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Abstract. A compact metric measure space is a compact metric
space equipped with probability measure that has full support.
Two such spaces are equivalent if they are isometric as metric
spaces via an isometry that maps the probability measure on the
first space to the probability measure on the second. The result-
ing set of equivalence classes can be metrized with the Gromov-
Prohorov metric of Greven, Pfaffelhuber and Winter. We con-
sider the natural binary operation ‘ on this space that takes two
compact metric measure spaces and forms their Cartesian product
equipped with the sum of the two metrics and the product of the
two probability measures. We show that the compact metric mea-
sure spaces equipped with this operation form a cancellative, com-
mutative, Polish semigroup with a translation invariant metric and
that each element has a unique factorization into prime elements.
Moreover, there is an explicit family of continuous semicharacters
that are extremely useful in understanding the properties of this
semigroup.

We investigate the interaction between the semigroup structure
and the natural action of the positive real numbers on this space
that arises from scaling the metric. For example, we show that for
any given positive real numbers a, b, c the trivial space is the only
space X that satisfies aX ‘ bX “ cX .

We establish that there is no analogue of the law of large num-
bers: if X1,X2, . . . is an identically distributed independent se-
quence of random spaces, then no subsequence of 1

n

Ðn
k“1 Xk con-

verges in distribution unless each Xk is almost surely equal to the
trivial space. We characterize the infinitely divisible probability
measures and the Lévy processes on this semigroup, characterize
the stable probability measures and establish a counterpart of the
LePage representation for the latter class.
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1. Introduction

The Cartesian product G l H of two finite graphs G and H with
respective vertex sets V pGq and V pHq and respective edge sets EpGq
and EpHq is the graph with vertex set V pGlHq :“ V pGqˆV pHq and
edge set

EpG l Hq :“ tppg1, hq, pg2, hqq : pg1, g2q P EpGq, h P V pHqu

Y tppg, h1q, pg, h2qq : g P V pGq, ph1, h2q P EpHqu.

This construction plays a role in many areas of graph theory. For
example, it is shown in [Sab60] that any connected finite graph is
isomorphic to a Cartesian product of graphs that are irreducible in
the sense that they cannot be represented as Cartesian products and
that this representation is unique up to the order of the factors (see,
also, [Viz63, Mil70, Imr71, Wal87, AFDF00, Tar92]). The study of
the problem of embedding a graph in a Cartesian product was initi-
ated in [GW85, GW84]. A comprehensive review of factorization and
embedding problems is [Win87].

If two connected finite graphs G and H are equipped with the usual
shortest path metrics rG and rH , then the shortest path metric on the
Cartesian product is given by rGˆH “ rG ‘ rH , where

prG ‘ rHqppg
1, h1q, pg2, h2qq :“ rGpg

1, g2q ` rHph
1, h2q,

pg1, h1q, pg2, h2q P GˆH.

We use the notation ‘ because if we think of the shortest path metric
on a finite graph as a matrix, then the matrix for the shortest path
metric on the Cartesian product of two graphs is the Kronecker sum of
the matrices for the two graphs and the ‘ notation is commonly used
for the Kronecker sum [SH11].

It is natural to consider the obvious generalization of this construc-
tion to arbitrary metric spaces and there is a substantial literature in
this direction. For example, a related binary operation on metric spaces
is considered by Ulam [Mau81, Problem 77(b)] who constructs a met-
ric on the Cartesian product of two metric spaces pY, rY q and pZ, rZq

via ppy1, z1q, py2, z2qq ÞÑ
a

rY py1, y2q2 ` rZpz1, z2q2 and asks whether it
is possible that there could be two nonisometric metric spaces U and
V such that the metrics spaces U ˆU and V ˆV are isometric. An ex-
ample of two such spaces is given in [Fou71]. However, it follows from
the results of [Gru70, Mos92] that such an example is not possible if U
and V are compact subsets of Euclidean space.
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On the other hand, a classical result of de Rahm [dR52] says that a
complete, simply connected, Riemannian manifold has a product de-
composition M0ˆM1ˆ¨ ¨ ¨ˆMk, where the manifold M0 is a Euclidean
space (perhaps just a point) and Mi, i “ 1, . . . , k, are irreducible Rie-
mannian manifolds that each have more than one point and are not
isometric to the real line. By convention, the metric on a product of
manifolds is the one appearing in Ulam’s problem. This last result was
extended to the setting of geodesic metric spaces of finite dimension in
[FL08].

Ulam’s problem is closely related to the question of cancellativity
for this binary operation; that is, if Y ˆ Z 1 and Y ˆ Z2 are isometric,
then are Z 1 and Z2 isometric? This property clearly does not hold in
general; for example, `2pNqˆ`2pNq and `2pNq (where N :“ t0, 1, 2, . . .u)
are isometric, but `2pNq and the trivial metric space are not isometric.
Moreover, an example is given in [Her94] showing that it does not
even hold for arbitrary subsets of R. However, we note from [BP95]
that there are many compact Hausdorff topological spaces K with the
property that if L1 and L2 are two compact Hausdorff spaces such that
KˆL1 andKˆL2 are homeomorphic, then L1 and L2 are homeomorphic
(see also [Zer01]).

Returning to the binary operation that combines two metric spaces
pY, rY q and pZ, rZq into the metric space pY ˆ Z, rY ‘ rZq, it is shown
in [Tar92] that if a compact metric space is isometric to a product of
finitely many irreducible compact metric spaces, then this factorization
is unique up to the order of the factors. However, there are certainly
compact metric spaces that are not isometric to a finite product of
finitely many irreducible compact metric spaces and the study of this
binary operation seems to be generally rather difficult.

In this paper we consider a closely-related binary operation on the
class of compact metric measure spaces; that is, objects that con-
sist of a compact metric space pX, rXq equipped with a probabil-
ity measure µX that has full support. Following [Gro99] (see, also,
[Ver98, Ver03, Ver04]), we regard two such spaces as being equivalent
if they are isometric as metric spaces with an isometry that maps the
probability measure on the first space to the probability measure on
the second. Denote by K the set of such equivalence classes. With a
slight abuse of notation, we will not distinguish between an equivalence
class X P K and a representative triple pX, rX , µXq.

Gromov and Vershik show that a compact metric measure space
pX, rX , µXq is uniquely determined by the distribution of the infinite
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random matrix of distances

prXpξi, ξjqqpi,jqPNˆN,

where pξkqkPN is an i.i.d. sample of points in X with common dis-
tribution µX , and this concise condition for equivalence makes metric
measure spaces considerably easier to study than metric spaces per se.

We define a binary, associative, commutative operation ‘ on K as
follows. Given two elements Y “ pY, rY , µY q and Z “ pZ, rZ , µZq of K,
let Y ‘ Z be X “ pX, rX , µXq P K, where

‚ X :“ Y ˆ Z,
‚ rX :“ rY ‘ rZ , where prY ‘ rZqppy

1, z1q, py2, z2qq “ rY py
1, y2q `

rZpz
1, z2q for py1, z1q, py2, z2q P Y ˆ Z),

‚ µX :“ µY b µZ .

The distribution of the random matrix of distances for Y‘Z is the con-
volution of the distributions of the random matrices of distances for Y
and Z. The equivalence class of compact metric measure spaces E that
each consist of a single point with the only possible metric and prob-
ability measure on them is the neutral element for this operation, and
so pK,‘q is a commutative semigroup with an identity. A semigroup
with an identity is sometimes called a monoid.

Remark 1.1. We could have chosen other ways to combine the metrics
rY and rZ to give a metric on Y ˆZ that induces the product topology
and results in a counterpart of ‘ that is commutative and associative.
For example, by analogy with Ulam’s construction we could have used

one of the metrics ppy1, z1q, py2, z2qq ÞÑ prY py
1, y2qp ` rZpz

1, z2qpq
1
p for

p ą 1 or the metric ppy1, z1q, py2, z2qq ÞÑ rY py
1, y2q _ rZpz

1, z2q. We do
not investigate these possibilities here.

We finish this introduction with an overview of the remainder of the
paper.

We show in Section 2 that if we equip K with the Gromov-Prohorov
metric dGPr introduced in [GPW09] (see Section 12 for the definition of
dGPr), then the binary operation ‘ : KˆKÑ K is continuous and the
metric dGPr is translation invariant for the operation ‘. We recall from
[GPW09] that pK, dGPrq is a complete, separable metric space. More-
over, the Gromov-Prohorov metric has the property that a sequence
of elements of K converges to an element of K if and only if the cor-
responding sequence of associated random distance matrices described
above converges in distribution to the random distance matrix associ-
ated with the limit. In Section 2 we also introduce a partial order ď
on K by declaring that Y ď Z if Z “ Y ‘X for some X P K and show
for any Z P K that the set tY P K : Y ď Zu is compact.
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A semicharacter is a map χ : K Ñ r0, 1s such that χpY ‘ Zq “
χpYqχpZq for all Y ,Z P K. We introduce a natural family of semichar-
acters in Section 3. This family has the property that limnÑ8Xn “

X for some sequence pXnqnPN and element X in K if and only if
limnÑ8 χpXnq “ χpX q for all semicharacters χ in the family. Using
the semicharacters, we show that if limnÑ8

Ðn
k“0 Xk exists for some

sequence pXnqnPN, then
Ðn

k“0 X 1
k converges to the same limit for any

rearrangement pX 1
nqnPN of the sequence. We also use the semicharacters

in Section 4 to prove that pK,‘q is cancellative.
We establish in Section 5 that any element of KztEu has a unique

representation as either a finite or countable ‘ combination of irre-
ducible elements, and this representation is unique up to the order of
the “factors”. We also find that the irreducible elements are a dense, Gδ

subset of K. The unique factorization result has several consequences.
For example, it follows readily from it that Φ : R` Ñ K is a function
such that Φp0q “ E and

Φps` tq “ Φpsq‘ Φptq, 0 ď s, t ă 8,

then Φ ” E .
In Section 6 we investigate the measure that is obtained by taking

an element of K and assigning a unit mass to each irreducible element
(counted according to multiplicity) in its factorization. We show that
this mapping from elements of K to measures on K concentrated on
the set of irreducible elements is measurable in a natural sense.

Given X P K and a ą 0, we define the rescaled compact metric
measure space aX :“ pX, arX , µXq P K. We show in Section 7 that
if paX q ‘ pbX q “ cX for some X P K and a, b, c ą 0, then X “ E ,
so the second distributivity law certainly does not hold for this scaling
operation.

We begin the study of random elements of K in Section 8 by defin-
ing a counterpart of the usual Laplace transform in which exponential
functions are replaced by semicharacters. Two random elements of K
have the same distribution if and only if their Laplace transforms are
equal.

We introduce the appropriate notion of infinitely divisible random
elements of K in Section 9 and obtain an analogue of the classical
Lévy-Hin̆cin-Itô description of infinitely divisible real-valued random
variables. Our approach to this result is probabilistic and involves
constructing for any infinitely divisible random element a Lévy process
that at time 1 has the same distribution as the given random element.
Our setting resembles that of nonnegative infinitely divisible random
variables and so there is no counterpart of a Gaussian component in
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this description. Also, there is no deterministic component: the only
constant that is infinitely divisible is the trivial space E .

Using the scaling operation on K we define stable random elements
of K in Section 10. We determine how the Lévy-Hin̆cin-Itô description
specializes to such random elements and also verify that there is a coun-
terpart of the LePage series that represents a stable random element
as an “infinite weighted sum” of independent identically distributed
random elements with a suitable independent sequence of coefficients.

