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ABSTRACT. A compact metric measure space is a compact metric
space equipped with probability measure that has full support.
Two such spaces are equivalent if they are isometric as metric
spaces via an isometry that maps the probability measure on the
first space to the probability measure on the second. The result-
ing set of equivalence classes can be metrized with the Gromov-
Prohorov metric of Greven, Pfaffelhuber and Winter. We con-
sider the natural binary operation [ on this space that takes two
compact metric measure spaces and forms their Cartesian product
equipped with the sum of the two metrics and the product of the
two probability measures. We show that the compact metric mea-
sure spaces equipped with this operation form a cancellative, com-
mutative, Polish semigroup with a translation invariant metric and
that each element has a unique factorization into prime elements.
Moreover, there is an explicit family of continuous semicharacters
that are extremely useful in understanding the properties of this
semigroup.

We investigate the interaction between the semigroup structure
and the natural action of the positive real numbers on this space
that arises from scaling the metric. For example, we show that for
any given positive real numbers a, b, ¢ the trivial space is the only
space X that satisfies aX HbX = cX .

We establish that there is no analogue of the law of large num-
bers: if X1,Xs,... is an identically distributed independent se-
quence of random spaces, then no subsequence of % FHi—; X con-
verges in distribution unless each X, is almost surely equal to the
trivial space. We characterize the infinitely divisible probability
measures and the Lévy processes on this semigroup, characterize
the stable probability measures and establish a counterpart of the
LePage representation for the latter class.

Date: January 27, 2014.

2010 Mathematics Subject Classification. 43A05, 60B15, 60E07, 60G51.

Key words and phrases. Gromov-Prohorov metric, Gromov-Hausdorff metric,
cancellative semigroup, monoid, semicharacter, irreducible, prime, unique factor-
ization, Lévy-Hincin formula, It6 representation, Lévy process, stable probability
measure, LePage representation, law of large numbers.

SNE supported in part by NSF grant DMS-09-07630. IM supported in part by
Swiss National Science Foundation grant 200021-137527.

1



1. INTRODUCTION

The Cartesian product G [J H of two finite graphs G and H with
respective vertex sets V(G) and V(H) and respective edge sets E(G)
and E(H) is the graph with vertex set V(G H) := V(G) x V(H) and
edge set

E(GOH) :={((¢g,h), (" h):(g',g") € E(G), he V(H)}
u{((g;1),(g,n")) : g€ V(G), (W,h") € E(H)}.

This construction plays a role in many areas of graph theory. For
example, it is shown in [Sab60] that any connected finite graph is
isomorphic to a Cartesian product of graphs that are irreducible in
the sense that they cannot be represented as Cartesian products and
that this representation is unique up to the order of the factors (see,
also, [Viz63, Mil70, Tmr71, Wal87, [AFDFQ0, [Tar92]). The study of
the problem of embedding a graph in a Cartesian product was initi-
ated in [GWS85, [GWS84]. A comprehensive review of factorization and
embedding problems is [Win87].

If two connected finite graphs G and H are equipped with the usual
shortest path metrics r¢ and rg, then the shortest path metric on the
Cartesian product is given by raxg = rq @ rgy, where

(re @ru)((g, 1), (g" h") :==rald ") +ru(h, "),
(¢'. 1), (¢",h") e G x H.

We use the notation @ because if we think of the shortest path metric
on a finite graph as a matrix, then the matrix for the shortest path
metric on the Cartesian product of two graphs is the Kronecker sum of
the matrices for the two graphs and the @ notation is commonly used
for the Kronecker sum [SH11].

It is natural to consider the obvious generalization of this construc-
tion to arbitrary metric spaces and there is a substantial literature in
this direction. For example, a related binary operation on metric spaces
is considered by Ulam [Mau8&1, Problem 77(b)] who constructs a met-
ric on the Cartesian product of two metric spaces (Y,ry) and (Z,7y)
via (v, 2), (", 2")) = A/ry(V,y")2 + 17(2',2")? and asks whether it
is possible that there could be two nonisometric metric spaces U and
V such that the metrics spaces U x U and V' x V' are isometric. An ex-
ample of two such spaces is given in [Fou71]. However, it follows from
the results of [Gru70, Mos92] that such an example is not possible if U
and V' are compact subsets of Euclidean space.
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On the other hand, a classical result of de Rahm [dR52] says that a
complete, simply connected, Riemannian manifold has a product de-
composition My x M7 x - - - x My, where the manifold M is a Euclidean
space (perhaps just a point) and M;, i = 1,..., k, are irreducible Rie-
mannian manifolds that each have more than one point and are not
isometric to the real line. By convention, the metric on a product of
manifolds is the one appearing in Ulam’s problem. This last result was
extended to the setting of geodesic metric spaces of finite dimension in
[FLOS].

Ulam’s problem is closely related to the question of cancellativity
for this binary operation; that is, if Y x Z’ and Y x Z” are isometric,
then are Z’ and Z” isometric? This property clearly does not hold in
general; for example, (?(N) x 2(N) and ¢?(N) (where N := {0,1,2,...})
are isometric, but £?(N) and the trivial metric space are not isometric.
Moreover, an example is given in [Her94] showing that it does not
even hold for arbitrary subsets of R. However, we note from [BP95]
that there are many compact Hausdorff topological spaces K with the
property that if L/ and L” are two compact Hausdorff spaces such that
K xL"and K x L" are homeomorphic, then L’ and L” are homeomorphic
(see also [Zer01]).

