
Annotation-Free Estimates of Gene-Expression from mRNA-Seq

Elizabeth Purdom

Department of Statistics
University of California

September 5, 2012

Abstract

Motivation: mRNA-Seq experiments provide an impressive array of information about the transcriptome of a
sample. Yet in organisms that undergo alternative splicing, correctly estimating the standard measures of gene ex-
pression can be a complex problem because of complications caused by alternative splicing. The simple estimate
based on the number of fragments aligning to a gene has the potential to be biased. Many methods now exist that
estimate individual isoform estimates, which can then be combined to give accurate gene expression estimates. How-
ever, isoform estimates require either knowledge of the transcriptome or the ability to accurately predict it. Yet many
mRNA-Seq experiments are run on organisms with no known genome, much less a transcriptome. In addition, these
methods are computationally intensive and usually require access to the raw reads, making them difficult to use for
researchers who want to analyze large numbers of samples.

Results: We examine estimates based on summaries that are easy to obtain and analyze, specifically methods
based on counting the number of sequenced fragments that overlap exons. We compare these methods to isoform-
based gene estimates. We show that in simulated data our gene estimation methods based on exon counts give
reasonable gene estimates in the presence of moderate alternative splicing. We compare all of these methods on two
mRNA-Seq datasets and observe little difference between any of the methods. In which case, simple count-based
methods can be sufficient and allow the experimenter to make use of statistical techniques that appropriately account
for the biological variation between samples.

Contact: epurdom@stat.berkeley.edu

1 Introduction
mRNA-Seq data is rapidly becoming the platform of choice for high throughput mRNA studies because of its addi-
tional sensitivity. Sequencing data also allows in a single experiment the examination of many questions that would
have previously required specialized microarrays, such alternative splicing, mutation analysis, or allele specific expres-
sion. However, gene expression estimates often remain of primary interest. When the sequenced organism displays
no alternative splicing, estimates of gene expression estimates are straightforward and are based on the number of
sequenced fragments that are observed to have come from the gene. Using these counts, statistical approaches of
varying levels of complexity can be used to test for differential gene expression (Robinson and Smyth, 2007; Anders
and Huber, 2010; Zhou et al., 2011). Issues regarding normalization and bias-correction have arisen that are specific
to the sequencing technology and are continuing to be addressed (Dohm et al., 2008; Oshlack and Wakefield, 2009;
Bullard et al., 2010; Hansen et al., 2010; Li et al., 2010), but in general there is a fairly straightforward path toward
reproducing the types of analyses that are traditional in microarray studies.

However, the presence of alternative splicing makes even a gene-centric analysis of mRNA-Seq data conceptually
more difficult. In this case, the biological definition of gene-expression would usually be understood to be the total
amount of expression across all isoforms of the gene. The count of the number of fragments mapping to the gene is
expected to be an underestimate of gene expression when alternative splicing is present in the gene, and the level of
this bias depends on the alternative splicing behavior of the gene.

Another route to obtaining gene expression estimates is to estimate the expression of the individual isoforms and
to estimate the gene-expression estimates from the isoform estimates. Isoform expression levels cannot be reliably
estimated from simple counts of fragments overlapping the isoform, and statistical methods have been proposed to
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estimate isoform levels that account for the probability that a read originating from the different isoforms (Denoeud
et al., 2008; Jiang and Wong, 2009; Trapnell et al., 2010; Richard et al., 2010; Salzman et al., 2010). These methods
rely on a model for how reads are distributed across a given isoform, from a simplistic model of uniform distribution
of reads across an isoform to more complicated models and corrections (Li et al., 2010). These are conceptually
straightforward estimates that are consistent if the model used in estimation is correct and if the set of isoforms is
known and is identifiable (Hiller et al., 2009). However these methods require knowledge of the set of possible
isoforms for a gene based on previous annotation; alternatively, the set of isoforms must be estimated from the data
(Trapnell et al., 2010; Guttman et al., 2010).

From a practical perspective, another limitation of isoform deconvolution methods is that they require access to the
raw alignments and are fairly computationally intensive. With large sequencing projects, hundreds of such samples
must be processed, and acquiring the raw data can be onerous, particularly since there are important privacy concerns
regarding access to sequencing data. We consider here simpler estimates of gene expression, based on simple count
summaries, and evaluate whether they are viable alternatives to the isoform-based methods. The most obvious such
method is the total number of sequenced fragments within the boundaries of a gene, mentioned above.

We also propose and evaluate methods of estimation of gene expression based on more detailed exon-level mea-
surements of expression. The estimates we propose based on exon summaries are compelling because they are easy
to store and exchange but provide more detailed information about the internal behavior of the gene, for example in
determining uniformity of coverage or other quality control problems. The only knowledge of the splicing behavior
that is needed is the location of the exon boundaries. These boundaries can be based on previous annotation, on junc-
tions and exons discovered de novo (Bona et al., 2008; Trapnell et al., 2009; Bryant et al., 2010), or a combination of
the two. Compared to isoform prediction, prediction of exon boundaries is a much easier task. Because the data unit
is at the exon level, rather than individual reads, the computational complexity of these estimation methods is trivial
compared with that of estimating individual isoforms.

Similar to microarray methods, our methods for summarizing exon-counts into a single gene estimate rely on
robust methods of estimation; the robust methods can hopefully account for both unknown alternative splicing as
well as possible errors in our modeling of the data. However, to combine these exon summaries into an estimate of
gene expression requires normalizing the different length exons to the correct scale, and we also derive more sensitive
techniques for normalizing exon counts.

We show that that for moderate amounts of alternative splicing in the sample, the gene estimates we investigate
are accurate and similar to isoform-based estimates, which are more computationally expensive and require more
knowledge of the existing gene structures. In many settings, such count-based estimates may even be preferred, such
as when the data comes from organisms for which there is no existing annotation on the set of possible isoforms.
Even when there is comparatively complete transcriptome information, the low computational overhead can make
count-based gene expression estimates useful for initial quality control checks of the data or for when there are large
numbers of samples. Count-based summaries, including our exon-based summaries, can also be easily incorporated
into existing statistical frameworks for differential expression analysis (Robinson and Smyth, 2007; Anders and Huber,
2010), which have been shown to be important in accounting for the biological variability between samples.

2 System and Methods
Gene expression refers to the total amount of mRNA transcripts originating from a gene in a sample library, where
the total amount means the total over all transcripts in a gene. We let µ be the expected number of transcripts from
a gene if sampling full mRNA transcripts from the library at the given sequencing depth1 (and thus µ will depend on
the depth at which the sequence is sampled; µ can be normalized by dividing by the sequencing depth or with more
accurate normalization methods, see Bullard et al. (2010)). We will refer to the quantity µ as the expression level of
the gene. We note that in fact the library is fragmented before sequencing, so that the expected number of fragments
(or equivalently read counts) that actually comes from the gene in an mRNA experiment is not equivalent to µ; rather
we define µ as the rate at which transcripts from the gene would have been sampled from the original mRNA pool
before fragmentation.

Similarly, let λt be the expression level of an isoform t associated with the gene. Then the gene expression level µ
is given by sum of all expression over all transcripts, µ =

∑
t λt. Isoform deconvolution techniques described in the

introduction explicitly try to estimate the λt and then estimate µ by summing the λt.

1Up to an unidentifiable constant that is the same across samples
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The simplest alternative gene estimate is a count of the number of fragments mapping within the gene boundaries,
divided by the total length of the gene. If there is only a single isoform from a gene, then this is the same as the
isoform deconvolution estimate, assuming a simple model of fragment distribution (see Supplementary Text). In what
follows, we call this estimate the ‘total’ gene estimate. The total gene estimate is proportional to the RPKM estimate
(Mortazavi et al., 2008), though RPKM estimates also divide by the total sequencing depth so as to normalize across
samples.