Lastly, for ease of reference we summarize some facts about the
Gromov-Prohorov metric in Section 12.

2. Topological and order properties

Lemma 2.1. The operation ‘ : K ˆ K Ñ K is continuous. More
specifically, if Xi,Yi, i “ 1, 2, are elements of K, then

dGPrpX1 ‘ X2,Y1 ‘ Y2q ď dGPrpX1,Y1q ` dGPrpX2,Y2q .

Proof. Let φXi and φYi be isometries from Xi and Yi to a common
metric measure space Zi, i “ 1, 2. The combined function pφX1 , φX2q

(resp. pφY1 , φY2q) maps X1 ˆ X2 (resp. Y1 ˆ Y2) isometrically into
Z1 ˆ Z2. The result now follows from Lemma 12.1. �

A proof similar to that of Lemma 2.1 using Lemma 12.2 establishes
the following result.

Lemma 2.2. The metric dGPr is translation invariant for the operation
‘. That is, if X1,X2,Y are elements of K, then

dGPrpX1 ‘ Y ,X2 ‘ Yq “ dGPrpX1,X2q .

Definition 2.3. Given X “ pX, rX , µXq P K, write diampX q for the
diameter of the compact metric space X; that is,

diampX q :“ suptrXpx
1, x2q : x1, x2 P Xu.

The following is obvious.

Lemma 2.4. a) The diameter is an additive functional on pK,‘q;
that is,

diampX ‘ Yq “ diampX q ` diampYq
for all X ,Y P K.

b) The inequality

dGPrpX ‘ Y ,X q ď dGPrpY , Eq ď diampYq
holds for all X ,Y P K.
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Remark 2.5. The function diam is not continuous on K. For exam-
ple, let Xn “ pt0, 1u, r, µnq, where rp0, 1q “ 1, µnt0u “ 1 ´ 1

n
and

µnt1u “
1
n
. Then, Xn converges to the trivial space E , whereas

diampXnq “ 1 Ñ 0 “ diampEq. However, the function diam is lower
semicontinuous; that is, if the sequence Xn converges to X in K as
n Ñ 8, then diampX q ď lim infnÑ8 diampXnq. To see this, suppose

that the sequence Xn converges to X pξ
pnq
k qkPN are i.i.d. in Xn with the

common distribution µXn , and pξkqkPN are i.i.d. in X with the com-

mon distribution µX . Observe for any k that max1ďiăjďkprXnpξ
pnq
i , ξ

pnq
j q

converges in distribution to max1ďiăjďkprXpξi, ξjqq. It suffices to note

that max1ďiăjďkprXnpξ
pnq
i , ξ

pnq
j qq is increasing in k and converges al-

most surely to diampXnq as k Ñ 8 and that max1ďiăjďkprXpξi, ξjqq is
increasing in k and converges almost surely to diampX q as k Ñ8.

Definition 2.6. Define a partial order ď on K by setting Y ď Z if
Z “ Y ‘ X for some X P K.

The symmetry and transitivity of ď is obvious. The antisymmetry is
apparent from part (a) of Lemma 2.4. This partial order is the dual of
the Green or divisibility order (see [Gri01, Section I.4.1]). The identity
E is the unique minimal element.

Lemma 2.7. a) For any compact set S Ă K, the set
Ť

ZPStY P

K : Y ď Zu is compact.
b) For any compact set S Ă K, the set tpY ,Zq P K2 : Z P S, Y ď

Zu is compact.
c) The map K from K to the compact subsets of K defined by
KpX q :“ tY P K : Y ď X u is upper semicontinuous. That is,
if F Ă K is closed, then tX P K : KpX q X F “ Hu is closed.
Equivalently, if Xn Ñ X , and Yn P KpXnq converges to Y, then
Y P KpX q.

Proof. We first show that
Ť

ZPStY P K : Y ď Zu is pre-compact. Given
ε ą 0, we know from from [GPW09, Theorem 2] that there exist K ą 0
and δ ą 0 such that for all Z P S

µZ b µZtpz
1, z2q P Z ˆ Z : rZpz

1, z2q ą Ku ď ε

and

µZtz
1 P Z : µZtz

2 P Z : rZpz
1, z2q ă εu ď δu ď ε.
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If Y ď Z for some Z P S, then, by definition, there is a W P K such
that Z “ Y ‘ W , and so

µY b µY tpy
1, y2q P Y ˆ Y : rY py

1, y2q ą Ku

ď pµY b µY q b pµW b µW qtppy
1, y2q, pw1, w2qq P pY ˆ Y q ˆ pW ˆW q :

rY py
1, y2q ` rW pw

1, w2q ą Ku

“ µZ b µZtpz
1, z2q P Z ˆ Z : rZpz

1, z2q ą Ku

ď ε.

Similarly,

µY ty
1 P Y : µY ty

2 P Y : rY py
1, y2q ă εu ď δu

“ µY b µW tpy
2, w2q P Y ˆW : rY py

1, y2q ă εu ď δu

ď µY b µW tpy
1, w1q P Y ˆW : µY b µW tpy

2, w2q P Y ˆW :

rY py
1, y2q ` rW pw

1, w2q ă εu ď δu

“ µZtz
1 P Z : µZtz

2 P Z : rZpz
1, z2q ă εu ď δu

ď ε .

It follows from [GPW09, Theorem 2] that
Ť

ZPStY P K : Y ď Zu is
pre-compact.

We now show that
Ť

ZPStY P K : Y ď Zu is closed, and hence
compact. Suppose now that pYnqnPN is a sequence in

Ť

ZPStY P K :
Y ď Zu that converges to a limit Y8. For each n P N we can find
Zn P S and Wn P

Ť

ZPStY P K : Y ď Zu such that Zn “ Yn ‘ Wn.
From the above we can find a subsequence pnpkqqkPN, Z8 P S and
W8 P K such that limkÑ8Znpkq “ Z8 and limkÑ8Wnpkq “ W8. By
the continuity of the semigroup operation established in Lemma 2.1,

Y8 ‘ W8 “ lim
kÑ8

pYnpkq ‘ Wnpkqq “ lim
kÑ8

Znpkq “ Z8,

which implies that Y8 ď Z8 P S (and also W8 ď Z8 P S). Therefore,
Ť

ZPStY P K : Y ď Zu is closed and hence compact.
(b) Because tpY ,Zq P K2 : Z P S, Y ď Zu is a subset of the compact
set p

Ť

ZPStY P K : Y ď Zuq ˆ S, it suffices to show that the former
set is closed, but this follows from an argument similar to that which
completed the proof of part (a).
(c) This is immediate from (b). �

Remark 2.8. Any partially ordered space can be endowed with a cor-
responding Scott topology generated by the order, see [GHK`03]. In
particular, the Scott topology on pK,ďq is much weaker than the one
induced by the Gromov-Prohorov metric.
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3. Semicharacters

Following the standard terminology in semigroup theory, a semichar-
acter is a map χ : K Ñ r0, 1s such that χpY ‘ Zq “ χpYqχpZq for all
Y ,Z P K.

Definition 3.1. Denote by A the consisting of the empty set and the

arrays A “ paijq1ďiăjďn P Rp
n
2q
` for n ě 2. For each A P A define a

semicharacter χA by setting χH ” 1 and

(3.1) χAppX, rX , µXqq :“

ż

Xn

exp

˜

´
ÿ

1ďiăjďn

aijrXpxi, xjq

¸

µbnX pdxq

if A “ H Note that χApX q ą 0 for all A P A and X P K.

We often need the particular semicharacter

(3.2) χ1pX q :“

ż

X2

expp´rXpx1, x2qqµ
b2
X pdxq

defined by taking as A P A an array with the single element 1.
As we recalled in the Introduction, a compact metric measure space

pX, rX , µXq is uniquely determined by the distribution of the infinite
random matrix of distances

prXpξi, ξjqqpi,jqPNˆN,

where pξkqkPN is an i.i.d. sample of points in X with common distribu-
tion µX . The following lemma follows immediately from this observa-
tion and the unicity of Laplace transforms.

Lemma 3.2. Two elements X ,Y P K are equal if and only if χApX q “
χApYq for all A P A.

Remark 3.3. Note that if A1 P Rp
n1

2 q
` and A2 P Rp

n2

2 q
` , then χA1χA2 “ χA,

where A P Rp
n1`n2

2 q
` is given by

aij “

{
a1ij, 1 ď i ă j ď n1

a2i´n1,j´n1 , n1 ` 1 ď i ă j ă n1 ` n2.

It follows that tχA : A P Au is a semigroup with identity χH ” 1.

Remark 3.4. Not all semicharacters of K are of the form χA for some
A P A. For example, if A P A and β ą 0, then X ÞÑ χApX qβ is a
(continuous) semicharacter. If X has two points, say 0 and 1, that are
distance r apart and µXpt0uq “ p1 ´ pq and µXpt1uq “ p for some
0 ă p ă 1, then taking A to be the array with the single element a we
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have χApX q “ p1 ´ pq2 ` p2 ` 2pp1 ´ pq expp´arq and it is not hard
to see from considering just X of this special type that for β “ 1 the
semicharacter χβA is not of the form χA1 for some other A P A.

It follows from part (a) of Lemma 2.4 that X ÞÑ expp´ diampX qq is
a (discontinuous) semicharacter on K. Also, if A P A and b ą 0, then

˜

ż

Xn

exp

˜

ÿ

1ďiăjďn

aijrXpxi, xjq

¸

µbnX pdxq

¸´b

is a (discontinuous) semicharacter. These last two examples are con-
nected by the observation that

expp´ diampX qq “ lim
tÑ8

ˆ
ż

X2

exp pt rXpx1, x2qq µ
b2
X pdxq

˙´ 1
t

.

Lemma 3.5. A sequence pXnqnPN in K converges to X P K if and only
if limnÑ8 χApXnq “ χApX q for all A P A.

Proof. For n P N, let pξ
pnq
k qkPN be an i.i.d. sequence of Xn-valued ran-

dom variables with common distribution µXn , and let pξkqkPN be an
i.i.d. sequence of X-valued random variables with common distribu-
tion µX . It follows from [GPW09, Theorem 5] that Xn converges to X
if and only if the distribution of prXnpξ

pnq
i , ξ

pnq
j qq1ďiăjďm converges to

that of prXpξi, ξjqq1ďiăjďm for all m P N. The result now follows from
the equivalence between the weak convergence of probability measures

on Rp
m
2 q
` and the convergence of their Laplace transforms. �

Corollary 3.6. a) Suppose that pXnqnPN is a sequence in K such
that X0 ď X1 ď ¨ ¨ ¨ ď Z for some Z P K. Then, limnÑ8Xn

exists.
b) Suppose that pXnqnPN is a sequence in K such that X0 ě X1 ě

¨ ¨ ¨ . Then, limnÑ8Xn exists.

Proof. We prove claim (a). The proof of claim (b) is similar, and so we
omit it. It follows from Lemma 2.7 that any subsequence of pXnqnPN
has a further subsequence that converges. For any A P A the sequence
pχApXnqqnPN is nonincreasing and hence convergent. By Lemma 3.5, all
of the convergent subsequences described above converge to the same
limit, and so the sequence pXnqnPN itself converges to that limit. �

Corollary 3.7. a) Suppose that pXnqnPN is a sequence such that
limnÑ8X0 ‘ ¨ ¨ ¨ ‘ Xn “ Y for some Y P K. Suppose further
that pX 1

nqnPN is a sequence that is obtained by re-ordering the
sequence pXnqnPN. Then, limnÑ8X 1

0 ‘ ¨ ¨ ¨‘ X 1
n “ Y also.
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b) The limit limnÑ8X0‘¨ ¨ ¨‘Xn exists if and only if
ř

n diampXnq ă

8.