Returning to the binary operation that combines two metric spaces
(Y,ry) and (Z,ry) into the metric space (Y x Z,ry @ry), it is shown
in [Tar92] that if a compact metric space is isometric to a product of
finitely many irreducible compact metric spaces, then this factorization
is unique up to the order of the factors. However, there are certainly
compact metric spaces that are not isometric to a finite product of
finitely many irreducible compact metric spaces and the study of this
binary operation seems to be generally rather difficult.

In this paper we consider a closely-related binary operation on the
class of compact metric measure spaces; that is, objects that con-
sist of a compact metric space (X,rx) equipped with a probabil-
ity measure px that has full support. Following [Gro99] (see, also,
[Ver98, Ver03l, Ver04]), we regard two such spaces as being equivalent
if they are isometric as metric spaces with an isometry that maps the
probability measure on the first space to the probability measure on
the second. Denote by K the set of such equivalence classes. With a
slight abuse of notation, we will not distinguish between an equivalence
class X € K and a representative triple (X, rx, px).

Gromov and Vershik show that a compact metric measure space
(X, rx, ux) is uniquely determined by the distribution of the infinite
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random matrix of distances

(TX(éiygj))(iyj)eNxNa
where (&)gen is an i.i.d. sample of points in X with common dis-
tribution px, and this concise condition for equivalence makes metric
measure spaces considerably easier to study than metric spaces per se.
We define a binary, associative, commutative operation H on K as
follows. Given two elements Y = (Y, 7y, uy) and Z = (Z,ryz, uz) of K,
let YAHZ be X = (X, rx, ux) € K, where
e X =Y xZ s
o 1y =1y @®rzy, where (ry ®rz)((y,2), ", 2") = rv(y,y") +
rz(2',2") for (v, 7)), (y",2") e Y x Z)
® Ux = Uy @ fiz.
The distribution of the random matrix of distances for Y@ Z is the con-
volution of the distributions of the random matrices of distances for
and Z. The equivalence class of compact metric measure spaces £ that
each consist of a single point with the only possible metric and prob-
ability measure on them is the neutral element for this operation, and
so (K,H) is a commutative semigroup with an identity. A semigroup
with an identity is sometimes called a monoid.

Y

Remark 1.1. We could have chosen other ways to combine the metrics
ry and rz to give a metric on Y x Z that induces the product topology
and results in a counterpart of (] that is commutative and associative.
For example, by analogy with Ulam’s construction we could have used
one of the metrics ((y,#), (5", ") — (ry (/sy} + 72(2', ")) for
p > 1 or the metric ((¢/, 2'), (v, 2")) — rv (¥, y") v rz(2',2"). We do
not investigate these possibilities here.

We finish this introduction with an overview of the remainder of the
paper.

We show in Section 2| that if we equip K with the Gromov-Prohorov
metric dgp, introduced in [GPW09] (see Section |12{for the definition of
dgpr), then the binary operation { : K x K — K is continuous and the
metric dgp, is translation invariant for the operation H. We recall from
[GPWO09| that (K, dgp,) is a complete, separable metric space. More-
over, the Gromov-Prohorov metric has the property that a sequence
of elements of K converges to an element of K if and only if the cor-
responding sequence of associated random distance matrices described
above converges in distribution to the random distance matrix associ-
ated with the limit. In Section 2 we also introduce a partial order <
on K by declaring that ) < Z if Z = YHAX for some X € K and show
for any Z € K that the set {¥ € K: Y < Z} is compact.
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A semicharacter is a map y : K — [0,1] such that x (Y H 2Z) =
X(V)x(Z) for all Y, Z € K. We introduce a natural family of semichar-
acters in Section [3] This family has the property that lim, ., X, =
X for some sequence (AX,)neny and element X in K if and only if
lim,, o x(X,) = x(X) for all semicharacters y in the family. Using
the semicharacters, we show that if lim,,_, HZ:O X exists for some
sequence (X;,)nen, then 4, _, X; converges to the same limit for any
rearrangement (X ),en of the sequence. We also use the semicharacters
in Section {4 to prove that (K,H) is cancellative.

We establish in Section |5 that any element of K\{€} has a unique
representation as either a finite or countable [ combination of irre-
ducible elements, and this representation is unique up to the order of
the “factors”. We also find that the irreducible elements are a dense, G5
subset of K. The unique factorization result has several consequences.

For example, it follows readily from it that & : R, — K is a function
such that ®(0) = £ and

O(s+1t) =D(s) HP(t), 0<s,t<m,

then & = €£.

In Section [ we investigate the measure that is obtained by taking
an element of K and assigning a unit mass to each irreducible element
(counted according to multiplicity) in its factorization. We show that
this mapping from elements of K to measures on K concentrated on
the set of irreducible elements is measurable in a natural sense.

Given X € K and a > 0, we define the rescaled compact metric
measure space aX := (X, arx,pux) € K. We show in Section [7| that
if (aX) M@ (bX) = cX for some X € K and a,b,c > 0, then X = &,
so the second distributivity law certainly does not hold for this scaling
operation.