The total gene estimate will underestimate the gene expression if there is alternative splicing since there will be
less fragments than expected coming from those regions that are spliced out; similarly, if there are regions of poor
quality, such as regions of poor mappability, these can negatively influence the gene estimate. Exon counts, based on
a smaller portion of the gene, have the potential to pinpoint the location of such irregularities and in doing so could
be excluded from the estimate of gene expression. We propose robust methods to seamlessly downweight exons that
are poor predictors of gene expression (whether due to quality problems or alternative splicing). The basic premise
of estimating gene expression from exon-level expression is that many of the exons will be constitutive (contained in
all the transcripts expressed by the gene), and thus will be good estimates of µ. Clearly, alternatively spliced exons,
which are not contained in all of the expressed isoforms, will not follow this pattern – they will will be expressed at a
level less than µ depending on both the set of isoforms in which they are contained and the expression level of those
isoforms – therefore exon-based methods will handle only limited amounts of alternative splicing. Importantly, to be
constitutive for these purposes, it is only necessary that the exon be contained in all of the isoforms actually expressed
in this sample, not all possible isoforms that the gene can produce.

In what follows, we denote our exon-level counts for an exon τ , as Yτ .

2.1 Normalizing Exon Counts to a Standard Expression Level
Our premise for exon-based estimates implies that we can convert our exon-level counts Yτ into reasonable estimates
of the exon’s expression, defined as the expression of the transcripts that include the exon τ : µτ =

∑
t:τ∈t λt (where

in the case of constitutive exons, µτ = µ, the gene expression for the sample).
It is clear that many factors contribute to different exons having a different level of expected overlapping fragments.

The most obvious is due to the different length of exons. Because of fragmentation of the isoforms before sequencing,
longer regions are expected to represented at higher rates than shorter regions, and therefore the exon levels must be
normalized. This has been long recognized, and measures such as RPKM (Mortazavi et al., 2008) divide by the region
length for this reason. More precisely, we would like there to exist a fragmentation normalization constant cτ so that
E(Yτ ) could be written as cτµτ , in which case Yτ could be corrected by cτ to obtain an underlying expression of that
exon, such as is done with RPKM, where cτ ∝ |τ |.

In fact, the expected number of fragments overlapping an exon depends not just on the length of the exon. Rather,
the expected overlap depends on 1) the total number of possible locations for a fragment that would result in the
fragment overlapping the exon and 2) the varying probability of fragments in these locations to get sequenced. The
total number of possible locations is roughly proportional to |τ |, as we discuss further below, which is why generally
the length of the exon is roughly the right normalizing factor to bring exon-level expression to the correct value. But an
exon’s position within the transcript – namely its distance to the termini of the transcript – will influence the possible
number of locations that overlap an exon. This is because there are fewer possible locations for a fragment that result
in the sequenced portion of the fragment overlapping an exon at the terminus of the transcript, as compared to an exon
in the middle of the transcript (this will be true for both paired and single-end sequencing).

There has similarly been a great deal of evidence that different locations have varying probability of being se-
quenced or mapped (Dohm et al., 2008; Hansen et al., 2010). We will for convenience assume fragments are equally
likely to be sequenced from any starting position in a transcript, but we will return to this assumption in the discussion.

Under this uniform assumption, we can make more precise what is a reasonable definition of the fragmentation
normalization constant. We assume that the lengths of fragments that are sequenced follow a known distribution H
and that Ft is the expected number of fragments contributed by one transcript of isoform t after fragmentation. Then
if each isoform t in the gene is expressed at level λt, the expected number of fragments overlapping an exon can be
written explicitly (see Supplementary Text),

E(Yτ ) =
∑
t:τ∈t

λtFtEH(
Kt
τ (`)

Lt − `+ 1
) =

∑
t:τ∈t

λta
(t)

τ (1)
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Figure 1: Boxplots comparing the predicted versus the observed number of exon counts for simulated data. Three
methods for predicting the expected value are compared: the simple length correction (white), the exon correction
factor cτ described in the text (grey), and the true factor a(t)

τ based on knowing the complete information for each
transcript (black). Exons are split into whether they are at the terminus of the gene or not. For all three methods the
expected value is calculated by

∑
t:exon∈t a

(t)
τ λt (where a(t)

τ is a constant value for all transcripts for the first two
methods) and λt is the true expression value of the isoform used in simulating the data.

where the sum is taken over all transcripts that contain the exon τ . Kt
τ (`) is the number of distinct starting locations

in transcript t such that a fragment of length ` overlaps exon τ . Kt
τ (`), as discussed above, is isoform-specific and

depends on the location of the exon within the isoforms t, which can vary for different isoforms. We show how to
calculate Kt

τ (`) explicitly for paired-end or single-end reads of length r in the Supplementary Text.
This equation shows that even under this simple model a(t)

τ is isoform-specific and a function of the number of
possible locations for a fragment of a possible length, averaged over the distribution of fragment lengths expected.
Therefore, there is not a single fragmentation normalization constant cτ for an exon, i.e. E(Yτ ) 6= cτµτ .

However, under two plausible scenarios, the value of Kt
τ (`) is independent of isoform: 1) when the exon is far

from the either terminus of all the isoforms that contain τ or 2) when the exon is the terminus in all the isoforms
containing τ . In these cases, and therefore a(t)

τ can be reasonably approximated to be the same for all isoforms and
gives a fragmentation normalization constant cτ for the exon. Therefore, in our analysis, we make a simplifying
assumption that exons are in one of these two situations and hopefully come close to our goal of correctly normalizing
exon counts for most exons. Specifically, we classify each exon as either being the terminus of the gene or not and
calculate the corresponding cτ according to one of the two cases described above.

The resulting cτ is not proportional to the length of the exon, but varies for different length exons, see Supplemental
Figure S1. For paired-end data cτ is roughly equal to 2|τ | for smaller internal exons, |τ |+constant for longer internal
exons, and |τ | terminal exons; for single-end data, cτ is |τ | for internal exons, |τ |/2 for shorter terminal exons, and
|τ |/2 + constant for longer terminal exons (see Supplementary Text for precise equations).

In Supplemental Figure S2 we give a comparison of the values ofKt
τ (`), EH(Kt

τ (`)), and cτ for a simple example
of two isoforms. Our example illustrates that for some of the exons, there can be a large difference between a simple
length correction based on τ and our approximation cτ , particularly for terminal exons. Furthermore, we can see that
our simple assumption that allows us to calculate cτ without isoform knowledge will not be a good approximation for
some exons, particularly those that are the terminus of some transcripts but are not the terminus of the gene.

Using simulated data, we compare the exact calculation of EH(Kt
τ (`)) with our cτ based on the approximations

described above. Figure 1 demonstrates how well our approximations of Kt
τ (`) perform compared to the observed

exon-overlap counts for simulated data. We can see that by using the more careful prediction of cτ we do better
than the simple length correction for predicting the observed data. We can make the same comparison with real data
(Figure 2 and S3), where we use only exons annotated to be constitutive as a proxy for the truth (see Section 2.3 for a
description of the data); in this case, the difference in the fit of the estimates only noticeably differs for terminal exons,
where it is unclear whether the fit is substantially improved.

The difference is most striking for the terminus exons – where there is the largest discrepancy from the standard
length-based correction. They will obviously form a small percentage of exons in any gene. Therefore we do not see
a large difference in our gene-estimates and the length-based correction is probably generally sufficient. However,
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Figure 2: Boxplots comparing the predicted versus the observed number of exon counts for an AML tumor. The
expected value was calculated by multiplying the estimated gene expression value by either the correction factor cτ
(grey) or the length correction (white). Only exons annotated as constitutive are considered. The gene estimates are
from the symmetric robust method.

we note that there are many situations where exon-level expression are used, such as visualization of the data or for
evaluating the uniformity of coverage, in which case more explicit calculations such as we present here are quite
useful.

2.2 Methods for estimating gene-expression
The simplest estimate of gene expression is the “total” estimate described earlier. An alternative and equally simple
estimate is to take the average of exon counts appropriately normalized, Yτ/cτ . If E(Yτ ) = cτµτ and µτ = µ (i.e. no
alternative splicing), the average is also an unbiased estimate of µ. It is generally less efficient, but will often be more
robust to alternative splicing or other irregularities than the sum because each exon contributes equally to the estimate
of µ regardless of its size or level of expression. Indeed the mean generally performs similarly to our other robust
methods described below. In contrast, the total fragment estimate can be dominated by longer exons which have more
counts, and will therefore be sensitive to deviations from µ in these exons, for example if the exon is alternatively
spliced.