Proof. Consider claim (a). For any A P A, ´ logχApXnq ě 0 for
all n P N. It follows from Lemma 3.5 that ´

ř

n logχApXnq “

´ logχApYq It is well-known that all rearrangements of a convergent
sequence with nonnegative terms converge to the same limit. Thus,
´
ř

n logχApX 1
nq “ ´

ř

n logχApXnq “ ´ logχApYq, implying that
limnÑ8 χApX 1

0 ‘ ¨ ¨ ¨ ‘ X 1
nq “ χApYq and hence, by Lemma 3.5, that

limnÑ8X 1
0 ‘ ¨ ¨ ¨‘ X 1

n “ Y .
Turning to claim (b), suppose that limnÑ8X0 ‘ ¨ ¨ ¨‘Xn “ Y . Since

X0 ‘ ¨ ¨ ¨ ‘ Xn ď Y , diampX0q ` ¨ ¨ ¨ ` diampXnq “ diampX0 ‘ ¨ ¨ ¨ ‘

Xnq ď diampYq, and so
ř

n diampXnq ă 8. Conversely, suppose that
ř

n diampXnq ă 8. For m ă n we have from Lemma 2.1 and part (b)
of Lemma 2.4 that

dGPrpX0 ‘ ¨ ¨ ¨‘ Xm,X0 ‘ ¨ ¨ ¨‘ Xnq

ď dGPrpE ,Xm`1 ‘ ¨ ¨ ¨‘ Xnq

ď diampXm`1 ‘ ¨ ¨ ¨‘ Xnq

“ diampXm`1q ` ¨ ¨ ¨ ` diampXnq.

It follows that the partial sums of pXnqnPN form a Cauchy sequence and
so, by the completeness of pK, dGPrq, limnÑ8X0 ‘ ¨ ¨ ¨‘ Xn exists. �

Remark 3.8. It follows from Corollary 3.7 that if pXsqsPS is a countable
collection of elements of K, then the existence of limnÑ8Xs0 ‘ ¨ ¨ ¨‘Xsn

for some listing psnqnPN implies the existence for any other listing, with
the same value for the limit. We will therefore unambiguously denote
the limit when it exists by the notation

Ð

sPS Xs. Moreover, a necessary
and sufficient condition for

Ð

sPS Xs to exist is that
ř

sPS diampXsq ă

8.

4. Algebraic properties

An element of a semigroup with an identity is a unit if it has an
inverse and a semigroup with an identity is said to be reduced if the
only unit is the identity (see [Cli38, Section 1]. The following result is
immediate from part (a) of Lemma 2.4.

Lemma 4.1. The semigroup pK,‘q is reduced.

In the usual terminology of semigroup theory, part (a) of the follow-
ing result says that the semigroup pK,‘q is cancellative (see [Gri01,
Section II.1.1]).
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Proposition 4.2. a) Suppose that X ,Y ,Z 1,Z2 P K satisfy X “

Y ‘ Z 1 and X “ Y ‘ Z2, then Z 1 “ Z2.
b) Consider sequences pXnqnPN and pYnqnPN in K. Set Zn :“ Xn ‘

Yn. Suppose that X :“ limnÑ8Xn and Z :“ limnÑ8Zn exist.
Then, Y :“ limnÑ8 Yn exists and Z “ X ‘ Y.

Proof. a) For each semicharacter χA, A P A, we have χApYqχApZ 1q “
χApX q “ χApYqχApZ2q and so χApZ 1q “ χApZ

2q, which implies that
Z 1 “ Z2.
b) By Lemma 2.7, the sequence pYnqnPN is pre-compact. Any subse-
quential limit Y8 will satisfy Z “ X ‘ Y8. It follows from part (a)
that Y :“ limnÑ8 Yn exists and Z “ X ‘ Y . �

Remark 4.3. It follows from part (a) of Proposition 4.2 and the dis-
cussion in Section 1.10 of [CP61] that the semigroup pK,‘q can be
embedded into a group G as follows. Equip K ˆ K with the equiv-
alence relation ” defined by pW ,X q ” pY ,Zq if W ‘ Z “ X ‘ Y .
It is not hard to see that ” is indeed an equivalence relation, the
only property that is not completely obvious is transitivity. How-
ever, if pU ,Vq ” pW ,X q and pW ,X q ” pY ,Zq, then, by definition,
U ‘ X “ V ‘ W and W ‘ Z “ X ‘ Y so that

pU ‘ Zq‘ pX ‘ Wq “ pU ‘ X q‘ pW ‘ Zq
“ pV ‘ Wq‘ pX ‘ Yq “ pV ‘ Yq‘ pX ‘ Wq,

from which it follows that U ‘ Z “ V ‘ Y and hence pU ,Vq ” pY ,Zq.
The elements of the group G are the equivalence classes for this relation.
We write ‘ for the binary operation on G and define it to be the
operation that takes the equivalence classes of pW ,X q and pY ,Zq to
the equivalence class of pW ‘Y ,X ‘Zq. It is clear that this operation
is well-defined, associative and commutative. The identity element is
the equivalence class of pE , Eq and the inverse of the equivalence class
of pY ,Zq is the equivalence class of pZ,Yq.

In the following result we use the notation V‘n for V P K and n P N
to denote V ‘ ¨ ¨ ¨ ‘ V , where there are n terms and we adopt the
convention that this quantity is E for n “ 0.

Corollary 4.4. a) For all n P N, the set tpX ,Yq P K2 : Y‘n ď

X u is closed.
b) The function M : K2 Ñ N defined by MpX ,Yq “ maxtn P N :

Y‘n ď X u is upper semicontinuous and hence Borel.

Proof. Part (a) is immediate from Proposition 4.2. For part (b),
tpX ,Yq P K2 : MpX ,Yq ě nu “ tpX ,Yq P K2 : Y‘n ď X u is a
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closed set for all n P N by part (a), and this is equivalent to the upper
semicontinuity of M . �

5. Arithmetic properties

An element X P K is irreducible if X “ E and Y ď X for Y P K
implies that Y is either E or X (see [Cli38, Section 1]).

We write I for the set of irreducible elements of K. It is not clear
a priori that I is nonempty. For example, the semigroup R` with the
usual addition operation has no irreducible elements in the sense of the
general definition in [Cli38]. The following two results show that I is
certainly nonempty.

Proposition 5.1. The set I is a dense, Gδ subset of K.

Proof. We first show that I is dense in K As in the proof of [GPW09,
Proposition 5.6], the subset of F Ď K consisting of compact metric
measure spaces with finitely many points is dense in K. If we are given
a finite metric measure space pW, rW , µW q, then convergence of a se-
quence of probability measures in the Prohorov metric on pW, rW q is
just pointwise convergence of the probabilities assigned to each point
of W . The set of probability measures that assign positive probability
to all points of W is thus just the relative interior of the p#W ´ 1q-
dimensional simplex thought of as a subset of R#W equipped with
the usual Euclidean topology. Suppose that pW, rW q is isometric to
pUˆV, rUbrV q for some nontrivial finite compact metric spaces pU, rUq
and pV, rV q – if this is not the case, then pW, rW , µwq is already irre-
ducible. The probability measures on UˆV that are of the form µUbµV
form a p#U´1q`p#V ´1q-dimensional surface in the p#Uˆ#V ´1q-
dimensional simplex of probability measures on U ˆV and, in particu-
lar, the former set is nowhere dense. Thus, even if pW, rW q is isometric
to pU ˆ V, rU b rV q, any probability measure on W that is the isomet-
ric image of a probability measure on U ˆ V of the form µU b µV is
arbitrarily close to probability measures on W that are not isometric
images of probability measures of this form, and it follows that I is
dense in K.

We know show that the set I is a Gδ. This is equivalent to showing
that KzI is an Fσ.

Let χ :“ χ1 be the semicharacter defined by (3.2). Recall that
χ1pX q “ 1 if and only if X “ E . For 0 ă ε ă 1

2
set

Lε :“ tX P K : DY ď X , χpX q1´ε ď χpYq ď χpX qεu.
Note that Lε1 Ě Lε2 for ε1 ď ε2 and

Ť

0ăεă 1
2
Lε “ KzI, so it suffices

to show that the Lε are closed. Suppose that pXnqnPN is a sequence of
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elements of Lε that converges to X P K. For each n P N there exist Yn
and Zn in K such that Xn “ Yn‘Zn and χpXnq

1´ε ď χpYnq ď χpXnq
ε.

By Lemma 2.7 and part (b) of Proposition 4.2, there is a subsequence
pnkqkPN such that limkÑ8 Ynk “ Y and limkÑ8Znk “ Z for Y ,Z P K
such that X “ Y ‘ Z. Thus, Y ď X and χpX q1´ε ď χpYq ď χpX qε,
so that X P Lε, as required. �

In particular, the space I with the relative topology inherited from K
is a Polish space. This follows follows from Alexandrov’s theorem say-
ing that a subspace of a Polish space is Polish in the relative topology
if and only if it is a Gδ-set, see [Kec95, Theorem 3.11].

Proposition 5.2. Given any X P KztEu, there exists Y P I with
Y ď X .

Proof. Define Γ : KÑ R` by

ΓpZq :“

ż

ZˆZ

rZpz
1, z2qµb2

Z pdz
1, dz2q.

Note that the function Γ is continuous on the compact set tZ P K : Z ď
X u, ΓpZ 1q`ΓpZ2q “ ΓpZ 1‘Z2q, and ΓpZ 1q2`ΓpZ2q2 ď ΓpZ 1‘Z2q2,
with strict inequality unless Z 1 “ E or Z2 “ E .

Let Lk be the set of binary strings of length k, where for k “ 0 we
denote the empty string byH. Set XH “ X . Suppose that Xw P K have
been defined for w P Lk where 0 ď k ď n. Choose Xw for w P Ln`1 so
that Xv0 ‘Xv1 “ Xv for all v P Ln and ΓpXv0q

2`ΓpXv1q
2 is minimized

subject to this requirement. This is possible by Lemma 2.7 and the
continuity of Γ.

It cannot be the case that limnÑ8 maxwPLn ΓpXwq “ 0, because it
would then follow from [Fel71, Section XVII.7] that the image of µb2

X

under the map px1, x2q Ñ rXpx
1, x2q would be a nontrivial infinitely di-

visible probability measure that is supported on r0, diampX qs, contra-
dicting the fact that all nontrivial infinitely divisible probability mea-
sures have unbounded support. (The last fact is immediate from the
Itô representation of a nonnegative infinitely divisible random variable
as c`

ş

xΠpdxq, where c is a constant and Π is a Poisson random mea-
sure on R`` with intensity measure ν that satisfies

ş

px^1q νpdxq ă 8.
See, also, Remark 5.3.)