We begin the study of random elements of K in Section [§| by defin-
ing a counterpart of the usual Laplace transform in which exponential
functions are replaced by semicharacters. Two random elements of K
have the same distribution if and only if their Laplace transforms are
equal.

We introduce the appropriate notion of infinitely divisible random
elements of K in Section [9] and obtain an analogue of the classical
Lévy-Hincin-Ito description of infinitely divisible real-valued random
variables. Our approach to this result is probabilistic and involves
constructing for any infinitely divisible random element a Lévy process
that at time 1 has the same distribution as the given random element.
Our setting resembles that of nonnegative infinitely divisible random
variables and so there is no counterpart of a Gaussian component in
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this description. Also, there is no deterministic component: the only
constant that is infinitely divisible is the trivial space &.

Using the scaling operation on K we define stable random elements
of K in Section We determine how the Lévy-Hincin-It6 description
specializes to such random elements and also verify that there is a coun-
terpart of the LePage series that represents a stable random element
as an “infinite weighted sum” of independent identically distributed
random elements with a suitable independent sequence of coefficients.

Lastly, for ease of reference we summarize some facts about the
Gromov-Prohorov metric in Section 12

2. TOPOLOGICAL AND ORDER PROPERTIES

Lemma 2.1. The operation H : K x K — K s continuous. More
specifically, if X;, Vs, i = 1,2, are elements of K, then

dgp (X1 B X, Vi Ve) < dape (X1, W1) + dape(Xa, Vo) -

Proof. Let ¢x, and ¢y, be isometries from X; and Y; to a common
metric measure space Z;, i = 1,2. The combined function (¢x,, ¢x,)
(resp. (ody,, Py,)) maps X; x Xy (resp. Y) x Y3) isometrically into
Z1 X Zy. The result now follows from Lemma [12.1] O

A proof similar to that of Lemma [2.1] using Lemma [12.2] establishes
the following result.

Lemma 2.2. The metric dgp, is translation invariant for the operation
H. That s, if X1, X5, Y are elements of K, then

dape (X1 BY, XoHY) = dgp, (X1, Xs) .

Definition 2.3. Given X = (X, ryx, pux) € K, write diam(X’) for the
diameter of the compact metric space X; that is,

diam(X) := sup{rx(«',2") : 2/, 2" € X}.
The following is obvious.

Lemma 2.4. a) The diameter is an additive functional on (K,H);
that s,

diam(X BHY) = diam(X) + diam()))

forall XY € K.
b) The inequality

dGPr(Xya X) < dGPr(y,S) < dlam(y)
holds for all X,) € K.
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Remark 2.5. The function diam is not continuous on K. For exam-
ple, let X, = ({0,1},7, p,), where 7(0,1) = 1, u,{0} =1 —% and
un{l} = % Then, X, converges to the trivial space £, whereas
diam(X,) = 1 0 = diam(€). However, the function diam is lower
semicontinuous; that is, if the sequence X, converges to X in K as
n — o0, then diam(X) < liminf,,, diam(&,). To see this, suppose
that the sequence X,, converges to X’ (£,£n))k€N are i.i.d. in X,, with the

common distribution px,, and (&)gen are ii.d. in X with the com-
mon distribution pyx. Observe for any & that max;<;<j<x(rx, (52(”), §J(n))
converges in distribution to maxi<;<j<k(rx(&;,§;)). It suffices to note
that maxKKKk(an({i(n),fj(n))) is increasing in k and converges al-
most surely to diam(X},) as k — o0 and that max;<;<j<k(rx(&,&;)) is
increasing in k and converges almost surely to diam(X') as k — oo.

Definition 2.6. Define a partial order < on K by setting YV < Z if
Z=YMHX for some X € K.

The symmetry and transitivity of < is obvious. The antisymmetry is
apparent from part (a) of Lemma[2.4] This partial order is the dual of
the Green or divisibility order (see [Gri01, Section I.4.1]). The identity
£ is the unique minimal element.

Lemma 2.7. a) For any compact set S < K, the set | Jz{Y €

K:Y < Z} is compact.

b) For any compact set S < K, the set {(V,Z2)eK?*: Z€S, Y <
Z} is compact.

¢) The map K from K to the compact subsets of K defined by
K(X):={YeK: Y <X} is upper semicontinuous. That is,
if F < K is closed, then {X € K: K(X)n F £ &} is closed.
Equivalently, if X, — X, and Y, € K(X,) converges to ), then
Ve K(X).

Proof. We first show that | J;.{Y € K: Y < Z} is pre-compact. Given

e > 0, we know from from [GPW09, Theorem 2] that there exist KX > 0
and 0 > 0 such that for all Ze S

pz Q@ uz{(2,2"Ye Z x Z :ry(#,2") > K} <¢

and

pziz € Z i pug{2" € Z iry(2,2") <e} <6} <e.
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If Y < Z for some Z € S, then, by definition, there is a W € K such
that Z2 = YHW, and so

py @ uy{(y,y") €Y x Y 1ry(y,y") > K}
< (by @ py) ® (pw @ pw ){((Y', y"), (W', w")) € (Y x Y) x (W x W) :
ry (Y y") + rw (W', w") > K}
=uz Q@uz{(z,2"Ve Z x Z :rz(2,2") > K}
<e.