In analogy with microarray methods for estimating gene expression (Irizarry et al., 2003), we can alternatively
create a linear model for the log expression data, with the Yiτ as our observed data, and robustly fit the parameters.
Because the Yiτ are counts, an appropriate way to do this is to create a generalized linear model (GLM), which for
Poisson data relies on the model

E(Yiτ ) = θiτ (µ) = exp(log cτ + xTiτµ),

where µ = (µ1, . . . , µn)T is our vector of gene expression values. In the case of estimating the gene expression, our
linear model is just the simple estimate of the mean µi for each observation (so that xiτ = ei ∈ Rn is just a vector
with one in the ith position and zero otherwise), but could be expanded to estimate differential expression between
groups, for example.

If we assume the Yiτ are Poisson and find the maximum likelihood estimate of µ, then our estimate is roughly that
of the sum estimate, again giving higher priority to those Yiτ with higher counts. We propose to use a robust estimate
to down-weight those Yiτ whose expected value poorly corresponds to the model, whether due to alternative splicing
or other factors. We follow the work of Cantoni and Ronchetti (2001) to create a robust alternative for fitting gene
estimates.

If we assume a distribution for the counts where the mean and variance are equal, as with the Poisson, the standard
GLM gives an estimating equation of µ as the solution to∑

i,τ

ψ(riτ (µ))
∇θiτ (µ)

θiτ (µ)1/2
− a(µ) = 0,
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where a(µ) is a correction factor for consistency and ψ is a function that weights observations based on their stan-
dardized residual from their expected value. For the standard GLM, ψ(r) = r, which can allow large outliers to
highly influence the estimate, but the more robust version of Cantoni and Ronchetti (2001) downweights the impact of
outliers by using the Huber function to cap the penalty that is paid for large deviations in either direction. In the setting
of gene estimation, our deviations might be expected to be largely due to some exons being alternatively spliced, in
which case the Yiτ would consistently underestimate µi, and thus we also consider an asymmetric penalty function
that only caps the penalty for large negative deviations.

In what follows, we assume that our exons follow a distribution within a sample that has equal mean and variance,
in which case the standardized residual is given by,

riτ =
Yiτ − θiτ (µ)

θiτ (µ)1/2
.

We note that this addresses only the variations among exons in the same sample, and does not address the variation
across samples, which is likely to not have equal mean and variance. The GLM framework could be extended across
samples and allow for sample variability by changing the score function to allow for an overdispersion parameter per
sample, resulting in a model with equal mean and variance within the sample, but overdispersion across samples.

Note that we do not include an exon effect eτ in our predictor vector xiτ . This means that the system of equations
can be solved separately for each observation i. There are many reasons to believe that some effects per exon would
be shared across samples, such as GC biases or mappability. However, in order to have a identifiable model, an exon
effect will require a constraint as to the relationship of the exon effects. The standard choice in constraints is that the
exon effects sum to 0 which effectively shifts the average exon effect to the estimate of µi. This interferes with our
biological interpretation of µi as the total amount of expression across isoforms, and instead µi becomes the average
expression across exons. This is also a conceptual problem with evaluating differences in exon effects from a GLM
to detect differential alternative splicing between groups: because the exon effect is defined relative to a µi that is
not total expression, differential alternative splicing of a single exon can be either diffused across the gene and/or be
identified to the wrong exon.

2.3 Data Processing
To create simulated sequencing data, we randomly selected gene models from Ensembl annotation for a total of 70
genes and 415 transcripts (see Table S1 in the Supplementary Text). We note that our distribution of genes over-
represents genes with large numbers of transcripts compared to the Ensembl annotation where smaller numbers of
transcripts per gene are more common. For each gene, we generated true expression rates for the transcript and based
on this parameter generated a random number of fragments per transcript using either a Poisson model or a Negative
binomial model. The fragments were assigned a length from a truncated normal distribution. The position of the
fragment within the transcript was either uniform across the transcript or proportional to the GC content of fragment.
The resulting 75bp mate pairs of reads were then aligned to determine all transcripts for which they were compatible
and also which exons the reads overlapped (see Supplementary Text for further details).

For real mRNA-Sequencing data, we used two sets of data: samples from commercial-grade Brain and UHR
mRNA used in Bullard et al. (2010) and samples from AML tumors sequenced as part of The Cancer Genome Atlas
(TCGA) project. For each data sample, we aligned the reads to the GTF annotation file from Ensembl 57 using TopHat
version 1.3.0 (Trapnell et al., 2009) and created exon overlap counts for each using internal programs. The MAQC
data are single-end, 35bp reads from Illumina’s Genome Analyzer II, while the AML tumors are paired-end, 50bp
reads.

Using the transcript annotation, we defined “exons” to be a contiguous region of the genome where all of the bases
in the exon are always either present or absent in the same set of transcripts. We note that there are different possible
ways to count the number of fragments that contribute to the counts per exon. We choose to count any fragment
whose sequenced portion overlaps the exon (see Supplementary Text S3); in this way there is no difficulty in counting
fragments that overlap multiple exon regions.

For the AML samples, we also aligned the reads directly to the transcripts provided by Ensembl using Bowtie
(Langmead et al., 2009) and created genes estimates via isoform deconvolution. In order to make the gene estimation
methods comparable, we only considered fragments that were successfully aligned by both alignment strategies. We
also only considered genes that contained no multiply-mapped fragments in either mapping strategy; genes were also
filtered to only protein-coding genes with non-zero overlap counts. This resulted in 20M aligned fragments and 2,000
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Figure 3: Boxplots of the accuracy of the estimates of gene expression in simulated data. The 70 simulated genes are
divided into five categories based on the proportion of exons in the gene that are constitutive in the gene and within
those categories, the individual simulations are pooled together across genes. Accuracy is measured with χ2-residuals:
the difference between the estimate and the truth, divided by the square-root of the truth.

genes, depending on the sample considered. When the analysis required normalization, we used the Upper-Quartile
method of Bullard et al. (2010). See Supplementary Text S2 for more details regarding the data processing.

3 Implementation

3.1 Simulations
We first evaluate our gene-estimation method using simulated data on randomly selected gene models described in
Section 2.3. Using this data, we estimate gene expression by 1) estimating λit using our implementation of a Pois-
son deconvolution, 2) the robust GLM(s) described above, and 3) the total gene count (see Supplementary Text for
a full description). In the simplest case where the reads are precisely Poisson and all of the annotation is known
exactly, we see in Figure 3 that the robust methods give reliable estimates of gene expression when there is moderate
alternative splicing (60% or more of the exons in a gene are constitutive) and out-performs the total counts estimate,
which is biased downward. The asymmetric penalty function performs slightly better in this context than the other
robust alternatives, though as we will see this doesn’t necessarily hold with real data that have additional sources of
variation. With extensive alternative splicing in a gene there is not enough constitutive signal to recover the gene
expression estimates. Thus, all the methods become increasingly downward biased as the percentage of constitutive
exons decreases, except for the isoform method which uses the precise transcript information. Indeed, if it is known
which exons are constitutive and the robust methods use only those exons as inputs, the robust methods continue to
give reliable gene estimates for genes with large alternative splicing, though with increased variance since less of the
data is used (Supplemental Figure S4).

When the underlying distribution of fragment counts varies from the assumed Poisson model – for example with
the reads being distributed as a Negative Binomial – the variability of all of the estimates increases (Supplemental
Figure S5). In this case, the improvement in accuracy observed for the isoform deconvolution is somewhat diminished
relative to the variability of its estimates. Similarly, when the position of the fragment depends on the fragment’s GC
content, the robust estimates perform closer to that of the isoform deconvolution for moderate splicing.