It follows that there is a sequence pwnqnPN with wn P Ln such that
ΓpX q “ ΓpXw0q ě ΓpXw1q ě ΓpXw2q ě ¨ ¨ ¨ ě γ for some constant
γ ą 0. Infinitely many of the wn must be either of the form 0vn or
1vn for some vn P Ln´1, so we can pick σ1 P t0, 1u such that infinitely
many of the wn are of the form σ1vn for some vn P Ln´1. Similarly,
infinitely many of the wn must be either of the form σ10un or σ11un
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for un P Ln´2, so we can pick σ2 P t0, 1u such that infinitely many of
the wn are of the form σ1σ2un for some un P Ln´2. Continuing in this
we, we can find σ1, σ2, . . . P t0, 1u such that X “ XH ě Xσ1 ě Xσ1σ2 ě

¨ ¨ ¨ ě Xσ1¨¨¨σn ě ¨ ¨ ¨ and ΓpXσ1¨¨¨σnq ě γ.
By Corollary 3.6 there exists Y P K with ΓpYq ě γ ą 0 such that

limnÑ8Xσ1¨¨¨σn “ Y .
We claim that Y must be irreducible. If this is not so, then Y “

Y 1 ‘ Y2, where neither Y 1 nor Y2 is E . By Proposition 4.2, we can
write Xσ1¨¨¨σn´1σn “ Y 1 ‘ Y2 ‘ Zn for some unique Zn P K such that
limnÑ8Zn “ E . Set 0̄ :“ 1 and 1̄ :“ 0. Note that

ΓpXσ1¨¨¨σn´1σnq
2 ` ΓpXσ1¨¨¨σn´1σ̄nq

2

“ pΓpY 1q ` ΓpY2q ` ΓpZnqq
2 ` pΓpZn´1q ´ ΓpZnqq

2

If we define X̃w, w P Ln, by

X̃w :“ Xw, w R tσ1 ¨ ¨ ¨ σn´1σn, σ1 ¨ ¨ ¨ σn´1σ̄nu,

X̃σ1¨¨¨σn´1σn :“ Y 1 ‘ Zn

and

X̃σ1¨¨¨σn´1σ̄n :“ Xσ1¨¨¨σn´1σ̄n ‘ Y2,

then Xv “ X̃v0 ‘ X̃v1 for all v P Ln´1 and

ΓpX̃σ1¨¨¨σn´1σnq
2 ` ΓpX̃σ1¨¨¨σn´1σ̄nq

2

“ pΓpY 1q ` ΓpZnqq
2 ` pΓpZn´1q ´ ΓpZnq ` ΓpY2qq2.

Thus, ΓpXσ1¨¨¨σn´1σnq
2 ` ΓpXσ1¨¨¨σn´1σ̄nq

2 becomes arbitrarily close to

pΓpY 1q ` ΓpY2qq2 for sufficiently large n, whereas ΓpX̃σ1¨¨¨σn´1σnq
2 `

ΓpX̃σ1¨¨¨σn´1σ̄nq
2 can be made arbitrarily close to ΓpY 1q2 ` ΓpY2q2 by

taking n sufficiently large. Since ΓpY 1q2 ` ΓpY2q2 ă pΓpY 1q ` ΓpY2qq2,
we would have

ΓpX̃σ1¨¨¨σn´1σnq
2 ` ΓpX̃σ1¨¨¨σn´1σ̄nq

2

ă ΓpXσ1¨¨¨σn´1σnq
2 ` ΓpXσ1¨¨¨σn´1σ̄nq

2

for n sufficiently large, which violates the definition of pXwqwPLn . �

Remark 5.3. In the proof of Proposition 5.2 we used the classical limit
theory for triangular arrays of random variables to establish the follow-
ing fact. If ζ is a bounded, nonnegative random variable that can be
written as

ř

j ξnj for all n P N, where the random variables ξn1, ξn2, . . .

are nonnegative, independent and satisfy limnÑ8 supj Erξnjs “ 0, then
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ζ is almost surely constant. This result can be proved directly as fol-
lows. Note from a Taylor expansion that Erexpp´ξnjqs ď 1´cnErξnjs ď
expp´cnErξnjsq for constants pcnqnPN such that limnÑ8 cn “ 1. Thus,

Erexpp´ζqs “
ź

j

Erexpp´ξnjqs

ď
ź

j

expp´cnErξnjsq

“ expp´cnErζsq
Ñ expp´Erζsq, nÑ8.

Jensen’s inequality gives the opposite inequality expp´Erζsq ď

Erexpp´ζqs, with equality if and only if ζ is almost surely constant,
and so ζ must indeed be almost surely constant.

Remark 5.4. It is not difficult to construct concrete examples of irre-
ducible elements of K.

We first recall that a metric space pW, rW q is totally geodesic if for any
pair of points w1, w2 P W there is a unique map φ : r0, rW pw

1, w2qs Ñ W
such that φp0q “ w1, φprW pw

1, w2qq “ w2 and rW pφpsq, φptqq “ |s ´ t|
for s, t P r0, rW pw

1, w2qs; that is, any two points of W are joined by a
unique geodesic segment.

Any nontrivial compact subset X of a totally geodesic metric space
W is irreducible no matter what measure it is equipped with because
such a space pX, rW q cannot be isometric to a space of the form pY ˆ
Z, rY ‘ rZq for nontrivial Y and Z. To see this, suppose that the claim
is false. There will then be four distinct points a, b, c, d in X that are
isometric images of points of the form py1, z1q, py2, z1q, py1, z2q, py2, z2q
in Y ˆ Z. Suppose that pX, rW q is a compact subset of the totally
geodesic space pW, rW q. We have

rW pa, bq “ rW pc, dq,

rW pa, cq “ rW pb, dq,

rW pa, dq “ rW pa, bq ` rW pb, dq,

rW pa, dq “ rW pa, cq ` rW pc, dq,

rW pb, cq “ rW pa, bq ` rW pc, aq,

and
rW pb, cq “ rW pb, dq ` rW pc, dq.

It follows from the third and fourth equalities that b and c are on the
geodesic segment between a and d. We may therefore suppose that
pW, rW q is a closed subinterval of R and, without loss of generality,
that a ă b ă c ă d. The fifth and sixth equalities are then impossible.
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There are many totally geodesic metric spaces. A Banach space
pX, } }q is totally geodesic if and only if it is strictly convex; that is,
x “ y and }x1} “ }x2} “ 1 imply that }ax1 ` p1 ´ aqx2} ă 1 for all
0 ă a ă 1 [Bea85, Section 3.I.1]. Strict convexity of pX, } }q is implied
by uniform convexity; that is, for every ε ą 0 there exists a δ ą 0 such
that }x1} “ }x2} “ 1 and }x1 ´ x2} ě ε imply }x

1`x2

2
} ď 1 ´ δ. Any

Hilbert space is uniformly convex and the Banach spaces LppS,S, λq,
1 ă p ă 8, where λ is a σ-finite measure, are uniformly convex [Bea85,
Section 3.II.1]. Also, any real tree is, by definition, totally geodesic and
any compact ultrametric space is isometric to a compact subset of a
real tree.

The prime numbers are the analogue of irreducible elements for the
semigroup of positive integers equipped with the usual multiplication.
The key to proving the Fundamental Theorem of Arithmetic (that ev-
ery positive integer other than 1 has a factorization into primes that is
unique up to the order of the factors) is a lemma due to Euclid which
says that if a prime number number divides the product of two positive
integers, then it must divide one of the factors. For general commuta-
tive semigroups, the term “prime” is usually reserved for elements that
exhibit the generalization of this property (see, for example, [Cli38]).
Accordingly, we say that an element X P KztEu is prime if X ď Y ‘Z
for Y ,Z P K implies that X ď Y or X ď Z. Prime elements are clearly
irreducible, but the converse is not a priori true and there are commu-
tative, cancellative semigroups where the analogue of the converse is
false.

Before showing that the notions of irreducibility and primality coin-
cide in our setting, we need the following elementary lemma which we
prove for the sake of completeness.

Lemma 5.5. Let ξ00, ξ01, ξ10, ξ11 be random elements of the respec-
tive compact metric spaces X00, X01, X10, X11. Suppose that the pairs
pξ00, ξ01q and pξ10, ξ11q are independent and that the pairs pξ00, ξ10q and
pξ01, ξ11q are independent. Then, ξ00, ξ01, ξ10, ξ11 are independent.

Proof. Suppose that fij : Xij Ñ R, i, j P t0, 1u, are bounded Borel
functions. Using first the independence of pξ00, ξ01q and pξ10, ξ11q, and
then the independence of pξ00, ξ10q and pξ01, ξ11q, we have

Erf00pξ00qf01pξ01qf10pξ10qf11pξ11qs

“ Erf00pξ00qf01pξ01qsErf10pξ10qf11pξ11qs

“ Erf00pξ00qsErf01pξ01qsErf10pξ10qsErf11pξ11qs,

as required. �
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Proposition 5.6. All irreducible elements of K are prime. Moreover,
if pYnqnPN is a sequence of elements of K such that limnÑ8 Y0 ‘ ¨ ¨ ¨‘

Yn “ Y exists and X P I is such that X ď Y, then X ď Yn for some
n P N.

Proof. Consider the first claim. Suppose that X P K is irreducible and
X ď Y ‘ Z for some Y ,Z P K.

From Proposition 4.2 we have Y ‘Z “W ‘X for some unique W P

K. From the remarks at the end of [Tar92], we may suppose that there
are compact metric spaces pY 1, rY 1q, pX

1, rX 1q, pX
2, rX2q and pZ2, rZ2q

such that pY, rY q “ pY
1ˆX 1, rY 1‘rX 1q, pZ, rZq “ pX

2ˆZ2, rX2‘rZ2q,
pX, rXq “ pX

1 ˆX2, rX 1 ‘ rX2q and pW, rW q “ pY
1 ˆZ2, rY 1 ‘ rZ2q, so

that pY ˆZ, rY ‘ rZq “ pW ˆX, rW ‘ rXq “ pY
1ˆX 1ˆX2ˆZ2, rY 1‘

rX 1 ‘ rX2 ‘ rZ2q (see also [Wal87] for an analogous result concerning
the existence of a common refinement of two Cartesian factorizations
of a (possibly infinite) graph and [AFDF00] for the case of finite metric
spaces). It follows from Lemma 5.5 that there are probability measures
µY 1 , µX 1 , µX2 and µZ2 such that µY “ µY 1 b µX 1 , µZ “ µX2 b µZ2 ,
µX “ µX 1 b µX2 , µW “ µY 1 b µZ2 , and µY b µZ “ µW b µX “

µY 1bµX 1bµX2bµZ2 . Thus, Y “ Y 1‘X 2, Z “ X 1‘Z2, X “ X 1‘X 2,
W “ Y 1‘Z2, and Y‘Z “W‘X “ Y 1‘X 1‘X 2‘Z2. This contradicts
the irreducibility of X unless X 1 “ E or X 2 “ E , in which case X ď Z
or X ď Y , thus establishing the first claim of the lemma.

Turning to the second claim, let pYnqnPN, Y P K and X P I satisfy
the hypotheses of the claim. By Proposition 4.2, for each n P N we
have Y “ Y0 ‘ ¨ ¨ ¨ ‘ Yn ‘ Zn for some unique Zn P K. If there is
no n P N such that X ď Yn, then, by the first part of the lemma,
X ď Zn for all n P N. By Proposition 4.2, this means that Zn “

X ‘ Wn for some unique Wn P K and hence χApZnq ď χApX q for all
A P A. However, limnÑ8 χApY0 ‘ ¨ ¨ ¨ ‘ Ynq “ χApYq for all A P A
and so limnÑ8 χApZnq “ 1 for all A P A, implying that χApX q “ 1
for all A P A. This, however, is impossible, since it would imply that
X “ E R I. �

The following is standard, but we include it for the sake of complete-
ness.

