequencing data. Our evaluation dataset consists of the 6,692 vari-

ant sites that were detected within the 76 genes using the GATK UnifiedGenotyper from

39 LUSC tumor exome-seq data (for further details, see Materials and Methods). To de-

termine the validation status of these sites, we first examined the distribution of variant

allele fractions in the deep-seq tumor-normal pairs (Figure 5A). The scatter plot shows good
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separation between somatic mutations from other types of variants. A somatic mutation is

characterized by having a variant allele in the tumor sample but not in the normal sample.

On the left boundary of the plot, there are many points for which the tumor vaf is reasonably

large (or away from zero, e.g., > 5%) but the normal vaf is almost zero (e.g., < 2%). These

points are well separated from the other points, especially when the normal vaf is larger than

zero (e.g., > 2%). The distribution of the vafs in the normal samples clearly has three modes

(near zero, 45%, and 100%), corresponding to genotypes with zero, one, and two variant al-

leles. Presumably, the alignment bias preferring the reference allele resulted in the centre

mode around 45% rather than 50%. When the normal vaf is near the centre mode (i.e., the

normal is heterozygous), the tumor vafs are vertically spread around, suggesting that varying

degrees of normal contamination exist in the tumor samples and the loss of heterozygosity

regions. Interestingly, there are numerous variants for which the normal vaf departs from the

three modes but the correspondence between the tumor vaf and the normal vaf is very high.

In particular, most of these variants have the normal vaf less than half. Since these variants

have both the tumor and normal vafs in the range suggesting for the existence of a variant

allele, we name these as ‘germline-like’ variants. Alignment biases are not likely to explain

numerous occurrence of these ‘germline-like’ variants fully. We suspect that a large fraction

of these variants appeared due to artifactual variant alleles that were caused by sequencing

technology, since a substantial number of the variants exhibit extreme levels of strand bias

(Additional file 11). Specifically, among the 787 germline-like variants for which the normal

vaf is between 5% and 35%, around 50% variants exhibit very strong strand bias in the

tumor sequence data (more than 95% or less than 5% of reads carrying the variant allele are

on the forward strand). In contrast, among the 2,716 variants for which the normal vaf is in

a more expected range (40% – 60%) for heterozygous genotype for the normal sample, only

1.5% exhibit such extreme strand bias. Below, we further discuss that base mis-calling can

cause numerous artifactual variant alleles that are characterized by extreme strand bias, in

contrast to the reference alleles.
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We also examined the GATK variant quality scores (Additional file 12A). Such scores

indirectly combine the vaf with sequence depth for each sample. Since we flipped the sign

when no alternative allele is found by the GATK, the points on the left boundary with positive

values for the tumor sample and negative values for the normal sample are strongly supported

to be somatic mutations. Those points are reasonably well separated from other points in

the diagonal. After further examination of the distribution of the vafs as well as the signed

GATK quality scores, we determined the validation status for each of the 6,692 sites based on

the deep-seq pairs (gold-standard data). A variant is called ‘somatic’ (334 sites; ∼ 5%) if the

tumor vaf is > 10% and the normal vaf is < 2%, otherwise, ‘non-somatic’. An alternative

criterion for a ‘somatic’ mutation is that the signed GATK quality scores for the tumor

sample and for the normal sample are > 200 and < -100, respectively. The two criteria

mismatch only for 17 sites. Rather than making subjective judgement for these sites, we

have exclude these 17 ambiguous sites from our final evaluation set.

Reasons for artifactual variants

In the evaluation dataset, we validated the variants found in the exome-seq data using

the deep-sequencing data. Among the variants validated as ‘non-somatic’, there are nu-

merous cases for which both the tumor and the normal vafs are very low (<2%) in the

deep-sequencing data. We classified these as ‘wildtypes’ (319 sites) and visualized for com-

parison with somatic ones and investigated the reasons for mis-calling. Notice that many of

these wildtypes look like germline variants in the original exome-seq data (Figure 5B and

Additional file 12B). These artifactual variants also exist in the tumor RNA-seq data (Figure

5C). Our exploration reveals a remarkable difference in the strand bias pattern between the

somatic mutations and the wildetypes in the tumor samples (Additional file 13). (Strand

bias is computed as the fraction of reads on the forward strand among the reads carrying the
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allele of interest.) For somatic mutations, the fraction of reads on the forward strand is very

similar between the variant allele and the reference allele. For wildtypes, the strand bias of

the variant allele is extreme in that almost all the reads carrying the variant allele are either

on the forward strand or the reverse strand. Although weaker than the tumor exome-seq,

the RNA-seq data exhibits a similar behavior. Thus, the sources causing these wildtypes

are not the characteristics of the protocol used for exome-sequencing or RNA-sequencing,

but rather are likely to be consequences of the Illumina sequencing technology. Even for

the deep-sequencing data, numerous false variants seem to occur due to strand bias. The

‘germline-like’ variants based on the deep-seq pairs show a very different strand bias pat-

tern compared to the somatic ones (Additional file 11). To a large extent, we believe that

such false variants occur due to base-calling errors in the raw sequencing reads [28]. Some

sequence contexts are more prone to base-calling errors than others, and these errors may

occur in only one direction [17,18]. Indeed, the direction of the strand bias is the same across

the different sequenced samples such as tumor exome-seq and the normal exome-seq (data

not shown).