In the simulations described above, the gene expression estimates given by the isoform deconvolution assume the
annotation is accurately known. If some isoforms are missing or are misspecified in the annotation, the isoforms can
be poorly estimated and sometimes the resulting gene expression estimates are also affected. In our simple simulation,
we see that when an important isoform is missing from the annotation (e.g. an isoform representing 10% or more
of the total gene expression), isoform deconvolution can also result in severely downward-biased estimates of gene
expression. In our simulations, however, missing isoforms tend to influence the gene expression most strongly when
there is also a low percentage of constitutive exons in the gene. Supplemental Figure S6 demonstrates this phenomena
for three specific genes, but the pattern was seen generally across all of the genes. While this is a simplified setting, it
suggests that in the the setting where the robust exon-level methods are working well, gene expression estimates from
isoform deconvolution are also robust to mild problems in the annotation.
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Figure 4: Boxplots of the difference in the isoform gene estimates from the count-based gene estimates after UQ
normalization of the estimates. Genes are grouped based on the proportions of exons in the gene that are annotated to
be constitutive. For comparison an exon-based estimate (asymmetric Robust GLM) using only annotated constitutive
exons as input is shown in white.

3.2 Real Data
We apply the competing gene estimation methods on two sets of real data: 1) samples from commercial-grade Brain
and UHR mRNA used in Bullard et al. (2010) with corresponding PCR data available from the MicroArray Quality
Control (MAQC) study (Shi et al., 2006) and 2) samples from AML tumors sequenced as part of The Cancer Genome
Atlas project.

The differences between the count-based methods is generally small, as is their difference from the isoform decon-
volution in the AML sample, see Supplemental Figure S9. In particular, the total fragment gene estimate is generally
no different from the isoform deconvolution estimate, perhaps suggesting that there are low levels of alternative splic-
ing in the AML samples we examine. In those situations where there is a difference, the total fragment estimate
under-estimates the gene expression as expected. The other exon-based count methods also under-estimate gene ex-
pression, as compared to the isoform-deconvolution, and generally do not match the isoform-based estimates as closely
as the total fragment estimate.

In practice, it is not the absolute measurement of gene expression that is most important, since experiments com-
paring multiple samples must be normalized to a common level (Mortazavi et al., 2008; Bullard et al., 2010; Robinson
and Oshlack, 2010). After normalizing the gene estimates, we see that as in our simulations, moderate levels of
annotated splicing result in similar bulk gene expression estimates, with the symmetric robust GLM being perhaps
slightly better than the other exon-based methods. With large amounts of alternative splicing, all of the methods tend
to under-estimate the gene expression, though when only annotated constitutive exons are used as input this problem
is ameliorated for the symmetric robust GLM. The more noticable difference in the methods occurs in the variability
of their difference from the isoform-deconvolution estimates. The symmetric robust GLM, while in average tracking
the isoform estimates, also shows the greatest variability.

We can also consider how well the gene estimates predicted the observed exon counts by calculating the expected
value of the exon counts using the estimated gene expression given by a method. However, in order to convert the gene
expression into the scale of exon counts, we must make use of a fragmentation normalization constant as well. After
doing so, we see evidence of the effect of the choice of the fragment normalization constant (Supplemental Figures
S7 and S8). Surprisingly, the isoform-deconvolution has the poorest fit to the exon counts for the AML data for both
cτ and the length normalizations of the exon, with the isoform predictions overestimating the expected level of exon
counts even for genes with small levels of alternative splicing. If we trust the isoform estimates, this indicates that
both normalization constants are too large and predict too many overlapping reads. In both the AML and MAQC
data, the predicted exon counts from the symmetric robust method best fits the observed exon counts across a range
of alternative splicing levels for either choice of our fragmentation normalization constant (if the same normalization
constant was used in estimating the gene effects).

In evaluating differential expression between the samples, neither the AML tumors or the MAQC data showed any
substantial differences between the methods (Supplemental Figures S11,S12, S13), nor did they show any difference in
correlating to the gold-standard PCR data. This is not surprising, since already we saw that normalizing the estimates
made the estimates of gene expression basically equivalent between methods. Furthermore, any shared biases or
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shifts in gene estimation would cancel out for differential expression; only differential alternative splicing between
samples would have an effect. In short, for the most common application of gene expression estimates – comparison
of expression analysis between samples – the differences between the methods is irrelevant for the bulk of genes we
examined, assuming they are correctly normalized. Even using the total fragment count does not show a measurable
difference in estimates of differential expression for this data for most genes.

We emphasize that since we categorize genes only by with levels of all possible alternative splicing known in our
annotation, the percentage of actually occurring alternative splicing in our sample is likely to be much less than that
indicated by the annotation. Indeed, many of the genes may show little or no alternative splicing in our samples, so
the annotated level of alternative splicing are just indications of the true alternative splicing.

We also note that using only those reads from constitutive regions generally results in a large loss in data. This
loss can result in significant reduction in power for GLM-based methods such as Robinson and Smyth (2007); Bullard
et al. (2010); Anders and Huber (2010). In the samples we investigated, we saw little improvement in restricting the
analysis to constitutive measurements.

4 Discussion
Exon expression levels are an intuitive way to summarize the large amount of data produced by mRNA sequencing
experiments, but for many experimenters, the question of interest remains gene expression estimates. We give methods
for creating gene expression estimates from exon expression summaries, and show that for moderate amounts of
alternative splicing in the sample, the estimates will be generally reliable. Indeed for most real data sets, we expect
that there will be little difference in the estimates for most purposes. We also give a conceptual basis for calculating
the correct normalization of the exon counts to account for the actual number of fragments that can be in the exon, a
consideration particularly important for exons at the terminus of transcripts. The impact on our gene estimation is not
large, since genes consist mostly of non-terminal exons, but the principles of normalization can be important for other
aspects such visualization and quality-control of mRNA-Seq, which is often done using exonic regions of the genome.

We demonstrated our ideas with some simplified assumptions, but as frequently alluded to, more complicated
models and assumptions can be incorporated which would only affect the calculation of the normalization constant
per exon, cτ . An obvious generalization can come from data-derived distribution of the fragment lengths. Other
biases, such as GC-bias and mappability could be incorporated as well but to be exact will generally require transcript
information since they require information about the entire fragment. Alternatively, these types of bias could be fit into
the larger GLM and the appropriate adjustments made via the GLM. Regardless, the calculation of cτ does not require
processing all of the raw reads, but rather parameters of the exon τ , such as position within the gene or transcript.

While our estimates of gene expression are reasonable for moderate amounts of alternative splicing, they do break
down in simulations when there are not enough constitutive exons to give a reliable signal of the overall gene expres-
sion. In contrast, explicit deconvolution of the isoform estimates can often give good estimates of gene expression
regardless of the level of alternative splicing, particularly when there is reasonably complete annotation of the genes;
indeed our data examples are all with human samples with a relative wealth of knowledge. And while the differ-
ences are striking in simulation, in our examinations of real data the differences are small, probably due to lower
levels of alternative splicing, and generally don’t effect our estimates of differential expression. Furthermore, many
experimenters are using mRNA-sequencing for organisms where there is no annotation about the possible isoforms.

Another interest in having gene expression estimates is to be able to do quick, initial quality control checks of the
data as it is being produced. Count-based gene expression estimates can be quickly computed from exon summaries,
giving a fast avenue to performing quality control, compared to isoform deconvolution. Similarly, as large sequencing
data is produced (e.g. The Cancer Genome Atlas project) it becomes infeasible for interested researchers to download
and process all of the raw sequencing data; privacy concerns also make this a complicated endeavor. Smaller sum-
maries, such as exon summaries, are much much more portable, and will allow researchers to refit and compare the
effects of different models for large numbers of samples without needing the sensitive raw data files on which isoform
deconvolution relies.