Similarly,

iy €Y i {y" €Y iy (v, y") < e} < 6}
= py @ uw{(y" W) €Y x Wry(y,y') <e} <6}
< py @ uw Ay, w) €Y x Wiy @ pw{(y", w") e Y x W
ry (Y, y") + rw (v, w") < e} < 8}
=pzlz € Z pz{" € Z :ry(¢,2") <e} <6}
<E.

It follows from [GPWO09, Theorem 2] that |J;{Y € K: Y < Z} is
pre-compact.

We now show that | J;<{Y € K : Y < Z} is closed, and hence
compact. Suppose now that (V,)nen is a sequence in (J;{Y € K :
Y < Z} that converges to a limit ),,. For each n € N we can find
Z,eSand W, € Jzc{Y € K: Y < Z} such that Z, = Y, BW,.
From the above we can find a subsequence (n(k))ken, 250 € S and
Wy € K such that limy_ Z,x) = 25 and limy_oo Wy = We. By
the continuity of the semigroup operation established in Lemma [2.1],

Voo AWeo = ]}LI&(yn(k) Waw)) = lm 2 = 2o,

which implies that YV, < Z, € S (and also W,, < Z, € S). Therefore,
Uzes{Y e K: Y < Z} is closed and hence compact.

(b) Because {(V,Z2) e K?: Z€ S, Y < Z} is a subset of the compact
set (UzeslY e K: Y < Z}) xS, it suffices to show that the former
set is closed, but this follows from an argument similar to that which
completed the proof of part (a).

(c) This is immediate from (b). O

Remark 2.8. Any partially ordered space can be endowed with a cor-
responding Scott topology generated by the order, see [GHKT03|. In
particular, the Scott topology on (K, <) is much weaker than the one
induced by the Gromov-Prohorov metric.
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3. SEMICHARACTERS

Following the standard terminology in semigroup theory, a semichar-
acter is a map x : K — [0, 1] such that x(YH 2Z) = x(Y)x(2) for all
YV, ZekK.

Definition 3.1. Denote by A the consisting of the empty set and the

arrays A = (aij)1<i<j<n € R(f) for n > 2. For each A € A define a

semicharacter x4 by setting xz =1 and

(3.1) xa((X,rx, px)) = f _exp <— > az’jTX(l"i»Ij)> 15" (dz)

1<i<j<n

if A4 & Note that ya(X) >0 for all Ae A and X € K.

We often need the particular semicharacter

(3.2 )= | expl(-rxon.aa)) n(do)

defined by taking as A € A an array with the single element 1.

As we recalled in the Introduction, a compact metric measure space
(X, rx, ux) is uniquely determined by the distribution of the infinite
random matrix of distances

(Tx(fhfj))(z‘,j)eNxN:

where (&x)ren is an i.i.d. sample of points in X with common distribu-
tion py. The following lemma follows immediately from this observa-
tion and the unicity of Laplace transforms.

Lemma 3.2. Two elements X,y € K are equal if and only if x a(X) =
xXa(Y) for all Ae A.

!
n

Remark 3.3. Note that if A’ € ]Rgr?) and A” € RSQ ), then xaxar = X4,

(n’+n”)
where A€ R} * 7 is given by
as, I<i<j<n
Aij = " / 1< . / "
iyt s n+l<sir<yp<n+n".

It follows that {x4 : A € A} is a semigroup with identity xz = 1.

Remark 3.4. Not all semicharacters of K are of the form y4 for some
A e A. For example, if A € A and 8 > 0, then X — ya(X)’ is a
(continuous) semicharacter. If X has two points, say 0 and 1, that are
distance r apart and px({0}) = (1 — p) and pux({1}) = p for some
0 < p < 1, then taking A to be the array with the single element a we
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have x4(X) = (1 — p)?> + p* + 2p(1 — p)exp(—ar) and it is not hard
to see from considering just X of this special type that for § + 1 the
semicharacter Xf‘ is not of the form x4 for some other A € A.

It follows from part (a) of Lemma [2.4 that X — exp(— diam(X)) is
a (discontinuous) semicharacter on K. Also, if A € A and b > 0, then

(J nexp( Z aijrx(xi,xj)> u@”(dm))

1<i<j<n

is a (discontinuous) semicharacter. These last two examples are con-
nected by the observation that

1
t

exp(—diam(X)) = tlim (J exp (trx(xy,x2)) H?(Q(dx))
—00 X2

Lemma 3.5. A sequence (X,)nen n K converges to X € K if and only

if imy, o0 xa (&) = xa(X) for all A€ A.

Proof. For n € N, let (f,i"))keN be an i.i.d. sequence of X,-valued ran-
dom variables with common distribution gy, , and let ({x)reny be an
i.i.d. sequence of X-valued random variables with common distribu-
tion pux. It follows from [GPWQ9, Theorem 5] that &, converges to X

if and only if the distribution of (ry, (fi(n),f](.n)))lgiqgm converges to

that of (rx(&,&;))1<i<j<m for all m € N. The result now follows from
the equivalence between the weak convergence of probability measures

on Rgf) and the convergence of their Laplace transforms. O

Corollary 3.6. a) Suppose that (X,)nen is a sequence in K such
that Xy < X1 < --- < Z for some Z € K. Then, lim,_,, &,
er1sts.

b) Suppose that (X, )nen s a sequence in K such that Xy = X >
. Then, lim,_,, X,, exists.