Pseudo- and RNA-seq validation methods

Pseudo-validation method In the absence of a gold standard data, direct comparison

among calls from different mutation callers is difficult. Each caller reports information for

a subset of genomic positions, and these sets do not entirely overlap. To overcome this

difficulty, i.e., to provide reasonable and consistent measure of mutation quality across all

positions that are reported by any mutation caller, we used a publicly available variant caller,

GATK UnifiedGenotyper, to build our own pseudo-caller. Specifically, for each variant of

interest, we computed the signed GATK variant quality score for each tumor and normal

sample (for details, see Materials and Methods). With a given threshold qt for the tumor
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sample, and qn for the normal sample, we define pseudo-positives as variants for which the

signed GATK quality from the tumor is > qt and the signed GATK from the normal is < qn.

Note that the pseudo-caller is for comparison purposes only, and is not to be treated as an

independent mutation caller.

RNA-seq validation method RNA-sequencing is often done for tumor samples, since

the expression pattern of the tumor sample is of great interest in many cancer projects.

If such tumor RNA-seq data is available as well as the original exome-seq pairs used for

mutation calling, it can be used as partial validation data. Due to the variation in the

expression levels across the genes, RNA-seq generally shows a significantly larger variation

than DNA-seq data in the number of reads carrying the variant allele.

To construct a validation dataset using the RNA-seq data for the tumor sample, we ex-

amined the variant allele fraction (vaf) in the RNA-seq data together with the vaf in the

normal exome-seq data. We restricted our analysis to those variants that have RNA-seq

depth > 10x. In our datasets, 30-40% of sites satisfy this restriction. Then, with a given

threshold for tumor and the normal, ft and fn, respectively, we define positives as such

variants for which the tumor RNA-seq vaf exceeds ft and the normal exome-seq vaf is less

than fn.

Evaluation of pseudo- and RNA-seq validation methods

To assess the performance of the pseudo-validation method, we ranked the variants in the

evaluation set using the GATK quality score obtained from the tumor exome-seq, given that

the signed GATK quality score from the normal sample is less than -50. We mostly used only

the tumor sample for ranking, since most of difficulties in calling somatic mutations seem to

occur due to heterogeneous aspects of the tumor sample. For the normal sample, it suffices
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to set a threshold to exclude any sites with a variant in the germline. We also attempted

to filter out artifactual variant alleles by introducing a criterion based on the strand bias

pattern in the tumor exome-seqs. If the variant allele shows much more extreme strand bias

compared to the reference allele, specifically, more than 95% or less than 5% of the variant

alleles are on the forward strand, while less than 70% or larger than 30% of the reference

alleles are on the forward strand, then we filtered out the mutation sites.

The performance of the RNA-seq validation method was assessed using the 1,945 variants

(∼30% of the total 6,692 sites) in the evaluation dataset that have the RNA-seq depth ≥ 10x.

We used the tumor vaf to rank the variants, given that the normal vaf in the exome-seq is

less than 2%. To filter out artifactual variant alleles, we filtered out the mutation site if both

the tumor exome-seq and the tumor RNA-seq showed strong strand bias (more than 95% or

less than 5% of the reads are on the forward strand) for the variant allele. The reason that

we applied different filtering criterion is because for the RNA-seq data, the correspondence

of the strand bias between the variant allele and the reference allele is much weaker even for

the “true” variants (Additional file 13C) but existing exome-seq data can help for filtering

out artifactual variants.

The performances of the two methods were summarized by ROC-like curves, showing the

true positive rate at each false discovery rate (Figure 6). (We used the false discovery rate

(FDR) instead of the false positive rate since the evaluation dataset consists of the ascertained

variants obtained using the GATK UnifiedGenotyper. Thus, only relative false positive rates

are meaningful. Instead, we chose to use FDR here since it has very intuitive scale and it

won’t change the conclusion. Note that we examined the full spectrum of stringency levels

by varying cut-offs for the GATK quality scores and for the tumor vaf in the RNA-seq data.)

As expected, both validation approaches show improved performances with the strand bias

filters. For the pseudo-validation method, for example, the signed GATK quality score in

the tumor sample exceeds 300 for 287 sites. Among these, 265 sites are validated as ‘true’
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somatic mutations (based on the gold-standard deep-sequencing data) detecting 80% of the

334 somatic mutations. The remaining 22 sites are false positives, but with the strand bias

filter, 18 of them are removed, dropping the false discovery rate from 8% to 1.5%. For the

RNA-seq validation method, the vaf in the RNA-seq is larger than 10% for 98 sites. Among

these, 84 sites are validated as ‘true’ somatic mutations detecting 88% of the 95 somatic

mutations with the RNA-seq depth > 10x. The remaining 14 sites are false positives. Nine

of those were discarded using the strand bias filter, dropping the false discovery rate from

15% to 5.6%. Note that we conceived the strand bias filter based on the insights learned from

the strand bias pattern in the exome-seq and the RNA-seq data in the evaluation dataset.

Therefore, re-applying the strand bias filter to the same data will obviously improve the

performances. Nonetheless, we keep this strand bias filter for the evaluation of the two

validation methods using the benchmark data, since a similar strand bias pattern is likely to

be observed using only the data from the additional 23 LUSC patients that were not used

for the benchmark study. Notice that for the RNA-seq validation method, the true positive

rate is only 90% even with the 1% threshold for the RNA-seq vaf. It is because some of the

true variants that existed in the DNA exome-seq data did not appear in the RNA-seq due

to the variation in the expression level as well as the sequencing depth.