Furthermore, previous work has shown the importance of taking into account the biological variability between
samples, using models of variation across the samples, such as the negative binomial (Robinson and Smyth, 2007;
Anders and Huber, 2010), but such methods start with counts as measures of expression, making the results from
isoform deconvolution inappropriate for usage directly. Our gene expression estimates are based on standard GLM
models, and thus can be adapted to the differential expression work that has been created to estimate dispersion
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parameters for count data from mRNA-Seq.
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Supplemental Figures
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(a) Paired-End (b) Single-End

Figure S1: Plot of cτ as a function of length of τ for a paired-end and b single-end data. The correction for internal
exons is given in red, that of terminal exons in green. For the paired-end data, the length-based correction of 2(|τ |+r) is
also plotted (dashed black line); for single-end reads, the length correction is exactly equal to cτ for internal exons. The
read length for both is assumed to be 75bp and the fragment length distribution is as in the simulation: a N(250, 502)
distribution truncated to be within the interval [75, 500].
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|τ | =50bp

|τ | =150bp

|τ | =300bp

Figure S2: Simple example of the number of fragments overlapping an exon, as a function of the length of the fragment
and the transcript. : the simple gene model with two transcripts and exons labelled A-H. plots of Kτ

t (`), the number
of overlapping fragments, against the length of the fragment `, assuming 75bp paired-end reads. Each column of
plots corresponds to the Kτ

t for the exon indicated, with the red and green line corresponding to the red and green
transcript, respectively. Each row corresponds to changing the length of the exon, |τ | to a length equal to 50, 150, or
300 base pairs. Because Kτ

t (`) is a function of the distance of the exon to the end of the transcripts, these exon-length
values correspond only to the exon length of the exon considered in the plot; the distance of the exon to the end of
the transcript is kept to be the same across all rows and is equal to assuming the exons separating the exon in question
from the terminus have length 250bp.
The red and green horizontal lines show the value EH(Kτ

t (Z)) for each transcript (red or green) – the number of
fragments expected to overlap the exon when averaged across the expected distribution H of fragment lengths (in this
case a normal distribution with mean 250 and standard deviation 50, truncated to be between 100 and 500 bp). The
horizontal black line shows the approximation cτ described in the text, where each exon is either the terminus of the
gene or not; the dark grey line shows the length correction equal to 2(|τ |+ 75), and thus the same for all of the exons.

3



Figure S3: Boxplots comparing the predicted versus the observed number of exon counts for the UHR sample from
the MAQC data. See Figure 2 for details. Note that the MAQC data is single-end reads, and therefore cτ and the
length correction are exactly the same for the non-terminal genes.

Figure S4: Boxplot of the accuracy of the estimates of gene expression in simulated data using robust methods with
only known constitutive exons compared to that of the total count method and the method using isoform deconvolution.
See Figure 3 for more details.

Figure S5: Boxplot of the accuracy of the estimates of gene expression when reads are distributed according to a
Negative Binomial distribution in simulated data. See the legend for Figure 3 for more details.
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Figure S6: Boxplot of the accuracy of the estimates of gene expression in simulated data using isoform deconvolution
when not all isoforms expressed are included in the annotation. Also shown are estimates based on the asymmetric
version of the robust GLM method and the total count method. Each panel are simulations from a single gene; the three
genes each have five isoforms and differ mainly in the percentage of constitutive exons the gene. For each gene, the x
lowest expressed genes where omitted from the annotation, with x ranging from 1-3 isoforms. This resulted in three
estimates of gene expression based on annotation that missed 4-8%,20-26%, and 41-45% of the total gene expression,
respectively (the range in percentages is due to the fact that the five isoforms were randomly assigned expression
values that differed in the three genes and dropping one isoform resulted in slightly different loss in percentages in the
different genes).

Figure S7: Boxplots of observed exon counts versus that predicted for AML tumor. Predicted levels for the exons
are calculated as in Figure ??. Data is from a single AML tumor sample. Only exons annotated to be constitutive are
considered. Exons are grouped based on the estimated gene expression levels of its gene. See Supplemental Figure S8
for the similar plot for the MAQC data
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Figure S8: Boxplots of observed exon counts versus that predicted for UHR sample from the MAQC experiment. See
figure S7 for details.

Figure S9: Boxplots of the difference in gene estimates of the exon-based methods of gene estimation, as compared
to the gene estimates provided by isoform deconvolution for a single AML tumor. Genes are grouped based on the
proportions of exons in the gene that are annotated to be constitutive.

Figure S10: Boxplots of the difference in gene estimates of the exon-based methods of gene estimation, as compared
to the gene estimates provided by isoform deconvolution. Shown are the results only using the constitutive exons in
the gene estimation for a single AML tumor. See figure S9 for details.
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Figure S11: Boxplot comparing the difference in the estimate of differential expression between that of the PCR data
and the gene expression technique. Genes are grouped by the percentage of exons annotated to be constitutive in the
gene.

Figure S12: Boxplots of estimates of differential gene expression for two AML samples for different methods of gene
estimation.
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Figure S13: Scatter plots comparing the estimates of differential expression based on the PCR data and different gene
expression estimates. The y-axis is the log-difference between the estimates (PCR-Sequencing) and the x-axis is the
average log expression. Genes that are absent in either brain or UHR in the original paper Bullard et al. (2010) are not
shown.
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Figure S14: Scatter plots of the estimated gene levels for different methods applied to a single AML tumor. In the lower
left plots are scatterplots of the log2 of gene estimates; in the upper right plots are shown MA plots for comparing
the two methods (i.e. the difference in log expression vs the average log expression). Plotted are genes which are
annotated to be alternatively spliced (have at least 1 exon that is not contained in all transcripts). Shown here are
methods using the cτ correction. Some extreme genes that differ between the isoform estimates and the exon-based
estimates are not shown in this plot, see Supplementary text for more details.
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(a) High/Medium Expressed Genes (b) Low Expressed Genes

Figure S15: Boxplots of observed exon counts versus that predicted for a single AML tumor, comparing the two exon
fragmentation normalization methods. See legend for Figure S7 for details.
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Supplementary Text

S1 Description of Simulation
We randomly selected gene models from Ensembl 58 annotation so as to have 10 genes each with 2-5 transcripts per
gene, 5 genes with each of 6-10 transcripts per gene, and 5 genes with 15 transcripts per gene, with specified numbers
of transcripts per gene, resulting in 70 genes and 415 transcripts (Table S1). There were no overlapping transcripts in
this simulation that were not annotated to be from the same gene. For the 415 transcripts, we created true expression
values λt for each transcript by randomly simulating values from an exponential distribution with rate 1/50. To then
create the true expression value for the sequenced data after considering fragmentation, we rescaled the λt values by
the length of the transcript divided by the median transcript length, Lt/mediant(Lt). With these expression values,
we then simulated the number of fragments per transcript,Xt, from either a Poisson or a Negative Binomial with mean
equal to the rescaled λt expression values. For the Negative Binomial distribution, the variance expressed as a function
of the mean µ of each gene was µ+ µ2/10. For each transcript, Xt fragment lengths were simulated from a truncated
normal distribution, with the original normal distribution having mean 250bp and standard deviation 50bp, truncated to
require the fragment lengths to be 100-500bp. Then Xt starting positions within the transcript (one for each fragment
length) were simulated either uniformly from the range [1, Lt − ` + 1], where ` is the fragment length, or from a
distribution with the probability of selection proportion to the GC-content of the entire fragment. The sequences for
these fragments were then obtained and aligned to the 415 transcript sequences using Bowtie (Langmead et al., 2009),
allowing 0 mismatches and reporting all alignments.

# Transcripts per Gene 2 3 4 5 6 7 8 9 10 15
# Genes selected 10 10 10 10 5 5 5 5 5 5

Table S1: Number of genes randomly selected, broken down by number of transcripts per gene.

The alignments were processed to calculate the exons that each fragment overlapped for our robust GLM cal-
culations. For the isoform deconvolution estimates, we calculated for each fragment the length and start position
(lt(k), bt(k)) for each transcript for which the fragment aligned. Using these values, we calculated the ptk values and
found the maximum likelihood estimates per sample for the true expression values λt.