Proof. We prove claim (a). The proof of claim (b) is similar, and so we
omit it. It follows from Lemma that any subsequence of (AX},)nen
has a further subsequence that converges. For any A € A the sequence
(xa(X;,))nen is nonincreasing and hence convergent. By Lemma[3.5] all
of the convergent subsequences described above converge to the same
limit, and so the sequence (X),),en itself converges to that limit. ]

Corollary 3.7. a) Suppose that (X,)nen 1S a sequence such that
lim, .o, Xo H---HAX, =) for some Y € K. Suppose further
that (X))nen 18 a sequence that is obtained by re-ordering the
sequence (X, )nen. Then, lim, o, AJH---HX, =Y also.
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b) The limit lim,,_,o, XoH- - ‘FHX, exists if and only if Y, diam(&,,) <
0.

Proof. Consider claim (a). For any A € A, —logxa(X,) = 0 for
all n € N. It follows from Lemma that — > logxa(&,) =
—log xa(Y) It is well-known that all rearrangements of a convergent
sequence with nonnegative terms converge to the same limit. Thus,
— > logxa(X)) = =3 logxa(X,) = —logxa()), implying that
limy, oo xa(XJE - B X,) = xa(Y) and hence, by Lemma [3.5, that
limy o X! - B X = ).

Turning to claim (b), suppose that lim, ., XgFH- - -FHAX,, = ). Since
X H---HA, <)Y, diam(&Xp) + --- + diam(&,) = diam(Xy H - -
X,) < diam(Y), and so ), diam(&,) < co. Conversely, suppose that
Y., diam(A&,) < 0. For m < n we have from Lemma [2.1| and part (b)
of Lemma 2.4 that

depr (X B - B X, XoH - --HA,)
< dgp: (&, X1 - -HA,)
< diam (X, 1 H---HAX,)
= diam(X,,11) + - - - + diam(AX,,).

It follows that the partial sums of (X},)nen form a Cauchy sequence and
so, by the completeness of (K, dagp,), lim,, .o XgH - HA, exists. 0O

Remark 3.8. It follows from Corollarythat if (X;)ses is a countable
collection of elements of K, then the existence of lim,,_,,, X5, - - -HAXs,
for some listing (s, )nen implies the existence for any other listing, with
the same value for the limit. We will therefore unambiguously denote
the limit when it exists by the notation [+, ¢ Xs. Moreover, a necessary
and sufficient condition for [+],_¢ X to exist is that )| o diam(X) <
0.

4. ALGEBRAIC PROPERTIES

An element of a semigroup with an identity is a wunit if it has an
inverse and a semigroup with an identity is said to be reduced if the
only unit is the identity (see [Cli38, Section 1]. The following result is
immediate from part (a) of Lemma [2.4]

Lemma 4.1. The semigroup (K,H) is reduced.

In the usual terminology of semigroup theory, part (a) of the follow-
ing result says that the semigroup (K,H) is cancellative (see [Gri0l]
Section I1.1.1]).
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Proposition 4.2. a) Suppose that X,Y, 2' Z" € K satisfy X =
YEBZ and X = YHEZ", then 2/ = Z".
b) Consider sequences (X, )nen and (Vn)nen in K. Set Z, := X,
V.. Suppose that X := lim,,_,, X, and Z := lim,,_, Z, exist.
Then, Y = lim, .o )V, exists and Z2 = XH).

Proof. a) For each semicharacter x4, A € A, we have x4(¥)xa(2') =
Xa(X) = xa(Y)xa(2”) and so xa(2’') = xa(Z"), which implies that
Z = 2"

b) By Lemma [2.7 the sequence (Y,)nen is pre-compact. Any subse-
quential limit YV, will satisfy Z = X H Y,. It follows from part (a)
that Y := lim,,_,, V, exists and Z2 = X HY. O

Remark 4.3. Tt follows from part (a) of Proposition and the dis-
cussion in Section 1.10 of [CP61] that the semigroup (K,H) can be
embedded into a group G as follows. Equip K x K with the equiv-
alence relation = defined by (W, X) = (V,2) it WH Z = X H).
It is not hard to see that = is indeed an equivalence relation, the
only property that is not completely obvious is transitivity. How-
ever, if (U, V) = W, X) and W, X) = (), Z), then, by definition,
UBRX =VHEWand WHZ = XHY so that

UBZ)BXEW) = UBX)BEWHZ)
=(vawsXEY)=(Vay) axamw),

from which it follows that Y FH Z = VH ) and hence (U, V) = (Y, 2).
The elements of the group G are the equivalence classes for this relation.
We write for the binary operation on G and define it to be the
operation that takes the equivalence classes of (W, X') and (), Z) to
the equivalence class of (WHY, X H Z). It is clear that this operation
is well-defined, associative and commutative. The identity element is

the equivalence class of (£, &) and the inverse of the equivalence class
of (), 2) is the equivalence class of (Z,)).