Comparing the performances of callers in the benchmark data us-

ing the pseudo- and RNA-seq validation methods, and latent class

models.

We applied the pseudo- and the RNA-seq validation methods to the whole exome benchmark

data from 16 LUSC patients. For each validation method, we picked a specific cut-off for

convenience and illustration purposes, but across a range of reasonable cut-offs, the quali-

tative conclusions were similar. For the pseudo-method, we validated mutations as somatic
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if the signed GATK quality scores for the tumor sample and for the normal sample are >

200 and <-50, respectively. For the RNA-seq method, for the mutations with the RNA-seq

depth ≥10x (∼ 38% out of the 5,380 mutations in the exome benchmark data; Additional

file 14), we validated them as somatic if the vaf in the RNA-seq >10% and the vaf in the

normal exome-seq <2%. The chosen cut-offs for each validation method roughly correspond

to a false discovery rate less than 3% and the true positive rate larger than 80% based on

the analyses of the evaluation dataset constructed using data from 39 LUSC patients. How-

ever, the absolute values should not be emphasized since the features of the whole exome

benchmark data are likely different from the sites within the 76 genes for which the evalua-

tion dataset was constructed. For the two validation methods, we attempted to remove the

artifactual variants by applying the strand bias filters.

When submitted to the pseudo-validation method, around 75% of the mutations called

by a single caller only (1,231 sites) were validated as false positives. Notice that majority

of the mutations in the upper row in Figure 2 have disappeared from Additional file 15,

while around 85% of the mutations that were detected by three callers (1,491) have been

retained. When submitted to the RNA-seq validation method, a similar observation is made

(Additional file 16). Nonetheless, among the 1,959 sites that were called by one or more

callers and validated by both the pseudo- and the RNA-seq methods, 553 sites (∼ 27%)

have different validation status, implying that validation can be quite challenging. A part

of these differences (104 sites) occurred for the sites that were detected by all callers.

For the mutations within the targeted regions of deep-sequencing data (76 genes), vali-

dation status based on a gold-standard data is available. Thus, for those mutations, we

compared the gold-standard (GS) validation status with the status based on the pseudo- or

the RNA-seq validation method. Out of 138 sites, 14 sites are validated as somatic by the

GS method but not by the pseudo method, and vice versa for 3 sites. Almost all of the 14

former sites have low vaf (10% – 15%) in tumor exome-sequence data, and that may explain
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why missed by the pseudo method. Out of 51 mutations where RNA-seq validation can be

applied (depth > 10x), 6 sites are validated as somatic by the GS method but not by the

RNA-seq method, and vice versa for 3 sites. The former 6 sites tend to have low-to-medium

RNA-seq coverage, mostly less than 30x, and this might be the reason for losing the true

variant allele. Two out of the latter 3 sites have very low vaf (<15%) for both tumor deep-

seq and the exome-seq data. Finally, when the pseudo-validation status was compared with

the RNA-seq validation status, 10 out of 51 mutations (∼ 20%) show different status. It is

difficult to know what are the genuinely correct status for all these discrepancies, but these

observations illustrate the challenges in mutation-calling.

We also employed latent class models, which have been repeatedly used to compare multiple

diagnostic tests in medical studies when there is no gold standard data [24,25,29–32]. In the

benchmark study, multiple mutation callers were applied to the same tumor-normal paired

sequence alignments, and the decision was made on whether each position in the alignments

is a somatic mutation or not. In the absence of gold standard validation data, latent class

models offer a convenient statistical framework within which the false positive and the false

negative rates are estimated by treating the true mutation status as a latent variable (for

more details, see Materials and Methods.) We fitted the latent class model using the set of

mutations within the 76 genes, and the set consisting the whole exome data. For the set

using the 76 genes, the model assuming the conditional independence among the callers fits

the data pretty well (Pearson chi-square goodness of fit statistic is 11 with degrees of freedom

of 6). For the whole exome data, the conditional independence model does not fit the data as

well, but the latent class model with random effects having an additional parameter improves

the fit significantly (Pearson chi-square goodness of fit statistic drops from 233 to 121, and

the fitted counts look more sensible). Note that our model is equivalent to the 2LCR1 model

in Qu et al. [24], except that we let the variance component be shared between ‘somatic’ and

‘non-somatic’ sites. We decided to use this model for the exome data, since more general
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models do not improve the fit much nor change qualitative conclusions. The observed and

the fitted counts using the latent class models are summarized in Additional file 17.

In Figure 7, we summarized the false positive (FP) and the false negative (FN) rates

estimated using two datasets (76 genes or whole exome) by four validation methods: gold-

standard method using the deep-sequencing data, pseudo-method using the GATK quality

scores, RNA-seq validation method utilizing the variant allele fraction in RNA-seq, and the

latent-class models. Note that the gold-standard validation is not applicable to the whole

exome-data. For the pseudo- and the RNA-seq methods, the thresholds controlling the

performance were picked by us for convenience. The latent class models directly estimate

the false positive and false negative rates based on a statistical model. Since absolute values

of FP rates are less emphasized for our dataset, for an easier comparison, we re-scaled the

FP rates across the four validation methods. Within the 76 genes, around 3% of the all

variants compiled from VCF files were validated as ‘somatic’ by the GS method. We assume

that the same portion of evaluated sites are ‘somatic’ in other datasets, and re-scaled the

FP rates accordingly.