Corollary 5.7. Suppose for X P K and distinct Y1, . . . ,Yn P I that
Yk ď X for k “ 1, . . . , n. Then, Y1 ‘ ¨ ¨ ¨‘ Yn ď X .

Proof. The proof is by induction. The statement is certainly true for
n “ 1. Suppose it is true for n “ r and consider the case n “ r`1. We
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have X “ Y1 ‘¨ ¨ ¨‘Yr‘Wr for some Wr P K by the inductive assump-
tion. Because Yr`1 ď X “ Y1 ‘ ¨ ¨ ¨‘Yr ‘Wr, it follows from Proposi-
tion 5.6 that either Yr`1 ď Yk for some k with 1 ď k ď r or Yr`1 ďWr.
The former alternative is impossible because Y1, . . . ,Yr,Yr`1 P I are
distinct. Thus, Yr`1 ď Wr and we have Wr “ Yr`1 ‘ Wr`1 for some
Wr`1 P K. This implies that X “ Y1 ‘ ¨ ¨ ¨ ‘ Yr ‘ Yr`1 ‘ Wr`1 and
hence Y1 ‘ ¨ ¨ ¨‘ Yr ‘ Yr`1 ď X , completing the inductive step. �

Theorem 5.8. Given any X P KztEu, there is either a finite sequence
pXnq

N
n“0 or an infinite sequence pXnq

8
n“0 of irreducible elements of K

such that X “ X0 ‘ ¨ ¨ ¨ ‘ XN in the first case and X “ limnÑ8X0 ‘

¨ ¨ ¨ ‘ Xn in the second. The sequence is unique up to the order of its
terms. Each irreducible element appears a finite number of times, so
the representation is specified by the irreducible elements that appear
and their finite multiplicities.

Proof. We first establish the existence claim. Let χ :“ χ1 be the
semicharacter defined by (3.2). Put Jk :“ tY P I : Y ď X , 1 ´ 2´k ă
χpYq ď 1 ´ 2´pk`1qu for k P N. It follows from Proposition 5.6 that
if Y1, . . . ,Ym are distinct elements of Jk, then Y1 ‘ ¨ ¨ ¨ ‘ Ym ď X ,
and hence 0 ă χpX q ď χpY1q ¨ ¨ ¨χpYmq ď p1 ´ 2´pk`1qqm, so that Jk
is finite. Each of the sets Jk can be ordered. With a slight abuse of
notation, we will use the same symbol ă for this order for all k.

Define X0,X1, . . . as follows. Let K0 :“ mintk P N : Jk “ Hu and
set X0 to be minimal element with respect to the order ă of the set
tY P JK0 : Y ď X u. It follows from Proposition 5.2 that K0 and X0

are well-defined. By Proposition 4.2 there exists Z0 P K such that
X “ X0 ‘Z0. If Z0 “ E , then set N “ 0 and terminate the procedure.
Suppose that X0, . . . ,Xn and Z0, . . . ,Zn have been defined such that
X “ X0 ‘ ¨ ¨ ¨ ‘ Xi ‘ Zi for 0 ď i ď n, where Xi P JKi and Zi “ E
for 0 ď i ď n, and the procedure has yet to terminate. Let Kn`1 :“
inftk P N : DY P Jk such thatY ď Znu and set Xn`1 to be the minimal
element with respect to the order ă of the set tY P JKn`1 : Y ď Znu.
It follows from Proposition 5.2 that Kn`1 and Xn`1 are well-defined.
By Proposition 4.2 there exists Zn`1 P K such that Zn “ Xn`1 ‘Zn`1,
so that X “ X0 ‘ ¨ ¨ ¨‘ Xn`1 ‘ Zn`1. If Zn`1 “ E , then set N “ n` 1
and terminate the procedure.

If the procedure terminates, then it is clear that X “ X0 ‘ ¨ ¨ ¨ ‘

XN . Suppose that the procedure does not terminate. By part (a) of
Corollary 3.7, the sequence pX0 ‘ ¨ ¨ ¨‘XnqnPN converges to a limit, say
Y ď X . Observe that K0 ď K1 ď . . .. Moreover, #tn : Kn “ ku is
finite for all k P N, because otherwise limnÑ8 χpX0 ‘ ¨ ¨ ¨‘ Xnq “ 0 “
χpYq. Therefore, Kn Ñ8 as nÑ8. By Proposition 4.2, X “ Y ‘ Z
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for some Z P K. If Y “ X , so that Z “ E , then it follows from
Proposition 5.2 that there is a W P I such that W ď Z. However,
this would mean that W ď Zn for all n, but W P Jk for some k P N,
and so this would contradict the conclusion that Kn Ñ 8 as n Ñ 8.
Therefore, Y “ X , as required.

We now turn to the uniqueness claim. This may fail because X has
two different representations as a finite sum of irreducible elements,
one representation as a finite sum and another as a limit of finite sums,
or two different representations as a limit of finite sums. We deal with
the last case. The other two are similar and are left to the reader.
Suppose then that two sequences pX 1

nqnPN and pX 2
nqnPN represent X .

An argument similar to one above shows that any particular irreducible
element appears a finite number of times in each sequence. Suppose
that Y P I appears M 1 times in pX 1

nqnPN and M2 times in pX 2
nqnPN with

M 1 “M2. Assume without loss of generality that M 1 ąM2. We have
Y ‘ ¨ ¨ ¨ ‘ Y ‘ Z 1n “ X “ Y ‘ ¨ ¨ ¨ ‘ Y ‘ Z2n, where the first sum has
M 1 terms, the second sum has M2 terms and Z 1n,Z2n P K are such that
Y ď Z 1n and Y ď Z2n. Using Proposition 4.2, Y ‘ ¨ ¨ ¨‘ Y ‘ Z 1n “ Z2n,
where the sum has M 1 ´M2 ą 0 terms. This, however, would violate
the second part of Proposition 5.6. �

Remark 5.9. It follows easily from Theorem 5.8 that, for the partial
order ď, every pair of elements of K has a join (that is, a least upper
bound) and a meet (that is, a greatest lower bound), and so K with
these operations is a lattice. It is not hard to check that this lattice is
distributive (that is, the meet operation distributes over the join op-
eration and vice versa). Furthermore, the Gromov-Prohorov distance
between X and Y equals the maximum of the distances between the
meet of X and Y and either X or Y .

Remark 5.10. Given f : I Ñ r0, 1s, the map χ : K Ñ r0, 1s that
sends X to

ś

n fpXnq, where X0,X1, . . . are as in Theorem 5.8, is a
semicharacter.

The following result will be a key ingredient in the characterization
of the infinitely divisible random elements of K in Theorem 9.1.

Corollary 5.11. If Φ : R` Ñ K is a continuous function such that
Φp0q “ E and Φpsq ď Φptq for 0 ď s ď t ă 8, then Φ ” E.

Proof. Suppose that Φ is a function with the stated properties. If Φ ı
E , then there exist 0 ă u ă v ă 8 such that Φpuq ă Φpvq. It follows
from Theorem 5.8 that there exists Y P I such that the multiplicity of
Y in the factorization of Φpvq is strictly greater than the multiplicity
of Y in the factorization of Φpuq. Define M : R` Ñ N by setting Mpsq,
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s ě 0, to be the multiplicity of Y in the factorization of Φpsq. This
function is nondecreasing and so there must exist u ď t ď v such that
Mpt´q ăMpt`q. It follows that Φpt´ εq‘Y ‘ ¨ ¨ ¨‘Y ď Φpt` εq for
all ε ą 0, where there are Mpt`q´Mpt´q summands in the sum, and
this contradicts the continuity of Φ. �

The next result will be a consequence of the characterization of infin-
itely divisible random elements of K in Theorem 9.1, but we present it
here as in illustration of a nonobvious and initially somewhat surprising
feature of K.

Corollary 5.12. Suppose that X P K is infinitely divisible in the sense
that for each positive integer n there exists Xn P K such that X “

Xn ‘ ¨ ¨ ¨‘ Xn, where the sum has n terms. Then, X “ E.

Proof. This is immediate from Theorem 5.8. Indeed, a decomposition
of the form X “ Xn ‘ ¨ ¨ ¨‘ Xn is only possible if n divides each of the
multiplicities with which the various irreducible elements appear in the
factorization of X . �

Remark 5.13. A simpler and more direct proof of Corollary 5.12 is to
note that if X can be written as Xn ‘ ¨ ¨ ¨‘Xn for all n, then the push-
forward of the probability measure µb2

X by the map px1, x2q Ñ rXpx
1, x2q

is an infinitely divisible probability measure supported on r0, diampX qs
and hence it must be a point mass at zero, where we again use the fact
that any infinitely divisible probability measure with bounded support
is a point mass, a fact that, as we noted in Remark 5.3, has a simple di-
rect proof. An argument along these lines can also be used to establish
Corollary 5.11.

The following result is an immediate consequence of Corollary 5.12.

Corollary 5.14. If Φ : R` Ñ K is a function such that Φp0q “ E and
Φpsq‘ Φptq “ Φps` tq for 0 ď s, t ă 8, then Φ ” E.

Remark 5.15. Although Corollary 5.14 says there are no nontrivial ad-
ditive functions from R` to K, there do exist nontrivial superadditive
functions; that is, functions Φ : R` Ñ K such that Φp0q “ E and
Φpsq‘ Φptq ď Φps` tq for 0 ď s, t ă 8. For example, take X P KztEu
and set Φptq “ X ‘ ¨ ¨ ¨ ‘ X for n ď t ă n ` 1, n P N, where the sum
has n terms and we interpret the empty sum as E . We have

Φpsq‘ Φptq “ Φptsuq‘ Φpttuq “ Φptsu` ttuq ď Φps` tq.

However, by Corollary 5.11 there are no nontrivial continuous super-
additive functions. Furthermore, there are no superadditive functions
Φ such that Φptq “ E for all t ą 0.
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There are also nontrivial subadditive functions; that is, functions
Φ : R` Ñ K such that Φp0q “ E and Φpsq ‘ Φptq ě Φps ` tq for
0 ď s, t ă 8. For example, it suffices to take some X P KztEu and
set Φptq “ X for t ą 0. However, there are no continuous subadditive
functions because if Φ is such a function and Y P I is such that Y ď

Φptq, then it follows from Φp t
2
q‘Φp t

2
q ě Φptq that Y ď Φp t

2
q and hence

Y ď Φp t
2n
q for all n P N, but this contradicts the continuity of Φ at 0.

Remark 5.16. With Theorem 5.8 in hand, we can give a more concrete
description of the group G described in Remark 4.3. Recall that V‘n

denotes the sum of n terms V ‘ ¨ ¨ ¨ ‘ V , and we interpret the empty
sum as E . With this notation, any U P K has a unique representation
as U “

Ð

VPI V‘nV , where nV “ 0 for all but countably many V P I
and

ř

VPI nV diampVq ă 8. Any element of G corresponds to a unique

pair p
Ð

VPI V‘n`V ,
Ð

VPI V‘n´V q, where n`V “ 0 and n´V “ 0 for all but
countably many V P I,

ř

VPI n
`
V diampVq ă 8 and

ř

VPI n
´
V diampVq ă

8, and n`Vn
´
V “ 0 for all V P I. We can therefore identify an element

of G with the corresponding object ppn`V , n
´
V qqVPI. In terms of this

representation, the binary operation on G transforms the two objects
ppm`

V ,m
´
V qqVPI and ppn`V , n

´
V qqVPI into the object

ppm`
V`n

`
V´rm

`
V`n

`
V s^rm

´
V`n

´
V s,m

´
V`n

´
V´rm

`
V`n

`
V s^rm

´
V`n

´
V sqqVPI.