In the following result we use the notation VE" for V € K and n € N
to denote V H --- H V, where there are n terms and we adopt the
convention that this quantity is £ for n = 0.

Corollary 4.4. a) For all n € N, the set {(X,)) e K? : YH' <
X'} is closed.
b) The function M : K* — N defined by M(X,Y) = max{n € N :
VB < X} is upper semicontinuous and hence Borel.

Proof. Part (a) is immediate from Proposition [4.2l For part (b),
{(X,Y) e K2 : M(X,Y) = n} = {(X,)) e K2: Y < X} is a
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closed set for all n € N by part (a), and this is equivalent to the upper
semicontinuity of M. O

5. ARITHMETIC PROPERTIES

An element X € K is #rreducible ift X + £ and Y < X for Y € K
implies that ) is either £ or X' (see [Cli38] Section 1]).

We write I for the set of irreducible elements of K. It is not clear
a priori that I is nonempty. For example, the semigroup R, with the
usual addition operation has no irreducible elements in the sense of the
general definition in [CIi38]. The following two results show that T is
certainly nonempty.

Proposition 5.1. The set I is a dense, G5 subset of K.

Proof. We first show that I is dense in K As in the proof of [GPWQ9,
Proposition 5.6], the subset of F € K consisting of compact metric
measure spaces with finitely many points is dense in K. If we are given
a finite metric measure space (W, ry, uw ), then convergence of a se-
quence of probability measures in the Prohorov metric on (W, ry) is
just pointwise convergence of the probabilities assigned to each point
of W. The set of probability measures that assign positive probability
to all points of W is thus just the relative interior of the (#W — 1)-
dimensional simplex thought of as a subset of R*" equipped with
the usual Euclidean topology. Suppose that (W,ry ) is isometric to
(U x V,ry®ry) for some nontrivial finite compact metric spaces (U, ry)
and (V,ry) — if this is not the case, then (W, ry, ) is already irre-
ducible. The probability measures on U x V' that are of the form puy®puy
form a (#U —1) 4+ (#V —1)-dimensional surface in the (#U x #V —1)-
dimensional simplex of probability measures on U x V' and, in particu-
lar, the former set is nowhere dense. Thus, even if (W, ry/) is isometric
to (U x V,ry ®ry ), any probability measure on W that is the isomet-
ric image of a probability measure on U x V' of the form uy ® py is
arbitrarily close to probability measures on W that are not isometric
images of probability measures of this form, and it follows that I is
dense in K.

We know show that the set I is a Gs. This is equivalent to showing
that K\I is an F,.

Let x := x1 be the semicharacter defined by (3.2). Recall that
x1(X) =1if and only if ¥ = €. For 0 < & < § set

L.:={XeK:3Y <X, x(X)'" < x(Y) < x(X)}.
Note that Lo 2 L. for ¢/ < ¢” and | J,_._1 L. = K\I, so it suffices
to show that the L. are closed. Suppose that (&X},).en is a sequence of
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elements of L. that converges to X € K. For each n € N there exist ),
and Z, in K such that X, = J,,Z, and x(X,)'° < x(Vn) < x(X,)°.
By Lemma and part (b) of Proposition [£.2] there is a subsequence
(g )ken such that limg o YV, = Y and limy_, 2, = Z for Y, Z € K
such that X = Y@ Z. Thus, Y < X and x(X)'° < x(Y) < x(X)e,
so that X € L., as required. U

In particular, the space I with the relative topology inherited from K
is a Polish space. This follows follows from Alexandrov’s theorem say-
ing that a subspace of a Polish space is Polish in the relative topology
if and only if it is a G-set, see [Kec95, Theorem 3.11].

Proposition 5.2. Given any X € K\{E}, there exists Y € 1 with
y< 4.

Proof. Define I' : K — R, by
['(2):= f ry (2, 2" p@2(dz, d2").
ZxZ

Note that the function I' is continuous on the compact set {Z e K: Z <
X}, T(Z)V+T(2") =T(Z@Z2"),and (22 + (2" < T(Z2'@Z")?,
with strict inequality unless 2’ = € or 2" = €£.

Let Ly be the set of binary strings of length k&, where for £ = 0 we
denote the empty string by (. Set X = X. Suppose that X, € K have
been defined for w € L, where 0 < k < n. Choose X, for w e L, so
that X, 0EHX, = &, for all v € L,, and I'(X,0)? + I'(X,1)? is minimized
subject to this requirement. This is possible by Lemma and the
continuity of T.