Overall, relative performances of the four callers were similar across the different datasets

and methods. Caller B is stringent and other three callers show few distinctive characteristics.

There is one exception. When the mutations within the 76 genes are validated by the RNA-

seq method, Caller B shows an unusually high false positive rate. Our manual examination

suggests that the unusually high false positive rate of the Caller B is likely due to the few sites

for which the RNA-seq missed the variant allele presented in low fraction (<20%) in both the

deep-seq and the exome-seq data. Therefore, one needs to be cautious when utilizing RNA-

seq for validation of a small dataset. Often, Caller C performs slightly better than Caller A

and D by having lower false positive rate as well as lower false negative rate, i.e., located in

a lower left part compared to Caller A and D in Additional file 18. In particular, the latent

class models clearly prefer Caller C, implying that high fraction of the calls detected by
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Caller C is shared with other callers. However, systematic comparison of the performances

was not feasible, since we were not able to explore the full spectrum of the performances of

each caller due to limited information.

Discussion

TCGA conducted benchmark studies comparing multiple mutation-callers on the same se-

quence pairs (BAMs). Our work attempted to characterize the discrepancies among the

callers in two benchmark datasets, and provide guidelines for the analysis of such compara-

tive data. To assess the performances of mutation callers, we have introduced four approaches

estimating the sensitivity and the specificity of each caller.

Our analyses revealed that the discrepancies among the callers not only occur at sites with

low-information (low sequence depth, low mapping quality, or low variant allele fraction),

but also at sites with intermediate or high-quality information. Specifically, a large fraction

of calls missed by a single caller in the LUSC benchmark dataset exhibit strong evidence

for the existence of a variant allele. Investigation of raw mutation-outputs (VCF) suggested

that the uniquely missing caller initially included such calls as candidate somatic mutations

but implemented a filter removing those. The details of these filters were not available in

the VCF files for this benchmark study, but this recognition emphasizes the value of full

details for a comprehensive analysis. In addition to that, a more comprehensive analysis

can be performed if somatic mutation qualities are included in the VCF files, allowing the

ranking of mutations within each caller and thus varying the stringency level of the caller by

changing the false positive rate. Then the full ROC curve showing the performance of each

caller can be examined.

Strand bias is one of well-known features producing artifactual variants in hight-throughput
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sequencing data, and we presume at least some of the callers used for the benchmark study

have implemented filters for strand bias. Nevertheless, our analysis of the validation data

for the LUSC samples suggests that the specifications of such filters are likely to vary con-

siderably across the callers. When we marked the mutations that have an extreme level of

strand bias for the variant allele in the tumor exome-seq sample, most of them accounted

for the discrepancies.

We observed a number of sites exhibiting artifactual variant alleles while we were construct-

ing the evaluation dataset using the deep-sequencing and the RNA-seq data in addition to

the original exome-seq data. Most of the artifactual variants show an extreme level of strand

bias for the variant allele, regardless of the corresponding level in the reference allele. Such

artifactual variants are present not only in the tumor sample but also in the normal sam-

ple. In particular, on many occasions, the artifactual variants occur simultaneously in both

tumor and normal samples, creating ‘germline-like’ variants, based on the exome-seq data.

Moreover, a substantial fraction of such variants are also present in the tumor RNA-seq data.

The accumulation of such errors repeatedly at the same genome location across different bi-

ological samples suggests that those artifactual variants are likely to occur due to the errors

in the sequencing technologies, cf. Meacham et al. [17]. The ‘germline-like’ variants based on

the deep-sequencing data also exhibit a strand bias pattern similar to the artifactual variants

found in the exome-seq data.

For somatic mutation-calling, the joint occurrence of the artifactual variants in both tumor

and normal samples could be useful for filtering out ‘non-somatic’ mutations. Any position

exhibiting the presence of a variant allele in the normal sample will be discarded, and thus

the artifactual variant in the tumor sample when the normal sample also carries it. For a

similar reason, many of artifactual variants in the tumor RNA-seq data were filtered out by

our RNA-seq validation method. Interestingly, substituting the normal exome-seq data by

the normal deep-seq data hurts the performance of the RNA validation method. The deep-
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sequencing data seems to have a higher quality and thus contains many fewer artifactual

variants, and thus filtering out artifactual variants in the tumor RNA-seq data was less

effective. A better characterization of artifactual variants remains as our future work.

Our work calls for extra caution in comparing the performances of multiple callers based

on an ascertained validation data, since ‘not attempted to be validated’ mutations should be

distinguished from ‘attempted to be validated’ mutations. For the READ dataset, validation

information for 721 sites was available, but not the information about the ascertainment,

i.e., how those sites were chosen for validation. By classifying the mutations based on the

detection status of the three callers and the validation status, we learned that almost all of

those 721 sites were initially called by one particular caller. Presumably, the experimental

validation of those sites was performed for evaluation of that particular caller’s performance,

and not for comparison of multiple callers. Such validation information can be used for

learning about individual errors of other callers but should not be used for evaluating the

performance of other callers. In fact, selecting sites for a validation study remains as an

important question to be addressed in the future not only for valid comparison but also for

better estimation of overall performances of mutation-callers.

In this study, we introduced two validation approaches, the pseudo- and the RNA-seq

validation methods. The two approaches, however, should not be considered as alternative

mutation-calling methods. The performances were evaluated based on a gold-standard data

from 76 genes, but the size of the data is rather limited and the 76 genes may not be

representative of the whole exome. Our validation methods were developed to overcome the

challenge of comparison, rather than for correcting all the biases or errors affecting mutation-

calling. In particular, the performance of the pseudo-validation method depends on how

effectively the GATK UnifiedGenotyper calls a variant in the tumor and the normal samples.