S2 Processing of the sequencing data
We processed three AML samples: TCGA-AB-2821, TCGA-AB-2843, and TCGA-AB-2888. For the AML samples,
we converted the bam files retreived from dbGap (Mailman et al., 2007) into fastq files using the SamToFastq program
provided with Picard-Tools (http://picard.sourceforge.net/). For the MAQC dataset, we downloaded
the raw reads from the SRA Archive.

For each data sample, we aligned the reads with TopHat version 1.3.0 (Trapnell et al., 2009) with the ‘no-novel-
junctions’ options activated (–no-novel-juncs) and instead provided the GTF annotation file from Ensembl 57. For the
paired-end data we set the insert size of 100bp with standard deviation 50bp; 65-75% of reads aligned as proper pairs
for most of our samples with these settings. We then calculated, per exon, the number of fragments with a unique
mapping to the genome that overlapped the exon; for paired-end data only properly paired fragments were considered.

For the MAQC data set, fragments were required to overlap the exon by 5bp. For the AML data, we also aligned
the paired data using Bowtie (Langmead et al., 2009) to the transcriptome fasta file provided by Ensembl 57. For the
Bowtie alignment to the transcriptome, we set the maximum insert size to 500 (-X), and reported all alignments (-a).
For the AML data, only reads that both aligned to the genome using TopHat and that aligned to the transcriptome
using Bowtie were further considered (see Table S2). Since these reads already met the more strenuous requirement of
mapping in both alignments, the exon overlap summaries for AML were calculated with slightly different parameters
and only a 1bp overlap was required.
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Samples TCGA-AB-2821 TCGA-AB-2843 TCGA-AB-2888
All Mate Pairs (Passing QC) 62.2M 50.1M 63.0M

Mapped with Bowtie 25.3M 17.9M 30.8M
Mapped with Tophat 44.5M 24.2M 46.5M

Mate Pairs after filtering 18.5M 12.0M 23.4M

Table S2: Counts of number of fragments at different stages for TCGA data

Number of Genes Transcripts Exons Single Transcript Genes Single Exon Genes
21,268 100,286 387,556 6,240 594

Table S3: Basic information regarding annotation after creating exon definitions for Ensembl 57

S3 Definition of Exons and Exon Overlap
Our definition of exon varies slightly from many databases. We define exons as regions of the transcriptome that
are contained in all of the same set of isoforms. Specifically, we assume that the genome is broken into regions
τ of contiguous bases, all of which are annotated to be in the same transcripts. We assume that the regions τ are
non-overlapping across the genome.

Exon boundaries were calculated using our exon definition defined above based on the transcript annotation pro-
vided by Ensembl. We also divided UTR regions from coding regions, so that for each transcript each “exon” in the
transcript is either entirely UTR or entirely coding (however, a single exon so defined could be UTR in one transcript
and coding in another transcript). See Tables S3 and S4

In this work, we use as our basic unit of exon summary the number of fragments whose sequenced parts overlap
the exon. Let Yτ be the number of fragments that overlap the exon τ , where fragments may be included in the count
of both Yτ1 and Yτ2 if the sequenced part of the fragment overlaps both τ1 and τ2. For example, with paired-end reads,
this may happen either because one mate pair overlaps both τ1 and τ2 (such as exon-exon junctions) or because one
mate overlaps τ1 and the other mate pair overlaps τ2.

S4 Calculation of gene-estimates
For each gene, we considered five methods of gene estimation: isoform deconvolution, total count, and three exon-
based summaries. The isoform deconvolution estimates were based on finding the maximum likelihood estimates
based on the model described in Section S5. The total fragment count of a gene consisted of all fragments within the
boundaries of the gene. Gene length was calculated as the total number of coding nucleotides in the gene, and then the
total count was normalized by dividing by gene length so as to give the estimate of gene expression.

The exon-based robust GLM estimates were based on solving the score functions given in the main text. The

Exon Width
(bp)

Gene Length
(bp)

# Transcripts
Per Gene

(for multi-
Tr. Genes)

# Exons
Per Gene

(for multi-
Tr. Genes)

% Constitu-
tive Exons

Per Gene
(for multi-
Tr. Genes)

Min 10 30 2 2 0.0%
1st Quartile 57 1,718 3 12 0.0%

Median 106 3,021 4 19 18.1%
Mean 206.6 3,765 6.3 23.11 29.2%

3rd Quartile 174 5,011 8 30 54.6%
Max 17040 115,900 68 374 100%

Table S4: Five-number summaries of statistics regarding annotation after creating exon definitions for Ensembl 57
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symmetric robust method used the penalty function given by the Huber penalty function,

ψsym(r) =

{
r |r| ≤ q
q sign(r) |r| > q

,

where q was a fixed constant set to 1.345. The asymmetric penalty function is given by,

ψasym(r) =

{
r r ≥ −q
−q r < −q

,

with q = 1.345 as well. Another exon-based estimate was the simple mean of Yτ/cτ for all exons in the gene.
For comparison, we also calculated all of these exon-based estimates using a ‘length’ normalization instead of cτ .

In the case of paired-end reads, we took this to be 2(|τ | + r − o) and for single end reads |τ | + r − o, where r is the
read-length and o the amount of overlap required of the exon. The paired-end reads are multiplied by a factor of two
to account for the two sequenced mate ends that can overlap them.

We also calculated all of these exon-based estimates using only those exons annotated to be constitutive within the
gene so as to give our constitutive estimates.

For the MAQC data, only exons with at least 10bp were considered in creating the exon-based gene estimates.
For AML, we considered only gene estimates for the 2,786 genes that 1) had no overlapping reads in any of the
three samples that also overlapped another gene 2) all exons in the gene were greater than 20bp, 3) was annotated as
‘protein-coding’ by Ensembl.

S5 Normalization of Exon-level Counts
We give here the derivation of our the fragmentation normalization constant cτ . We consider only our definition of
exon-overlap counts described above, but a similar derivation could be considered for other definitions by recalculating
Kt
τ (`)

We assume for simplicity that every possible fragment has a single possible alignment to the genome. We note that
this assumption allows the same fragment to have multiple alignments to the transcriptome (i.e. be compatible with
multiple different transcripts), but a single genomic alignment. We index the set of all possible genomic alignment of
all fragments by the index k.

Let ptk be the probability that a fragment from transcript t = 1, . . . , T corresponds to a specific genomic alignment
indexed by k,

ptk = P (fragment has genomic alignment k|fragment comes from t).

We assume ptk = 0 if k is not possible in transcript t. ptk might also be 0 if a certain sequence is masked in the
mapping due to repeat regions. Let Ft be the number of fragments we expect a single transcript t to contribute to the
pool of mRNA after fragmentation, which will usually be estimated as ≈ Lt, the length of the transcript t.

To be precise about which parameters are shared across samples and which are sample-specific, we will consider
the case with multiple samples. Let Yik be the number of fragments in sample i which correspond to the genomic
alignment k (generally zero or one, particularly if paired-end data). Then if each isoform t has expression level λit,
the a simple Poisson model for the distribution of Yik is given by

Yik ∼ Poisson(
∑
t

λitFtptk),

λit can be further parameterized into a portion representing the sequencing depth of the sample, λit = θiηit (e.g. for
RPKM, θi = Ni, the total number of mapped reads in a sample i). We can more simply write the expression in vector
notation

Yik ∼ Poisson(λTi ak).

where the vector ak ∈ RT consists of elements a(t)

k = Ftptk, all of which are assumed known. This is essentially the
same model as Salzman et al. (2010), but Salzman et al. instead have a constant aitk which takes the place of θiFtptk
and they assume θi = Ni; we instead allow for additional choices of normalization following Bullard et al. (2010).
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Note that if T = 1, there is no alternative splicing. In this case, the maximum likelihood estimates of λit = µi
is
∑
k Yik/Ft (if there is uniform distribution of the reads across the transcript), which is the total fragment count

estimate with Ft = Lt.
Then the exon overlap counts Yiτ are given by

Yiτ =
∑
k∈τ

Yik,

where {k : k ∈ τ} will be short-hand for the set of genomic alignments that overlap the exon τ in the required way.
Because of the additivity of the Poisson distribution and the independence of the counts Yik, then

Yiτ ∼ Poisson(λTi aτ ),

where aτ =
∑
k∈τ ak.