It cannot be the case that lim,,_,. max,er, ['(X,) = 0, because it
would then follow from [Fel71, Section XVIL.7] that the image of u$?
under the map (2, 2”) — rx (2, 2”) would be a nontrivial infinitely di-
visible probability measure that is supported on [0, diam(X')], contra-
dicting the fact that all nontrivial infinitely divisible probability mea-
sures have unbounded support. (The last fact is immediate from the
[t6 representation of a nonnegative infinitely divisible random variable
as ¢+ { z II(dzx), where ¢ is a constant and II is a Poisson random mea-
sure on R, with intensity measure v that satisfies {(z A1) v(dz) < .
See, also, Remark )

It follows that there is a sequence (wy,)neny With w,, € L, such that
['(X) = T'(Xy,) = I'(Xy,) = I'(Xy,) = -+ = ~ for some constant
~v > 0. Infinitely many of the w, must be either of the form Ov, or
1v,, for some v, € L,_1, so we can pick oy € {0,1} such that infinitely
many of the w, are of the form oyv, for some v, € L,_;. Similarly,
infinitely many of the w, must be either of the form o,0u, or o;lu,
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for u, € L, 2, so we can pick gy € {0, 1} such that infinitely many of
the w,, are of the form oy09u,, for some u,, € L,_». Continuing in this
we, we can find 0y, 09, ... € {0,1} such that X = Xz > X, > X,,,, =
2 Xy, = and T(Xy,0) = .

By Corollary there exists ) € K with I'())) = v > 0 such that
lim, oo Xpyooo, = V.

We claim that ) must be irreducible. If this is not so, then Y =
V' B YY", where neither )’ nor )" is £. By Proposition 4.2 we can
write Xy, 10, = Y HY"H 2, for some unique Z, € K such that
lim, 0 Z, = €. Set 0:=1 and 1 := 0. Note that

F(XO'I"'U7L71C"n)2 + F(Xgl'“o'nfla'n)
= (CQ) +TY") +T(2a))* + ([(Zn-1) = T(20))*

2

If we define X,,, w € L,, by

Xu) = Xun w¢ {01“'O—n_la—n,a—l"'o—n—la-n}7

Xoyoon_1om =YV B Z,

and

Xgl"'an—la'n = Xo'l'“o'n—lan y”?
then X, = X,0H X, for all v e L, ; and

DX, o)+ T( X 15)?
= (T +T(2.)" + (T(Zn-1) —T(Z0) + T(Y"))

Thus, T'(X,,..0, 10,)> + T(X,, .0, _,5,)° becomes arbitrarily close to
(T()') + T(Y")? for sufficiently large n, whereas I'(X,,..c, 0. )% +
I(X,,..0. .5, )% can be made arbitrarily close to ['(}")2 + T'(V")? by
taking n sufficiently large. Since I'(V')? + T'(V")* < (T(Y') + T'(V"))?%,
we would have

L( X0y 100)? + D( Xy ooy 100)°

< F(X01‘~'Gn710n)2 + F(le"'0n715n)2
for n sufficiently large, which violates the definition of (X )wer,. O

Remark 5.3. In the proof of Proposition [5.2] we used the classical limit
theory for triangular arrays of random variables to establish the follow-
ing fact. If ¢ is a bounded, nonnegative random variable that can be
written as Zj &nj for all n € N, where the random variables &1, &2, . . .
are nonnegative, independent and satisfy lim,, o, sup; E[¢,;] = 0, then
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¢ is almost surely constant. This result can be proved directly as fol-
lows. Note from a Taylor expansion that E[exp(—¢&,;)] < 1—c,E[&,;] <
exp(—c,E[&,;]) for constants (¢, )nen such that lim,,_, ¢, = 1. Thus,

Efexp(~0)] = | [ Elexp(~&w)]
< [ [exp(=ciElen])

= exp(—c,E[(])
— exp(—E[¢]), n— .

Jensen’s inequality gives the opposite inequality exp(—E[(]) <
E[exp(—()], with equality if and only if ¢ is almost surely constant,
and so ¢ must indeed be almost surely constant.

Remark 5.4. Tt is not difficult to construct concrete examples of irre-
ducible elements of K.

We first recall that a metric space (W, ry ) is totally geodesic if for any
pair of points w’, w” € W there is a unique map ¢ : [0, ry (w', w")] - W
such that ¢(0) = w', ¢(rw (W', w")) = w” and ry (¢(s), d(t)) = |s — t|
for s,t € [0,y (W', w”)]; that is, any two points of W are joined by a
unique geodesic segment.

Any nontrivial compact subset X of a totally geodesic metric space
W is irreducible no matter what measure it is equipped with because
such a space (X, ry) cannot be isometric to a space of the form (Y x
Z,ry @ryz) for nontrivial Y and Z. To see this, suppose that the claim
is false. There will then be four distinct points a, b, c,d in X that are
isometric images of points of the form (v/, 2’), (v",2), (v/,2"), (v",2")
in Y x Z. Suppose that (X,ry) is a compact subset of the totally
geodesic space (W, ry ). We have

rw(a,b) = rw(c,d),
rw(a,c) = ry(b,d),
rw(a,d) = rw(a,b) + rw(b,d),
rw(a,d) = rw(a,c) + rw(cd),
rw (b, c) = rw(a,b) + rw(c,a),
and
rw (b, c) = rw(b,d) + rw(c, d).
It follows from the third and fourth equalities that b and ¢ are on the
geodesic segment between a and d. We may therefore suppose that

(W,rw) is a closed subinterval of R and, without loss of generality,
that @ < b < ¢ < d. The fifth and sixth equalities are then impossible.
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There are many totally geodesic metric spaces. A Banach space
(X, |]]) is totally geodesic if and only if it is strictly convez; that is,
x # yand ||2/]| = |2”]| = 1 imply that |jaz’ + (1 — a)z”| < 1 for all
0 < a < 1 [Bea85|, Section 3.1.1]. Strict convexity of (X, | ) is implied
by uniform convexity; that is, for every € > 0 there exists a § > 0 such
that |2/| = |2"| = 1 and |2’ — 2"| = € imply H#H < 1—9. Any
Hilbert space is uniformly convex and the Banach spaces LP(S,S,\),
1 < p < o0, where A is a o-finite measure, are uniformly convex [Bea85),
Section 3.I1.1]. Also, any real tree is, by definition, totally geodesic and
any compact ultrametric space is isometric to a compact subset of a
real tree.