Even though we observed that on many occasions it proved its usefulness in somatic-mutation

analyses, GATK was developed for normal samples not for tumor samples. Furthermore, some
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of the mutation-callers used for the benchmark study may share with the GATK the underlying

statistical models or methods, which could result in biased inferences. However, our small

exercise in replacing GATK UnifiedGenotyper with Samtools mpileup suggests this was

not the case.

Somatic mutation-calling based on the high-throughput sequencing data is a rapidly evolv-

ing field. Currently, a limited number of somatic mutation-callers are publicly available

[33–36], but many more are likely to appear in the near future. Our paper focused on un-

derstanding the discrepancies and highlighting the challenges in comparing multiple callers.

With more details in the mutation outputs, such as mutation quality scores and the details

of filters, another interesting question to address is how to combine the calls across multi-

ple callers. A recent study by Lower et al. [37] tackled a similar problem by assigning an

FDR confidence score for each call from multiple callers, but their method requires replicate

sequencing of at least one of the tumor or the normal sample. When only a pair of tumor-

normal sequence data are available for mutation-calling, combining the calls incorporating

the information in the outputs from multiple callers is another upcoming problem.

Materials and Methods

Obtaining signed GATK variant quality scores

The GATK UnifiedGenotyper [23] is one of publicly available variant callers. For a sample

of interest, it takes the sequence data (BAM) and detects SNPs by default. The outputs

are summarized in a VCF file, which includes a list of variant positions along with the

associated call quality scores (‘QUAL’ column in the VCF). The software can produce calls

only at variant sites but also at any callable site regardless of confidence. We used an option

for the latter case to obtain variant call quality for all positions of interest. An example of
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run command is as follow.

java -jar GenomeAnalysisTK.jar -R human_reference.fasta -T UnifiedGenotyper \

-I input.bam --computeSLOD -L positions_of_interest.bed \

--output_mode EMIT_ALL_SITES -o output.vcf

For a given list of genomic positions, we ran the GATK UnifiedGenotyper on each tumor

sample and its matched normal sample. We forced it to emit variant call quality for all

positions. When no variant allele was found, the variant call quality represents a confidence

level for the homozygous reference genotype. To differentiate such positions, we flipped the

sign of the variant call quality. Therefore, a large negative value is a strong support for

the non-existence of a variant allele, and a large positive value is a strong support for the

existence of a variant allele.

Constructing an evaluation dataset

For method development, we aimed to construct an evaluation dataset that consists of a set

of candidate somatic variants for which the validation status is assumed to be known (i.e.,

determined based on the gold-standard data). For LUSC patients, variants called based on

the exome-sequence data can be validated based on the deep-sequencing data for 76 genes.

We constructed an evaluation set using the sequence data from 39 LUSC patients, which

include an additional 23 patients. Note that the exome-seq pairs, the tumor RNA-seq, and

the deep-sequence pairs were available for a much larger set of LUSC patients than the 16

patients used for the benchmark mutation-calling comparison.

To build an evaluation set that includes all somatic mutations, we first detected variants

in each tumor exome-seq data using the GATK UnifiedGenotyper [23] with a very lenient

stringency level (GATK variant quality score ≥ 5):
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java -jar GenomeAnalysisTK.jar -R human_reference.fasta -T UnifiedGenotyper \

-I input.bam --computeSLOD -L exome_annotations.bed \

--output_mode EMIT_VARIANTS_ONLY -stand_call_conf 5 -o output.vcf

When cross-checked with the mutation-call data available for the 16 patients, all but three

of the 5,380 mutations in the benchmark data were detected. From the 39 LUSC patients,

8,828 variants were detected within the 76 genes (the targeted regions of deep-sequence

data). Since we aimed to build a gold standard validation set with a high accuracy, we

retained only the variants that have high tumor deep-seq depth with ≥ 100x (8,033). By

requiring the tumor and the normal exome-seq depth to be ≥ 10x, and also by removing 17

ambiguous variants through manual examination, we obtained 6,692 variants as our final set.

After examining the deep-sequencing data at these variants (see Results), we determined the

validation status. A variant is called ‘somatic’ (334 sites; ∼ 5%) if the tumor deep-seq vaf

is > 10% and the normal deep-seq vaf is < 2%, otherwise, ‘non-somatic’. An alternative

criterion for a somatic mutation is that the signed GATK quality scores for the tumor sample

and for the normal sample are > 200 and < -100, respectively.

Utilizing latent class models

Here we provide a quick review on the latent class model assuming that mutation callers

were developed based on independent algorithms.

Suppose that K mutation-callers evaluate N positions for their mutation status (1=so-

matic, 0=non-somatic). Let Yi,k denote the observed outcome of the ith position by the kth

caller, and Yi = (Yi,1, . . . , Yi,K) be the vector of outcomes over all callers for the ith position.