In order for there to be a single fragmentation normalization constant, cτ , for an exon we need that a(t)
τ = cτ be the

same across all isoforms. We show that for an assumption of uniform distribution of fragments across the transcript,

a(t)

τ = EH

(
FtK

t
τ (Z)

Lt − Z + 1

)
,

where Kt
τ (Z) is proportional to the number of unique locations k of length Z that can overlap the exon in transcript

t and H is the distribution of fragment lengths. As discussed in the main text, Kt
τ (Z) generally varies for different

isoforms. However, in certain situations, Kt
τ (`) is independent of the isoform. For such exons, we can then make the

assumption that Ft

EH(Lt−`+1) ≈ 1 and define,

cτ = EH(Kt
τ (`)).

The assumption that Ft

EH(Lt−`+1) ≈ 1 is common, since most isoform-deconvolution methods ignore such ‘boundary
effects’ in their models for ptk (e.g. Salzman et al. (2010) and Trapnell et al. (2010)).

The value Kt
τ (`) can be explicitly calculated and is a function of ` and the distance of the region τ from the 3’ and

5’ end of the transcript. In particular there are two cases when it is clear that Kt
τ (`) does not depend on the isoform

for either paired-end or single-end sequencing: when the exon is in the middle of the isoform and when the exon is at
the terminus of the isoform. For the exon-methods described in the main text, we classify each exon as one of these
two classes of exons. Specifically, if the exon is at the end of the gene it will therefore be at the end of every isoform
that contains it; otherwise, we classify the exon as in the middle of a transcript, which may be inaccurate.

In this work we make the assumption that the fragment lengths follows a known normal distribution truncated to
be within a known range of fragment length values ([50, 500]), and calculate the corresponding expectations explicitly.
Namely if Z follows a normal distribution truncated between z1, z2 then for a ∈ [z1, z2] we have,

E(Z|Z > a) =
1

Φ(z2)− Φ(z1)
{µ+ σ

ϕ(a−µσ )− ϕ( z2−µσ )

Φ( z2−µσ )− Φ(a−µσ )
}

and

E(Z|Z < a) =
1

Φ(z2)− Φ(z1)
{µ+ σ

ϕ( z1−µσ )− ϕ(a−µσ )

Φ(a−µσ )− Φ( z1−µσ )
}

For data-derived distributions H , we can calculate EH(Kt
τ (`)) computationally.

We now give a derivation of cτ . This requires requires a model for the probability ptk, which is dependent on the
type of sequencing (e.g. paired-end vs. single-end) and also the assumptions about the distribution of fragments within
an isoform. We give a derivation for paired-end and single-end reads and assume a simple model of distribution, but we
note that the same calculations can be done, either explicitly or computationally, for more complicated distributions.
Similarly, different definitions of exon overlap could be used and the calculations adjusted. Importantly, all of these
calculations can be done independently of the data of raw sequence reads and only require the exon boundaries.
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S5.1 Paired-end Reads
For the case of paired-end reads, if a fragment with genomic alignment k is known to come from transcript t, then we
know the full length of the fragment, given by lt(k), as well as its starting position of the fragment relative to the 5’
end of the isoform, given by bt(k). These are deterministic functions, given an isoform t and a genomic alignment k.

Then we can write the probability ptk as

ptk =P (fragment starts at position bt(k)| length of fragment = lt(k) & fragment from isoform t)

× P (length of fragment = lt(k)|fragment comes from isoform t).

We can write this more concisely as
ptk = ft(bt(k)|lt(k))ht(lt(k)),

where ht(·) is the probability distribution of fragment lengths coming from transcript t and ft(b|`) is the probability of
a fragment sequenced from transcript t with length ` starting at position b. We index h by t for generality, for example
for those cases where the transcript is short, and thus there is a limit as to how big the fragment can be, but generally in
this manuscript we assume that h is the same across different transcripts. Salzman et al. (2010) discuss explicit models
for h(·) under assumptions regarding the experimental protocol, but we assume that h is known or can be accurately
estimated from the data.

The distribution of starting positions given by ft could encompass a large number of possible biases, such as
GC-bias or bias from the 3’ to 5’ end. The simplest model, which we use in calculating our exon correction in the
manuscript, is that the starting position of a fragment is uniform across the transcript,

ft(b|`) =

{
1

Lt−`+1 0 < b ≤ Lt − `+ 1

0 otherwise.

Then ptk is equal for all reads that have the same length, lt(k) = `, assuming they are from transcript t, and for such
reads we have

a(t)

k =
Ft

Lt − `+ 1
h(`).

Note that Salzman et al. (2010) give their insert-length model as aitk ∝ Nih(`), which means that the models are
essentially the same if we assume Ft

Lt−`+1 is constant across transcripts.
Let Kt

τ (`) be the number of possible fragments that overlap τ and have length ` in isoform t – in other words the
cardinality of the set {k : k ∈ τ, lt(k) = `}. Then if we assume the uniform distribution of fragments across the
transcript we have

a(t)

τ =
∑
k∈τ

Ft
Lt − `t(k) + 1

ht(`t(k))

=

∫
Z+

∑
k∈τ,lt(k)=`

Ft
Lt − `+ 1

ht(`)d`

=

∫
Z+

FtK
t
τ (`)

Lt − `+ 1
ht(`)d`

=EH(
FtK

t
τ (Z)

Lt − Z + 1
)

whereEH(·) is the expected value taken over the fragment length distribution with density h(·), and the approximation
is given by the delta method.

If instead we assumed a non-uniform distribution, then the probabilities would not be the same for all reads with
the same length `, but would instead also depend on other features of the fragment k. For example, if the distribution
depended on GC-bias, instead of calculating the expected number of reads with a particular length that overlapped τ ,
the number of reads with a particular length and GC-content might need to be calculated for each exon τ .
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S5.1.1 Calculating Kt
τ (`)

We derive Kt
τ (`) for the definition of exon overlap used in the main text. Without loss of generality, we assume that

the first mate is on the 5’ end of the transcript and the second is on the 3’ end of the transcript. We assume that
within isoform t, the exon τ refers to an interval of bases [s, e], where s and e refer to positions relative to the start
position of the transcript. Let d5t ≥ 0 be the number of base-pairs separating the exon τ from the 5’ end of the isoform
and d3t ≥ 0 be the number of base-pairs from the 3’ end of the isoform. The read length is given by r, and o is the
amount of overlap with the exon required to count a fragment as overlapping an exon. Then x5 = min(d5t , r− o) and
x3 = min(d3t , r − o) are the number of base pairs that the fragment can extend beyond the exon region on the 5’ and
3’ end of the exon, respectively, still overlap the exon, and be contained within the isoform.

Recall that bt(k) refers to the start position for the fragment indexed by k relative to the start position of the
transcript; for simplicity, we will drop the subscript t. We calculate Kt

τ (`) by noting that a fragment indexed by k that
comes from transcript t can overlap the exon τ by satisfying one of three conditions:

S1. the first mate overlaps the exon and not the second

S2. the second mate overlaps the exon and not the first

S3. both the first and the second mates overlap exon.

We abbreviate the corresponding sets of fragments as S1, S2 and S3, so that Kt
τ (`) = |S1|+ |S2|+ |S3|.

We can write these as conditions on the set of possible start positions of the fragments, which means that the set
of fragments can be written in the form of {k : b(k) ∈ [x, y]}, for some coordinates x, y, plus the implied condition
x ≤ y (which is dependent not on k, but on ` and the properties of the transcript and exon). Then these sets can be
stated as,

S1. b(k) ∈ [max(s− x5, e− `+ (r − o) + 1),min(e− o+ 1, e− (`− d3t ) + 1)]

S2. b(k) ∈ [max(s− d5t , s− `+ x5 + r),min(s− (r − o)− 1, e− `− x3 + 1)]

S3. b(k) ∈ [s− x5, e− `+ x3 + 1]

Calculating the cardinality of these sets results in a straightforward set of conditional functions, based on the
relationship of ` to the transcript and the exon.