6. Prime factorizations as measures

Theorem 5.8 guarantees that any X P K has a unique representa-
tion as X “

Ð

k Y
‘mk
k , where the Yk P I are distinct, the integers mk

are positive, and we define the empty sum to be E . The number of Yk
outside any neighborhood of E is finite. It is natural to code such a fac-
torization as the measure ΨpX q :“

ř

kmkδYk on K that is concentrated
on I and assigns mass mk to the point Yk for each k.

Denote by N the family of Borel measures N on K such that
NpKzIq “ 0 and NpBq P N for every Borel set B that does not in-
tersect some neighborhood of E . Any N P N can be represented as the
positive integer linear combination of Dirac measures

N “
ÿ

k

mkδYk

for distinct Yk P I and positive integers mk, where the sum may be
finite or countably infinite depending on the cardinality of the support
of N . Given N P N with such a representation we define a unique
element of K by

ΣpNq :“
ð

k

Y‘mk
k ,
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if the sum converges (recall from Corollary 3.7 that the convergence of
the sum is independent of the order summands). Thus, ΣpΨpX qq “ X
for all X P K.

It is possible to topologize N with the metrizable w#-topology of
[DVJ03, Section A2.6]. This topology is the topology generated by
integration against bounded continuous functions that are supported
outside a neighborhood of E . The resulting Borel σ-field coincides σ-
field generated by the N-valued maps N ÞÑ NpBq Borel measurable,
where B is a Borel subset of K that is disjoint from some neighborhood
of E , see [DVJ03, Theorem A2.6.III].

Proposition 6.1. The map Ψ : KÑ N is Borel measurable.

Proof. The set tpX ,Yq P K2 : Y ď X u is closed by part (a) of Corol-
lary 4.4 and the set I is a Gδ by Proposition 5.1. It follows that the
set B :“ tpX ,Yq P K2 : Y ď X , Y P Iu is a Gδ subset of K2 and, in
particular, it is Borel.

For any X P K, the section BX :“ tY P K : pX ,Yq P Bu “ tY P K :
Y ď X , Y P Iu is countable (indeed, it is discrete with E as its only
possible accumulation point).

By [Kec95, Exercise 18.15], the sets Mn :“ tX P K : #BX “ nu,
n “ 1, 2, . . . ,8, are Borel and for each n there exist Borel functions

pθ
pnq
i q0ďiăn such that:

‚ θ
pnq
i : Mn Ñ K,

‚ the sets tpX ,Yq : X P Mn, Y “ θ
pnq
i pX qu, 0 ď i ă n, n “

1, 2, . . . ,8, are pairwise disjoint,

‚ BX “ tθ
pnq
i pX q : 0 ď i ă nu for X PMn, n “ 1, 2, . . . ,8.

Recall the Borel function M from part (b) of Corollary 4.4. For

X PMn, the set tpθ
pnq
i pX q,MpX , θ

pnq
i pX qq : 0 ď i ă nu is a listing of the

elements of the set tY P I : Y ď X u along with their multiplicities in the

prime factorization of X . The functions X ÞÑ pθ
pnq
i pX q,MpX , θ

pnq
i pX qq,

X PMn, 0 ď i ă n, n “ 1, 2, . . . ,8, are measurable and so

X ÞÑ ΨpX q “
n
ÿ

i“0

MpX , θpnqi pX qqδθpnqi pX q

for X P Mn, provides a measurable map from K to N, see [DVJ08,
Proposition 9.1.X]. �

Remark 6.2. The map Ψ is not continuous for the w#-topology. In
fact, any X P pKzIqztEu is a discontinuity point, as the following argu-
ment demonstrates. Because I of is dense in K, it is possible to find a
sequence Xn P I that converges to X . Therefore, ΨpXnq “ δXn , whereas



24 S.N. EVANS AND I. MOLCHANOV

ΨpX q has total mass at least two and the distance between any atom
of ΨpX q and the point Xn is bounded away from zero uniformly in n.

We omit the straightforward proof of the following result.

Lemma 6.3. The set tN P N : ΣpNq is definedu is measurable and the
restriction of the map Σ to this set is measurable.

7. Scaling

Given X P K and a ą 0, set aX :“ pX, arX , µXq P K. This scaling
operation operation is continuous and satisfies the first distributivity
law

(7.1) apX ‘ Yq “ paX q‘ paYq for X ,Y P K and a ą 0.

The semigroup pK,‘q equipped with this scaling operation is a con-
vex cone. The neutral element E is the origin in this cone; that is,
limaÓ0 aX “ E for all X P K. Note that diampaX q “ a diampX q for
X P K and a ą 0. While the Gromov–Prohorov metric is not homoge-
neous for the scaling operation, the D-metric introduced in [Stu06] is
homogeneous and yields the same topology on K.

It follows from (7.1) that Y P I if and only if aY P I for all a ą 0.
There is an analogue of the scaling operation for the semigroup of

semicharacters pχAqAPA given by

aχApX q :“ χApaX q “ χaApX q, a ą 0, A P A, X P K.

We have seen that pK,ďq is a distributive lattice. There is a large
literature on lattices that are equipped with an action of the additive
group of the real numbers (see, for example [Kap48, Pie59, Hol69]).
Using exponential and logarithms to go back and forth from one setting
to the other, this work can be recast as being about lattices with an
action of the group consisting of R`` “ p0,8q equipped with the usual
multiplication of real numbers. Unfortunately, one of the hypotheses
usually assumed in this area translates to our setting as an assumption
that X ă aX for a ą 1. The following result shows that this is far
from being the case and also that scaling operation certainly does not
satisfy the second distributivity law.

Proposition 7.1. a) If X ď aX for some X P K and a “ 1,
then a ą 1 and X “

Ð8

k“1 a
´kZ, where Z is defined by the

requirement that aX “ X ‘ Z.
b) If paX q ‘ pbX q “ cX , for some X P K and a, b, c ą 0, then

X “ E.
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Proof. Consider part (a). Suppose that X “ E is such that X ď aX
for a “ 1. Because diampX q ď diampaX q “ a diampX q, it must be the
case that a ą 1. It follows from Proposition 4.2 that Z well-defined. We
have X “ a´1Z ‘ a´1X . Iterating, we have X “

Ðn
k“1 a

´kZ ‘ a´nX .
By part (a) of Corollary 3.6 (or part (b) of Corollary 3.6),

Ðn
k“1 a

´kZ
exists. Moreover, limnÑ8 diampa´nX q “ 0, and part (a) follows.

Consider part (b). Suppose that paX q ‘ pbX q “ cX for some X P

K and a, b, c ą 0. By part (a) of Lemma 2.4, pa ` bq diampX q “
diamppaX q ‘ pbX qq “ diampcX q “ c diampX q, and so a ` b “ c. An
irreducible element Y P I appears in the factorization of X guaranteed
by Theorem 5.8 if and only if cY P I appears in the factorization of cX ,
and similar remarks hold for the factorizations of aX and bX . Suppose
that δ is the maximum of the diameters of the irreducible elements
that appear in the factorization of X . (There could, of course, be more
than one - but only finitely many - irreducible factors with maximal
diameter.) It follows that cX has in irreducible factor with diameter
cδ, whereas all the irreducible factors of paX q ‘ pbX q have diameters
at most pa_ bqδ, which is impossible since pa_ bq ă c. �

Remark 7.2. While it is possible to introduce a notion of convexity
for subsets of K using the addition and scaling in an obvious way, the
absence of the second distributivity law makes the situation entirely
different from the classical case. For instance, a single point tX u is not
convex for X ‰ E and its convex hull is the set of spaces of the form
a1X ‘ ¨ ¨ ¨‘ anX for a1, . . . , an ě 0 such that a1 ` ¨ ¨ ¨ ` an “ 1. It is a
consequence of Remark 8.3 that this latter set is not even pre-compact.

Remark 7.3. The map that sends a P R`` to the automorphism
X ÞÑ aX of pK,‘q is a homomorphism from pR``,ˆq to the group
of automorphisms of pK,‘q. We can therefore define the semidirect
product K ¸ R`` to be the semigroup consisting of the set K ˆ R``
equipped with the operation f defined by

pX , aqf pY , bq :“ pX ‘ paYq, abq.

This semigroup has the identity element pE , 1q and is noncommutative.
The semidirect product of the group pG,‘q considered in Remark 4.3
and Remark 5.16 and the group pR``,ˆq can be defined similarly. It
would be interesting to extend the investigation of infinite divisibility
in Section 9 to this semigroup and group, but we leave this topic for
future study.
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8. The Laplace transform

A random element in K is defined with respect to the Borel σ-algebra
on K generated by the Gromov–Prohorov metric.

Lemma 8.1. Two K-valued random elements X and Y have the same
distribution if and only if ErχApXqs “ ErχApYqs for all A P A.

Proof. It follows from Lemma 3.5 that the set of functions tχA : A P Au
generates the Borel σ-algebra on K. From Remark 3.3, this set is a
semigroup under the usual multiplication of functions and, in partic-
ular, it is closed under multiplication. The result now follows from a
standard monotone class argument. �

Remark 8.2. Recall from Section 6 the set N of N-valued measures that
are concentrated on I and the associated measurable structure. Fol-
lowing the usual terminology, we define a point process to be a random
element of N. It follows from Proposition 6.1 that any K-valued ran-
dom element X can, in the notation of Section 6, be viewed as a point
process N :“ ΨpXq such that ΣpNq “ X. If we write N “

ř

mkδYk

on I, then

ErχApXqs “ ErχApΣpΨpXqqs “ E
”

ź

χApYkq
mk
ı

.

The right-hand side is the expected value of the product of the func-
tion χA applied to each of the atoms of N taking into account their
multiplicities and hence it is an instance of the probability generating
functional of the point process N, see [DVJ08, Equation (9.4.13)].

Remark 8.3. A fairly immediate consequence of Lemma 8.1 is that
there is no analogue of a law of large numbers for random elements of
K in the sense that if pXkqkPN is an i.i.d. sequence of random elements
of K that are not identically equal E , then 1

n

Ðn´1
k“0 Xk does not even

have a subsequence that converges in distribution. Indeed, for A P A
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with A P Rp
m
2 q
` we have

lim
nÑ8

E

«

χA

˜

1

n

n´1
ð

k“0

Xk

¸ff

“ lim
nÑ8

ˆ

E
„

χA

ˆ

1

n
X1

˙˙n

“ lim
nÑ8

ˆ
ż

K

ż

Xm

exp

˜

´
1

n

ÿ

1ďiăjďm

aijrXpxi, xjq

¸

ˆ µbmX pdxqPtX1 P dX u
˙n

“ exp

˜

´

ż

K

ż

Xm

ÿ

1ďiăjďm

aijrXpxi, xjqµ
bm
X pdxqPtX1 P dX u

¸

“ exp

˜

´
ÿ

1ďiăjďm

aij

ż

K

ż

X2

rXpx1, x2qµ
b2
X pdxqPtX1 P dX u

¸

by a standard argument that is used to prove the weak law of large
numbers for a sequence of i.i.d. nonnegative random variables using
Laplace transforms. If some subsequence of 1

n

Ðn´1
k“0 Xk converged in

distribution to a limit Y, then we would have
ż

K

ż

Ym
exp

˜

´
ÿ

1ďiăjďm

aijrY pyi, yjq

¸

µbmY pdxqPtY P dYu

“ exp

˜

´
ÿ

1ďiăjďm

aij

ż

K

ż

X2

rXpx1, x2qµ
b2
X pdxqPtX1 P dX u

¸

.