Let Di denote the true mutation status of the ith position, and η the mutation prevalence,

P (Di = 1), assumed independent of i. Then, the probability of observing Yi is computed as
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follows:

P (Yi) = (1− η)P (Yi|Di = 0) + ηP (Yi|Di = 1)

Assuming that callers behave conditionally independently, given the true mutation status,

P (Yi|Di = 0) = P (Yi,1, . . . , Yi,K |Di = 0) =
K∏
k=1

P (Yi,k|Di = 0)

P (Yi|Di = 1) = P (Yi,1, . . . , Yi,K |Di = 1) =
K∏
k=1

P (Yi,k|Di = 1)

Note that P (Yi,k = 1|Di = 0) and P (Yi,k = 0|Di = 1) are the false positive and the false

negative rates of the kth caller, respectively. Therefore, there are 1 + 2K parameters: the

mutation prevalence η, and the false positive and the false negative rates of each of the K

mutation-callers.

List of abbreviations

• LUSC: lung squamous cell carcinoma

• READ: rectum adenocarcinoma

• BAM: binary version of Sequence Alignment/Map (SAM) format

• VCF: variant calling format

• MAF: mutation annotation format

• vaf: variant allele fraction
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JS, Royo R, Gelṕı JL, Torrents D, Orozco M, Pisano DG, Valencia A, Guigó R, Bayés

M, Heath S, Gut M, Klatt P, Marshall J, Raine K, Stebbings LA, Futreal PA, Stratton
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Table 1: Validation of the mutations within the targeted regions (76 genes) of the Illumina
deep-sequencing data from 16 LUSC patients. The variants included in any mutation output
(VCF) file were divided into mutation sets based the detection status of the four callers
(rows). For each variant, validation status (columns) was determined as ‘somatic’ if the
deep-sequencing data shows the signature of a somatic mutation: the vaf in the tumor
sample is > 10% and the vaf in the normal sample is < 2%; otherwise, it is as ‘non-somatic’.
Variants that have less than 6 reads in the original exome-seq data were discarded. One
mutation was such a case.

Mutation set Non-somatic Somatic
None 4292 9

Caller A only 3 4
Caller B only 1 2
Caller C only 2 0
Caller D only 6 5

Caller A and C 0 6
Caller A and D 2 3
Caller B and C 0 2
Caller B and D 0 2
Caller C and D 0 5
All but Caller D 0 3
All but Caller C 0 4
All but Caller B 3 15
All but Caller A 0 13

All callers 0 57
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Figure 1: Counts of the mutations detected by four callers in the 16 LUSC tumor-normal
exome-seq pairs. A. Venn Diagram of the mutations. B. Mutations detected by each caller or
by any caller (‘Union’) are classified based on the number of callers detecting the mutations.
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Figure 2: Distribution of the coverage (horizontal) and the variant allele fraction (vertical)
in the tumor exome-seqs. Among the mutations detected by four callers using 16 LUSC
tumor-normal exome-seq pairs, mutations detected by a single caller (upper row) or missed
by a single caller (lower row) are used. Each column corresponds to a caller that uniquely
detects the mutations or uniquely misses the mutations.
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Figure 3: Validation status of individual mutations within the targeted regions of the deep-
sequencing data (76 genes), among those detected from 16 LUSC whole exome-seq pairs
using four callers. Mutations that were detected by at least one caller (in total, 138) are
ordered by the variant allele fraction in the tumor exome-seq data. The validation status
(‘somatic’ or ‘non-somatic’) was determined based on the deep-sequencing data as described
in Table 1. A mutation is marked as ‘strand bias’ (red circle) when more than 95% or less
than 5% of the reads carrying the variant allele are on the forward strand in the tumor
exome-seq data. Mutations that were detected by a single caller only (e.g., Caller B only) or
missed by a single caller only (e.g., All but Caller B) are indicated with upside down triangle
or filled diamond, respectively.
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Figure 4: Motivation for the pseudo- and the RNA-seq validation methods. For two READ
patients (columns), the upper row shows the signed GATK variant quality scores based on
the tumor-normal Illumina exome-seq pairs, and the lower row shows the histogram of the
variant allele fraction in the tumor Illumina RNA-seq. Note that for the READ samples,
mutation calling was done by three callers (Caller H, I, and J) using SOLiD exome-seq pairs.
For the upper panels, we first compiled all the variant sites reported in any VCF file based
on SOLiD exome-seq pairs. Then, for each such site, using the Illumina exome-seq data, we
obtained the GATK variant call quality score for each tumor (y-axis) and the normal sample
(x-axis). When no variant allele was detected by the GATK UnifiedGenotyper, we flipped
the sign. Mutations that were validated by the 454 sequencing technology are colored: red
(somatic), blue (germline) and green (wildtype). Among the validated mutations, those with
the RNA-seq depth ≥ 5x were further examined for the variant allele fraction in the tumor
RNA-seq data (lower panels).
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Figure 5: Scatter plots of tumor vs normal variant allele fractions, using deep-seq pairs
(left), exome-seq pairs (middle), and tumor RNA-seq and normal exome-seq (right) from 39
LUSC patients. Each point is a variant site detected in the tumor exome-seq data using
the GATK UnifiedGenotyper. Variants detected within 76 genes (targeted regions of the
deep-sequencing data) are aggregated over the 39 patients (in total, 6,692). Using the deep-
sequencing data, we determined the validation status as ‘somatic’ if the tumor vaf is > 10%
and the normal vaf is < 2% (334 sites; red). Among the ‘non-somatic’ ones, we further
classified the variants as ‘wildtype’ if the tumor vaf is < 2% and the normal vaf is < 2%
(319 sites; green).
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Figure 6: ROC-like curves summarizing the performances of the pseudo- and the RNA-seq
validation methods. For each method, across the range of thresholds for the tumor sample, we
computed the true positive rate (y-axis) at each false discovery rate (x-axis). The evaluation
was done based on the 6,692 variant sites detected within 76 genes from 39 LUSC exome-seq
pairs, for which, 334 sites were validated as ‘somatic’ based on the deep-sequencing data. For
the pseudo-validation method, across the range of thresholds for the tumor GATK quality
scores (marked with letters), a site was identified as pseudo-positive if the tumor score is
larger than the threshold and the signed GATK quality score for the normal sample is less
than -50. When ‘SbiasFilter’ is applied, a site becomes non-somatic if more than 95% or less
than 5% of the variant alleles are on the forward strand but less than 70% or larger than
30% of the reference alleles are on the forward strand. For the RNA-seq validation method,
across the range of thresholds for the tumor RNA-seq vaf, a site was identified as positive
if the tumor RNA-seq vaf is larger than the threshold and the normal exome-seq vaf is less
than 2%. When ‘SbiasFilter’ is applied, a site becomes non-somatic if more than 95% or less
than 5% are on the forward strand for the variant allele in both the tumor exom-seq and the
RNA-seq data.
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Figure 7: Estimated (re-scaled) false positive rate (upper) and the false negative rates (lower),
using the mutations across whole exome (exome) or within the 76 genes (76genes) in the
LUSC benchmark data. We applied four approaches: validation using the gold-standard
deep-sequencing data (byGS), the RNA-seq validation method (byRNA-seq), the pseudo-
validation method (byPseudo), and the latent class models (byLatent).
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LUSC dataset READ dataset Evaluation set 