Define the following parameters:

γmax1 = max(d3t + o, |τ |+ (r − o) + x5)

γmin1 = min(d3t + o, |τ |+ (r − o) + x5)

γmax2 = max(d5t + o, |τ |+ (r − o) + x3)

γmin2 = min(d5t + o, |τ |+ (r − o) + x3)

If γmin1 ≤ r or γmax1 ≥ |τ |+ x5 + d3t , then |S1| = 0. Otherwise,

|S1| =


|τ | − (`− d3t ) + x5 + 1 |τ |+ x5 + d3t ≥ ` ≥ γmax1

γmin1 − r γmin1 ≤ ` < γmax1

`− r + 1 r ≤ ` < γmin1

0 otherwise

The calculation of |S2| is of course symmetric, with d5t replacing d3t , x3 replacing x5,

|S2| =


|τ | − (`− d5t ) + x3 + 1 |τ |+ x3 + d5t ≥ ` ≥ γmax2

γmin2 − r γmin2 ≤ ` < γmax2 ,

`− r + 1 r ≤ ` < γmin2

0 otherwise

For the final set of alignments we have that,

|S3| =

{
|τ | − `+ x5 + x3 + 1, r ≤ ` ≤ |τ |+ x3 + x5

0 otherwise
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S5.1.2 Special Cases of Kt
τ (`) independent of isoform

As described above, there are two cases when it is clear that Kt
τ (`) does not depend on the isoform: when the exon is

in the middle of the transcript and when the exon is at the terminus of the isoform.

• Exons in Middle of Transcript If we assume that ` ≤ d3t ≤ d5t , i.e. that the region is far from the ends of the
transcripts, then we also reasonably assume that x3 = x5 = (r − o) and we have,

Kt
τ (`) =

{
2(|τ |+ r − 2o) |τ |+ 2(r − o) ≤ `
|τ |+ `− 2o+ 3 r ≤ ` ≤ |τ |+ 2(r − o)

(S-1)

(S-2)

• Exons at Terminus of Transcript If we assume that ` ≤ d5t and d3t = 0 with x5 = r− o and x3 = 0 i.e. the exon
τ lies at the terminus of the transcript, then we have,

Kt
τ (`) = |τ | − o

We note that in the special case of single-exon genes, we cannot assume that ` ≤ d5t . Rather, d3t = d5t = x3 =
x5 = 0 and therefore C1 = C2 = 0, and

Kt
τ (`) = C3 =

{
|τ | − `+ +1, r ≤ ` ≤ |τ |
0 otherwise

Because in this case there only a single transcript possible, so thatLt = |τ |, we can calculate the exact correction
factor,

EH(
FtK

t
τ (Z)

Lt − Z + 1
) = Ft.

Therefore, if Ft is the taken as the length of the transcript (i.e. |τ |) then we still have the correction is exactly
|τ |. This is the estimate created by the total gene estimates – which corrects the total number of counts in the
gene by the total gene length – and is also the same as the isoform deconvolution method.

Thus the number of fragments that can overlap the exon τ that is located at the end of a transcript is just the length
of the exon, regardless of the length ` of the fragment, but for other exons, the length distribution of fragments relative
to the exon length will affect the number of fragments that can overlap it.

S5.2 Single-End Reads
For the case of single-end reads, our index k refers to genomic alignment of the sequenced end of the read and the
orientation of the alignment. For a genomic alignment k, d(k) ∈ {−1,+1} indicate whether the read mapped to the
forward or reverse strand of the genome.

From this information, assuming we know what transcript it comes from we know the position of one end of the
fragment and which end of the fragment to which it refers. We do not, however, know the length of the fragment. Let
mt(k) be the position, relative to the start of isoform t, of the end of the fragment (which may be either the 5’ or 3’
end depending on the value of d(k)). Then we can write the probability ptk as

ptk =P (fragment has alignment k|from isoform t)

=P (fragment starts at mt(k)| fragment from isoform t, d(k))P (d(k)| fragment from isoform t)

An obvious assumption is to P (d(k) = 1) = P (d(k) = −1) = 1/2 for all transcripts and alignments. If we knew the
length of the fragment, we could use the same model as with the paired-end reads. Instead we can condition on the
possible values that the fragment might have taken,

ptk =

{
1
2

∫
Z+

1
Lt−`+11{1 ≤ mt(k) ≤ Lt − `+ 1}h(`) d(k) = 1

1
2

∫
Z+

1
Lt−`+11{` ≤ mt(k) ≤ Lt}h(`) d(k) = −1
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If we do not want to assume that we know the distribution of fragment lengths, then we could use a point-mass at a
fixed value of `, which would be a fudge factor that only allows an alignment k to have positive probability of being
in isoform t only if fragments of length ` or less were compatible with the transcript. A point mass at ` = 0 would
give the simple model that is often used that does not account for the rest of the fragment and requires only that the
sequenced portion of the fragment lie within the transcript (e.g. Salzman et al. (2010)).

Then we have that Yiτ is the sum of Yik over all alignments k that overlap τ , of either orientation.
If we again assume the uniform distribution of fragments across the transcript we have,

a(t)

τ =
∑

k∈τ,d(k)=1

Ftptk +
∑

k∈τ,d(k)=−1

Ftptk

=
1

2

∫
Z+

h(`)
Ft

Lt − `+ 1
(

∑
k∈τ,d(k)=1,lt(`)=`

1{1 ≤ mt(k) ≤ Lt − `+ 1}+
∑

k∈τ,d(k)=−1,lt(`)=`

1{` ≤ mt(k) ≤ Lt})

=
1

2

∫
Z+

Ft(K
t
τ+(`) +Kt

τ−(`))

Lt − `+ 1
ht(`)d`

=EH(
FtK

t
τ (Z)

Lt − Z + 1
)

where Kt
τ+(`) is the number of fragments of length ` that overlap τ and are in the positive orientation, and similarly

for Kt
τ−(`). For convenience, we then define Kt

τ (Z) = (Kt
τ+(`) + Kt

τ−(`))/2, to be half of the total number of
fragments that could overlap τ , so as to have similar formulas as with paired-end reads.

S5.2.1 Calculating Kt
τ (`)

Using the same logic as before, we can explicitly calculateKt
τ+(`) andKt

τ−(`). For the reads with positive orientation,
we have that

mt(k) ∈ [s− x5,min(e− o+ 1, e− `+ d3t + 1)]

and for reads with negative orientation we have that,

mt(k) ∈ [max(s− o+ 1, s+ `− d5t − 1), e+ x3].

Using this information, we have that

Kt
τ+(`) =

{
|τ | − (`− d3t ) + x5 + 1 d3t + o ≤ ` ≤ |τ |+ x5 + d3t
|τ |+ x5 − o+ 1 r ≤ ` < d3t + o

Kt
τ−(`) is the same, only with the x5 and d3t changed to x3 and d5t , respectively.

Again, we have that the value of Kt
τ (`) is independent of the isoform in the same two instances.

• Exons in Middle of Transcript If we assume that ` ≤ d3t ≤ d5t , i.e. that the region is far from the ends of the
transcripts, then x3 = x5 = (r − o) and we have,

Kt
τ (`) = |τ |+ r − 2o+ 1

which is basically equivalent to normalizing the exon counts by the length of the exon.

• Exons at Terminus of Transcript If we assume that ` ≤ d5t and d3t = 0 with x5 = r− o and x3 = 0 i.e. the exon
τ lies at the terminus of the transcript, then we have,

Kt
τ (`) =

{
(|τ | − o+ 1)/2 |τ |+ r − o ≤ `
|τ | − o+ 1− (`− r)/2 r ≤ ` ≤ |τ |+ r − o

Thus the opposite appears for paired end reads: the number of fragments that can overlap the exon τ in the middle of
a transcript is just the length of the exon, regardless of the length ` of the fragment, but for terminal exons (and more
generally exons near the end of the transcript), the length distribution of fragments will affect the number of fragments
that can overlap it.
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