By the unicity of Laplace transforms for nonnegative random vectors,
this implies that

ż

K
µb2
Y

"

py1, y2q P Y
2 : rY py1, y2q

“

ż

X2

rXpx1, x2qµ
b2
X pdxqPtX1 P dX u

*

PtY P dYu

“ 0,

and hence there is a constant c ą 0 such that for PtY P ¨u-almost
all Y P K we have rY py1, y2q “ c for µb2

Y -almost all py1, y2q P Y
2, but

this is impossible for nontrivial a compact metric space pY, rY q and
probability measure µY with full support.
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9. Infinitely divisible random elements

A random element Y of K is infinitely divisible if for each positive
integer n there are i.i.d. random elements Yn1, . . . ,Ynn such that Y
has the same distribution as Yn1 ‘ ¨ ¨ ¨‘ Ynn.

A K-valued Lévy process is a K-valued stochastic process pXtqtě0

such that:

‚ X0 “ E
‚ t ÞÑ Xt is càdlàg (that is, right-continuous with left-limits)
‚ Given 0 “ t0 ă t1 ă . . . ă tn, there are independent K-valued

random variables Zt0t1 ,Zt1t2 , . . . ,Ztn´1tn such that the distribu-
tion of Ztmtm`1 only depends on tm`1 ´ tm for 0 ď m ď n ´ 1
and Xt` “ Xtk ‘ Ztktk`1

‘ ¨ ¨ ¨‘ Zt`´1t` for 0 ď k ă ` ď n.

An account of the general theory of infinitely divisible distributions
on commutative semigroups may be found in [BCR84]. The following
result is the analogue in our setting of the classical Lévy-Hinc̆in-Itô
description of an infinitely divisible, real-valued random variable.

Theorem 9.1. a) A random element Y of K is infinitely divisible
if and only if it has the same distribution as X1, where pXtqtě0

is a Lévy process with distribution uniquely specified by that of
Y.

b) For each t ą 0 there is a unique random element ∆Xt such that
Xt “ Xt´ ‘ ∆Xt.

c) For each t ą 0, Xt “
Ð

0ăsďt ∆Xs, where the sum is a well-
defined limit that does not depend on the order of the summands.

d) The set of points tpt,∆Xtq : ∆Xt “ Eu form a Poisson point
process on R`ˆpKztEuq with intensity measure λb ν, where λ
is Lebesgue measure and ν is a σ-finite measure on KztEu such
that

(9.1)

ż

pdiampX q ^ 1q νpdX q ă 8 .

e) Conversely, if ν is a σ-finite measure on KztEu satisfying (9.1),
then there is an infinitely divisible random element Y and a
Lévy process pXtqtě0 such that (a)-(d) hold, and the distribu-
tions of this random element and Lévy process are unique.

Proof. Write D for the set of nonnegative dyadic rational numbers. It
follows from the infinite divisibility of Y and the Kolmogorov extension
theorem that we can build a family of random variables pXqqqPD such
that:

‚ X0 “ E ,
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‚ X1 has the same distribution as Y,
‚ Given q0, . . . , qn P D with 0 “ q0 ă q1 ă . . . ă qn, there are

independent K-valued random variables Zq0q1 ,Zq1q2 , . . . ,Zqn´1qn

such that the distribution of Zqmqm`1 only depends on qm`1´qm
for 0 ď m ď n ´ 1 and Xq` “ Xqk ‘ Zqkqk`1

‘ ¨ ¨ ¨ ‘ Zq`´1q` for
0 ď k ă ` ď n. In particular, Xp ď Xq for p, q P D with p ď q.

We claim that if p P D, then

(9.2) lim
qÓp, qPD

Xq “ Xp, a.s.

To see that this is the case, note that if p, q P D with p ă q, then
Xq “ Xp ‘ Zpq and it suffices to show that limqÓp, qPD dGPrpZpq, Eq “ 0
almost surely.

By part (b) of Lemma 2.4, it will certainly suffice to show that
limqÓp, qPD diampZpqq “ 0 a.s. However, note that if we set T0 “ 0
and Tr “ diampZp,p`rq for r P Dzt0u, then the R`-valued process
pTrqrPD has stationary independent increments. It is well-known that
such a process has a càdlàg extension to the index set R` and hence,
in particular, limrÓ0, rPD Tr “ 0.

Lemma 9.4 applied to pXpqpPD gives that it is possible to extend
pXpqpPD to a Lévy process pXtqtě0. This establishes (a). Moreover, for
each t ą 0 there is a unique K-valued random variable ∆Xt such that
Xt “ Xt´ ‘ ∆Xt,

ř

0ăsďt diamp∆Xsq is finite, and Xt “
Ð

0ăsďt ∆Xs,
where the sum is well-defined. This establishes (b) and (c).

A standard argument (see, for example, [Kal02, Theorem 12.10])
shows that the set of points tpt,∆Xtq : ∆Xt “ Eu form a Poisson
point process on R` ˆ pKztEuq. The stationarity of the “increments”
of pXtqtě0 forces the intensity measure of this Poisson point process to
be of the form λb ν, and the fact that

ř

0ăsďt diamp∆Xsq is finite for
all t ě 0 implies (9.1), see, for example, [Kal02, Corollary 12.11]. This
establishes (d).

We omit the straightforward proof of (e). �

Following the usual terminology, we refer to the σ-finite measure in
Theorem 9.1 as the Lévy measure of the infinitely divisible random el-
ement Y or the Lévy process pXtqtě0. The following is immediate from
Theorem 9.1, the multiplicative property of the semicharacters χA, and
the usual formula for the Laplace functional of a Poisson process.

Corollary 9.2. If Y is an infinitely divisible random element of K
with Lévy measure ν, then the Laplace transform of Y is given by

(9.3) ErχApYqs “ exp

ˆ

´

ż

p1´ χApYqq νpdYq
˙

, A P A.
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Remark 9.3. In the notation of Theorem 9.1, the random measure
ÿ

0ătď1

δ∆Xt

is a Poisson random measure on K with intensity measure ν and we
have Y “ X1 “

Ð

0ătď1 ∆Xt. The push-forward of this random mea-
sure by the map Ψ of Proposition 6.1 is a Poisson random measure
on the space N of N-valued measures that are concentrated on I. The
intensity measure of this latter Poisson random measure is the push-
forward Q of the Lévy measure ν by Ψ. The “points” of the latter
Poisson random measure are usually called clusters in the point pro-
cesses literature, while Q itself is called the KLM measure, see [DVJ08,
Definition 10.2.IV]. Let N be the point process on I obtained as the
superposition of clusters; that is, N “

ř

0ătď1 Ψp∆Xtq is the sum of
the N-valued measures given by each individual cluster. This point
process on I is called the Poisson cluster process in the Poisson point
process literature. The infinite divisibility of Y implies the infinite di-
visibility of the point process ΨpYq and the equality ΨpYq “ N is an
instance of the well-known fact that infinitely divisible point processes
are Poisson cluster processes. Furthermore, (9.3) corresponds to the
classical representation of the probability generating functional of an
infinitely divisible point process specialized to the space I, see [DVJ08,
Theorem 10.2.V]. On the other hand, if M is a Poisson cluster process
on I such that ΣpMq is almost surely well-defined, then ΣpMq is an
infinitely divisible random element of K, and our observations above
show that all infinitely divisible random elements of K appear this way.

We end this section with a deterministic path-regularization result
that was used in the proof of Theorem 9.1.

Lemma 9.4. Suppose that Ξ : D Ñ K is such that Ξp0q “ E, Ξppq ď
Ξpqq for p, q P D with 0 ď p ď q, and limqÓp, qPD Ξpqq “ Ξppq for all
p P D. Then, Ξ̄ptq :“ limqÓt, qPD Ξpqq exists for all t P R`. Moreover,
the function Ξ̄ : R` Ñ K has the following properties:

‚ Ξ̄ppq “ Ξppq for p P D,
‚ Ξ̄psq ď Ξ̄ptq for s, t P R` with s ď t,
‚ t ÞÑ Ξ̄ptq is càdlàg,
‚ for p, q P D with 0 ď p ă q, there is a unique Θpp, qq P K such

that Ξpqq “ Ξppq‘ Θpp, qq,
‚ for 0 ď s ă t, there is a unique Θ̄ps, tq P K such that Ξ̄ptq “

Ξ̄psq‘ Θ̄ps, tq and Θ̄ps, tq “ limpÓs, qÓt, p,qPD Θpp, qq,
‚ for each t ą 0 there is a unique ∆Ξ̄ptq P K such that Ξ̄ptq “

limsÒt Ξ̄psq‘ ∆Ξ̄ptq
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‚
ř

uătďv diamp∆Ξ̄ptqq ď diampΘ̄pu, vqq for all 0 ď u ă v,

‚ the sum
Ð

0ăsďt ∆Ξ̄psq is well-defined for all t ě 0,

‚ Ξ̄ptq “
Ð

0ăsďt ∆Ξ̄psq for all t ě 0.

Proof. It follows from part (b) of Corollary 3.6 that limqÓt, qPD Ξpqq “:
Ξ̄ptq exists for all t ě 0.

It is clear that Ξ̄ppq “ Ξppq for p P D and that Ξ̄psq ď Ξ̄ptq for
s, t P R` with s ď t. It is also clear that t ÞÑ Ξ̄ptq is right-continuous.
It follows from part (b) of Corollary 3.6 that Ξ̄pt´q :“ limsÒt Ξ̄psq exists
for all t ą 0 and Ξ̄pt´q ď Ξ̄ptq for all t ą 0.

The existence and uniqueness of Θ̄ps, tq such that Ξ̄ptq “ Ξ̄psq ‘

Θ̄ps, tq and the fact that Θ̄ps, tq “ limpÓs, qÓt, p,qPD Θpp, qq follow from
Proposition 4.2.

It also follows from Proposition 4.2 that ∆Ξ̄ptq exists and is well-
defined.

For any 0 ď u ă v and u ă t1 ă ¨ ¨ ¨ ă tn ď v we have ∆Ξ̄pt1q ‘

¨ ¨ ¨ ‘ ∆Ξ̄ptnq ď Θ̄pu, vq. It follows from part (a) of Corollary 3.7 that
Ð

0ăsďt ∆Ξ̄psq is well-defined.

It is clear that
Ð

0ăsďt ∆Ξ̄psq ď Ξ̄ptq for all t ě 0 and so we can
use Proposition 4.2 to define a unique function Φ : R` Ñ K such that
Ξ̄ptq “ Φptq‘

Ð

0ăsďt ∆Ξ̄psq for all t ě 0. The function Φ is continuous
and Φpsq ď Φptq for 0 ď s ă t. Also, Φp0q “ E. It follows from
Corollary 5.11 that Φ ” E , completing the proof of the lemma. �

10. Stable random elements

A K-valued random element Y is stable with index α ą 0 if for any
a, b ą 0 the random element pa ` bq

1
αY has the same distribution as

a
1
αY1 ‘ b

1
αY2, where Y1 and Y2 are independent copies of Y. Note

that a stable random element is necessarily infinitely divisible. If Y
is stable, then its diameter is a nonnegative strictly stable random
variable.