Mutation/variant 
calling algorithms 

Caller A, B, C, D  Caller H, I, J GATK 
UnifiedGenotyper 

Sources of data 16 LUSC patients 6 READ patients 39 LUSC patients 

Regions in which 
mutations/variants are 

called 

exome  exome 76 genes 

Sequence data used 
for mutation/variant 

calling 

Illumina exome-seq 
tumor-normal pairs 

SOLiD exome-seq 
tumor-normal pairs 

Illumina tumor 
exome-seq 

Gold-standard 
validation data 

Deep-sequencing 
tumor normal-pairs 

on 76 genes 

Validation 
information for 721 

mutations 

Deep-sequencing 
tumor normal-pairs 

on 76 genes 

Additional data 1 RNA-seq data for 
tumor samples 

RNA-seq data for 
tumor samples 

RNA-seq data for 
tumor samples 

Additional data 2 Illumina exome-seq 
tumor-normal pairs 

Additional file 1: Summary of the analyzed datasets. We have analyzed the mutation-calling
outputs in two datasets from the TCGA benchmark studies: the LUSC and READ datasets.
We also have created an ‘evaluation set’ for method development (for details, see Materials
and Method).
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Additional file 2: Discrepancies in the reported variants in VCF files. A. The number and
the types of variants reported in each of the four VCF files generated from a single tumor-
normal LUSC seq-pair. Other seq-pairs generate a similar graph. B. Among the mutations
that were missed by a single caller, the number of mutations that were found or not found
in the VCF file of the caller that missed those mutations. Mutations were aggregated over
the data from 16 LUSC patients used for the benchmark study.
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Additional file 3: Distribution of mutation quality score reported in VCF files. Within each
caller’s output (row), mutations from 16 LUSC patients are stratified by the number of
callers that detected the mutations (column).
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Additional file 4: Pairwise comparison of mutation quality scores reported in the VCF files.
Mutations that were detected by all callers from 16 LUSC patients are plotted.
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Additional file 5: Counts of the mutations across 6 READ patients. The mutations detected
by each caller (H, I, or J character specified in the horizontal axis) are stratified by the
number of callers detecting those mutations. The number right on top of each bar is the
number of mutations called by each caller. The number within the parentheses above the
middle bar for each READ patient is the total number of mutations detected by one or more
of the three callers.
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Additional file 7: Details of the individual mutations that were detected by a single caller
only or missed by a single caller only, among those detected within the 76 genes from 16
LUSC exome-seq pairs. The details include the validation status, detection status based on
the four callers, and the signed GATK quality score, sequencing depth, variant allele fraction,
measurement of strand bias in the deep-seq, exome-seq and RNA-seq data.
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READ-2 nonMAF unknown wildtype germline somatic
Caller H only 190 0 0 0 0
Caller I only 8 0 0 0 0

Caller H and Caller I 5 0 0 0 0
Caller J only 55 2 1 3 2

Caller H and Caller J 1 1 1 0 4
Caller I and Caller J 3 2 2 0 5

All centers 1 11 0 0 42

READ-3 nonMAF unknown wildtype germline somatic
Caller H only 128 0 0 0 0
Caller I only 58 0 0 0 0

Caller H and Caller I 14 0 0 0 0
Caller J only 62 38 168 1 18

Caller H and Caller J 1 0 6 1 7
Caller I and Caller J 0 3 51 0 24

All centers 2 0 31 1 34

READ-4 nonMAF unknown wildtype germline somatic
Caller H only 113 11 1 0 1
Caller I only 31 0 0 0 0