There is a general investigation of stable random elements of convex
cones in [DMZ08]. In general, not all such objects have Laplace trans-
forms that are of the type analogous to those described in Corollary 9.2.
For example, there can be Gaussian-like distributions. However, no
such complexities arise in our setting.

Theorem 10.1. Suppose that Y is a nontrivial α-stable random ele-
ment of K. Then, 0 ă α ă 1 and the Lévy measure ν of Y obeys the
scaling condition

νpaBq “ a´ανpBq, a ą 0,
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for all Borel sets B Ď K. Conversely, if ν is a σ-finite measure on
KztEu that obeys the scaling condition for 0 ă α ă 1 and satisfies
(9.1), then ν is the Lévy measure of an α-stable random element.

Proof. If pXtqtě0 is the Lévy process corresponding to Y, then it is not

difficult to check that the process pa´
1
αXatqtě0 has the same distribution

as pXtqtě0, and the scaling condition for ν follows easily.
Write η for the push-forward of ν by the map diam. It is clear from

the scaling condition and the property diampaX q “ a diampX q that
ηprx,8qq “ cx´α for some constant c ą 0, and so

ż

pdiampYq ^ 1q νpdYq “
ż

py ^ 1q cαy´pα`1q dy.

In order for this integral to be finite, it must be the case that α ă 1.
The remainder of the result is straightforward and we omit the proof.

�

Remark 10.2. One of the conclusions of Theorem 10.1 is that there
are no nontrivial α-stable random elements for α ě 1. This also fol-
lows from the following argument. If Y was a nontrivial α-stable ran-
dom element and pYkqkPN was a sequence of independent copies of Y,
then 1

n
1
α

Ðn´1
k“0 Yk would have the same distribution as Y and hence

1
n

Ðn´1
k“0 Yk would certainly converge in distribution as nÑ8, but this

contradicts Remark 8.3, where we observed that there is no analogue
of a law of large numbers in our setting.

By [DMZ08, Theorem 7.14], each α-stable random element Y can
be represented as a LePage series

(10.1) Y
d
„ γ

ð

nPN
Γ
´ 1
α

n Zn,

where γ is a suitable constant, pΓnqnPN is the sequence of successive
arrivals of a homogeneous unit intensity Poisson point process on R`
and pZnqnPN is sequence of i.i.d. random elements of K with almost
surely constant diameter 1.

For the sake of completeness, we give a quick self-contained proof of
why this is so in our setting. From Theorem 9.1 and Theorem 10.1,
Y has the same distribution as ‘tX : pt,X q P Πu, where Π is a
Poisson point process on r0, 1s ˆ pKztEuq with intensity λ b ν for a
measure ν that has the property νpaBq “ a´ανpBq, for all a ą 0
and all Borel sets B Ď K. From the proof of Theorem 10.1, we
know that the values of diampX q as we range over points pt,X q in
Π are distinct and form a Poisson point process with intensity mea-
sure η, where ηprx,8qq “ cx´α for some constant c ą 0. Similar
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reasoning shows that tpdiampX q, diampX q´1X q : pt,X q P Πu is a Poi-
son point process with intensity measure η b κ for some probability
measure κ supported on tY P K : diampYq “ 1u. It follows that

tpc´
1
α diampX q´α, diampX q´1X q : pt,X q P Πu is a Poisson point pro-

cess with intensity λb κ. If we denote this Poisson point process by Ξ
and list the points of Ξ as ppΓn,ZnqqnPN, where the first coordinates are
in increasing order, then this sequence has the description given above

and tX : pt,X q P Πu “ tc´
1
α2 Γ

´ 1
α

n Zn : n P Nu, which establishes the
result.

It is possible to reconstruct the Poisson process Π from the sequences
pΓnqnPN and pZnqnPN, so that the uniqueness part of Theorem 9.1 yields
that the common distribution of the random elements Zn is unique. A
sum of the form (10.1) produces an α-stable random element for any
i.i.d. sequence pZnqnPN with the property that the sum is well-defined

which, by part (b) of Corollary 3.7, is equivalent to
ř

n Γ
´ 1
α

n diampZnq ă

8 almost surely (that is, it is not necessary to impose the condition
that the diameters of the random elements Zn are constant). If ρ
is the common distribution of the random variables diampZnq, then
the latter sum converges almost surely if and only if

ş

zα ρpdzq ă 8.
If the diameters of the Zn are not constant, then different common
distributions for the Zn may yield sums in (10.1) that have the same
distribution.

Example 10.3. We consider the α-stable random element Y obtained
by constructing the LePage series in which the Zi are copies of some
common nonrandom Z P K. In this case Y is the infinite product
Y “ Z8 equipped with the metric

rY ppz
1
nq, pz

2
nqq :“

ÿ

n

Γ
´ 1
α

n rZpz
1
n, z

2
nq

and the probability measure µY :“ µb8Z . Note that rY ppz
1
nq, pz

2
nqq is a

positive strictly stable random variable with index α.

11. Thinning

Recall the map Ψ that associates with each X P K a N-valued
measure on I. For p P r0, 1s, the independent p-thinning of an
N-valued measure N :“

ř

kmkδYk is defined in the usual way as
N ppq :“

ř

k ξkδYk , where ξk, k P N, are independent binomial random
variables with parameters mk and p. In other words, each atom of N
is retained with probability p and otherwise eliminated independently
of all other atoms and taking into account the multiplicities.
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Applying an independent p-thinning procedure to the point process
N :“ ΨpXq generated by random element X in K yields a K-valued
random element Xppq :“ ΣpNppqq that we call the p-thinning of X. Note
that the Xppq ď X, Xp0q “ E , Xp1q “ X, and it is possible to couple
the constructions of these random elements so that Xppq ď Xpqq for
0 ď p ď q ď 1.

For 0 ď p, q ď 1 the random element pXppqqpqq has the same distribu-
tion as the random element Xppqq. Also, if X and Y are independent
random elements and Xppq and Yppq are constructed to be independent,
then Xppq ‘ Yppq has the same distribution as pX ‘ Yqppq. It follows
from this last property that, for fixed A P A and 0 ď p ď 1, the map

X ÞÑ ErχApX ppqqs “
ź

p1´ p` pχApYnqq

is a semicharacter, where the product ranges over the factors that ap-
pear in the factorization of X into a sum of irreducible elements of
K (repeated, of course, according to their multiplicities). This is a
particular case of the construction in Remark 5.10.

12. The Gromov-Prohorov metric

We follow the definition of the Gromov-Prohorov metric in [GPW09].
Recall that the distance in the Prohorov metric between two proba-

bility measures µ1 and µ2 on a common metric space pZ, rZq is defined
by

d
pZ,rZq
Pr pµ1, µ2q :“ inftε ą 0 : µ1pF q ď µ2pF

εq ` ε, @F closedu,

where

F ε :“ tz P Z : rZpz, z
1q ă ε, for some z1 P F u.

An alternative characterization of the Prohorov metric due to Strassen
(see, for example, [EK86, Theorem 3.1.2] or [Dud02, Corollary 11.6.4])
is that

d
pZ,rZq
Pr pµ1, µ2q “ inf

π
inftε ą 0 : πtpz, z1q P Z ˆ Z : rZpz, z

1q ě εu ď εu,

where the infimum is over all probability measures π such that πp¨ ˆ
Zq “ µ1 and πpZ ˆ ¨q “ µ2.

The following result is no doubt well-known, but we include it for
completeness. Recall that if pX, rXq and pY, rY q are two metric spaces,
then rX ‘ rY is the metric on the Cartesian product X ˆ Y given by
rX ‘ rY ppx

1, y1q, px2, y2qq “ rXpx
1, x2q ` rY py

1, y2q.
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Lemma 12.1. Suppose that µ1 and µ2 (resp. ν1 and ν2) are probability
measures on a metric space pX, rXq (resp. pY, rY q). Then,

d
pXˆY,rX‘rY q
Pr pµ1 b ν1, µ2 b ν2q ď d

pX,rXq
Pr pµ1, µ2q ` d

pY,rY q
Pr pν1, ν2q.

Proof. This is immediate from the observation that if α and β are
probability measures on X ˆX and Y ˆ Y , respectively, such that

αtpx1, x2q P X ˆX : rXpx
1, x2q ě γu ď γ

and
βtpy1, y2q P Y ˆ Y : rY py

1, y2q ě δu ď δ

for γ, δ ą 0, then

αb βtppx1, y1q, px2, y2qq P pX ˆ Y q ˆ pX ˆ Y q

: rXpx
1, x2q ` rY py

1, y2q ě γ ` δu

ď γ ` δ,

where, with a slight abuse of notation, we identify the measure α b β
on pX ˆXq ˆ pY ˆ Y q with its push-forward on pX ˆ Y q ˆ pX ˆ Y q
by the map ppx1, x2q, py1, y2qq ÞÑ ppx1, y1q, px2, y2qq. �

The following lemma is also probably well-known.

Lemma 12.2. Suppose that µ1 and µ2 are two probability measures
on a compact metric space pX, rXq and ν is a probability measure on
another compact metric space pY, rY q. Then,

d
pXˆY,rX‘rY q
Pr pµ1 b ν, µ2 b νq “ d

pX,rXq
Pr pµ1, µ2q.

Proof. It follows from Lemma 12.1 that

d
pXˆY,rX‘rY q
Pr pµ1 b ν, µ2 b νq ď d

pX,rXq
Pr pµ1, µ2q ` d

pY,rY q
Pr pν, νq

“ d
pX,rXq
Pr pµ1, µ2q.

On the other hand, suppose that π is a probability measure on pXˆ
Y qˆpXˆY q such that πp¨ˆpXˆY qq “ µ1bν, πppXˆY qˆ¨q “ µ2bν
and

πtppx1, y1q, px2, y2qq P pXˆY qˆpXˆY q : rXpx
1, x2q`rY py

1, y2q ě εu ď ε

for some ε ą 0. If ρ is the push-forward of π by the map
ppx1, y1q, px2, y2qq ÞÑ px1, x2q, then it is clear that ρp¨ ˆ Xq “ µ1,
ρpX ˆ ¨q “ µ2 and

ρtppx1, x2q P X ˆX : rXpx
1, x2q ě εu ď ε,

and hence

“ d
pX,rXq
Pr pµ1, µ2q ď d

pXˆY,rX‘rY q
Pr pµ1 b ν, µ2 b νq.
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�

The Gromov-Prohorov metric is a metric on the space of equivalence
classes of compact metric measure space (recall that two compact met-
ric measure spaces are equivalent if there is an isometry mapping one
to the other such that the probability measure on the first is mapped
to the probability measure on the second). Given two compact metric
measure spaces X “ pX, rX , µXq and Y “ pY, rY , µY q, the Gromov-
Prohorov distance between their equivalence classes is

dGPrpX ,Yq :“ inf
pφX ,φY ,Zq

d
pZ,rZq
Pr ppφXq#µX , pφY q#µY q,

where the infimum is taken over all compact metric spaces pZ, rZq and
isometric embeddings φX of X and φY of Y into Z, and pφXq#µX (resp.
pφY q#µY ) denotes the push-forward of µX by φX (resp. µY by φY ).

Acknowledgments: This work commenced while the authors were
attending a symposium the Institut Mittag-Leffler of the Royal Swedish
Academy of Sciences to honor the scientific work of Olav Kallenberg.
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