Caller H and Caller I 0 1 0 0 0
Caller J only 91 0 56 0 0

Caller H and Caller J 3 0 1 0 8
Caller I and Caller J 2 0 8 0 2

All centers 1 0 2 0 34

Additional file 8: Counts of the mutations called based on the SOLiD exome-seq pairs for
three READ patients. The variants included in any mutation output (VCF) file were divided
into detection status of the three callers (Caller H, I, and J). Each mutation was classified
into five groups. It is ‘nonMAF’ if the mutation found in the benchmark data but did
not appear in the TCGA colon working group mutation file (MAF as of Nov 8, 2011) nor
validated by the 454 technology. Otherwise, it was classified as ‘unknown’ (in the MAF file
but not validated), ‘wildtype’ (no variant allele found in either the tumor or the normal
sample), ‘germline’ (variant allele found in both the tumor and the normal sample), and
‘somatic’ (the variant allele is found in the tumor sample but not in the normal).
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Additional file 9: Validation results for four mutation categories across 6 READ patients. For
each mutation category (defined based on the call status), the corresponding panel shows
the counts of the mutations (number within the parentheses on top of each bar) and the
fraction of mutations in each validation group, across 6 READ patients. For the definition
of the validation groups, see the caption of Additional data file 8. Note that since only the
mutations detected by Caller J were attempted to be validated, we only present mutations
categories that ensure the detection of Caller J.
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Additional file 10: Distribution of signed GATK quality scores of tumor-normal exome-seq
pairs from 6 READ patients. For each variant reported in any of the VCF files, the GATK
quality scores were obtained using Illumina exome-seq pairs. (For more details, see the
caption of Figure 4.) The variants validated by 454 technology are indicated with color: red
(somatic), blue (germline), and green (wildtype).
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5% < Vaf−N < 35% (787 sites)

Strand bias in the reference allele
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Additional file 11: Strand bias pattern in the tumor deep-sequence data used for the evalua-
tion datset, across three variant classes defined based on the tumor and normal vafs: (1) the
normal vaf is < 2% and the tumor vaf is > 10% (‘Somatic’; left column), (2) the normal vaf is
between 5% and 35% (named as ‘Germline-like’ since the tumor vaf is highly correlated with
the normal vaf for almost all the variants in this class; middle column), and (3) the normal
vaf is between 40% and 60% (named as ‘Heterozygote-normal’ since the vaf range implies
heterozygous genotype in the normal sample; right column). The strand bias of an allele is
measured by the fraction of the reads on the forward strand among the reads carrying the
allele. Histograms using the strand bias of the variant allele are shown in the upper row.
Scatter plots showing the strand bias of the variant allele (y-axis) vs the reference allele
(x-axis) are shown in the lower row.
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Additional file 12: Scatter plots of the signed GATK variant quality scores obtained using the
tumor-normal deep-seq pairs (upper) and the tumor-normal exome-seq pairs (lower). Each
point is a variant detected in the tumor exome-seq using the GATK UnifiedGenotyper. For
more details, see the caption of Figure 5, which utilizes the same variants. For each variant
site, we obtain the GATK variant quality score using a tumor sequence (y-axis) and the
normal sequence (x-axis). When no variant is detected, we flipped the sign.
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Additional file 13: Comparison of strand bias pattern between ‘somatic’ mutations and
‘wildtypes’, in the tumor exome-seq (upper) and RNA-seq (lower). (For detailed definition
of the two types of variants, see the caption of Figure 5.) At each variant site, for each allele
of interest, we measured the strength of strand bias by the fraction of reads on the forward
strand among the reads carrying the allele. In the tumor exome-seq, somatic sites show a
high correlation between the strand bias of the variant allele and the reference allele (upper
left), while for wildtypes, the strand bias of the variant allele tends to be very extreme, i.e.,
near zero or one (upper right).
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Additional file 14: Distribution of the coverage (horizontal) and the variant allele fraction
(vertical) in the RNA-seq data. Mutations in the whole exome benchmark data from 16
LUSC patients (5,380 sites) were used.
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Additional file 15: Distribution of the coverage (horizontal) and the variant allele fraction
(vertical) of the mutations validated as positive by the pseudo-validation method in the
tumor exome-seq data.
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Additional file 16: Distribution of the coverage (horizontal) and the variant allele fraction
(vertical) of the mutations validated as positive by the RNA-seq validation method in the
tumor exome-seq data.
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Mutation set Observed 76genes Fitted 76genes Observed exome Fitted exome
None 4301 4300.99 22,461 22,455.80

Caller A only 7 7.01 476 483.91
Caller B only 3 3.00 58 56.47
Caller C only 2 2.00 322 324.56
Caller D only 11 11.02 415 419.22

Caller A and Caller B 0 0.00 14 36.99
Caller A and Caller C 6 2.67 292 211.60
Caller A and Caller D 5 2.68 164 127.92
Caller B and Caller C 2 1.54 78 103.28
Caller B and Caller D 2 1.54 74 57.05
Caller C and Caller D 5 5.78 241 326.26

All but Caller D 3 6.08 208 236.91
All but Caller C 4 6.06 104 129.06
All but Caller B 18 22.85 716 737.92
All but Caller A 13 13.14 466 372.87

All centers 57 51.94 1,667 1,676.17

Additional file 17: Observed and the fitted counts based on the latent class models used
for the benchmark data, either only using the mutations within the 76 genes or the whole
exome. For the set using the 76 genes, the model assumes the conditional independence
among the callers. For the whole exome data, a latent class model with random effects was
used.
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Additional file 18: False negative vs (re-scaled) false positive rates estimated using two
datasets (row) by four validation methods (column). For detailed description, see the caption
of in Figure 7.
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