The prime numbers are the analogue of irreducible elements for the
semigroup of positive integers equipped with the usual multiplication.
The key to proving the Fundamental Theorem of Arithmetic (that ev-
ery positive integer other than 1 has a factorization into primes that is
unique up to the order of the factors) is a lemma due to Euclid which
says that if a prime number number divides the product of two positive
integers, then it must divide one of the factors. For general commuta-
tive semigroups, the term “prime” is usually reserved for elements that
exhibit the generalization of this property (see, for example, [CIi3§]).
Accordingly, we say that an element X € K\{€} is prime if ¥ < YHZ
for Y, Z € Kimplies that X < Y or X < Z. Prime elements are clearly
irreducible, but the converse is not a priori true and there are commu-
tative, cancellative semigroups where the analogue of the converse is
false.

Before showing that the notions of irreducibility and primality coin-
cide in our setting, we need the following elementary lemma which we
prove for the sake of completeness.

Lemma 5.5. Let &y, &01,&10,&11 be random elements of the respec-
tive compact metric spaces Xoo, Xo1, X10, X11. Suppose that the pairs
(€00, &01) and (&10,&11) are independent and that the pairs (oo, 10) and
(&o01,&11) are independent. Then, oo, &o1, 10, 11 are independent.

Proof. Suppose that f;; : X;; — R, i,j € {0,1}, are bounded Borel
functions. Using first the independence of (£no,&o1) and (&10,&11), and
then the independence of (£y, £10) and (o1, &11), we have

E[ foo(§00) fo1 (§o1) f10(&10) f11(&11)]
= E[ foo(&00) for (§01) 1E[ f10(&10) fr1(€11) ]
= E[ foo(§00) JE[ fo1 (§01)JE[ f10(&10) JE[ f11(&11)],

as required. O
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Proposition 5.6. All irreducible elements of K are prime. Moreover,
if (Vi)nen is a sequence of elements of K such that lim,, o Yo H - - -
Y, =Y exists and X € 1 is such that X < )Y, then X <)), for some
n € N.

Proof. Consider the first claim. Suppose that X € K is irreducible and
X < YH Z for some Y, Z € K.

From Proposition [4.2) we have Y Z = WHAX for some unique W €
K. From the remarks at the end of [Tar92], we may suppose that there
are compact metric spaces (Y, ry+), (X', rx/), (X", rx») and (Z", 1)
such that (}/, Ty) = (Y/ X X’, TYI@TX/), (Z, Tz) = (X” X Z”, TX//@TZN),
(X, Tx) = (X/ X X”,TX/ @T’XN) and (VV, Tw) = (Y/ X Z”,T’y/ @T’ZN), SO
that (Y x Z,ry®ry) = (W x X, ry@rx) = (Y x X' x X" x Z" ry: @
rx: @ rxr @ rz) (see also [Wal87] for an analogous result concerning
the existence of a common refinement of two Cartesian factorizations
of a (possibly infinite) graph and [AFDF00Q] for the case of finite metric
spaces). It follows from Lemmathat there are probability measures
pryr, pixr, pxe and pze such that py = pyr @ pxr, pz = pxr @ pzr,
px = px & pxe, piw = fiyr @ pizr, and py @ pz = pw @ px =
Py @pux @pxr@pzn. Thus, Y = YBHX", Z = X'HZ", X = A'HA”,
W = YHEHZ", and YHZ = WHX = YHX'BHX"HZ". This contradicts
the irreducibility of X unless X’ = £ or X” = £, in which case X < Z
or X < )Y, thus establishing the first claim of the lemma.

Turning to the second claim, let (V,)nen, V € K and X € 1 satisfy
the hypotheses of the claim. By Proposition .2 for each n € N we
have Y = Yo B - H YV, H Z, for some unique Z, € K. If there is
no n € N such that X < ), then, by the first part of the lemma,
X < Z, for all n € N. By Proposition [4.2] this means that Z, =
X EHW, for some unique W, € K and hence x4(Z,) < xa(&X) for all
A € A. However, lim, ., xA(VoH - HVn) = xa(Y) for all A e A
and so lim,,_,,, xa(Z,) = 1 for all A € A, implying that x4(X) = 1
for all A € A. This, however, is impossible, since it would imply that
X=E¢L O

The following is standard, but we include it for the sake of complete-
ness.

Corollary 5.7. Suppose for X € K and distinct Yy,...,Y, € 1 that
Ve <X fork=1,...,n. Then, ViEB--- BV, < X.

Proof. The proof is by induction. The statement is certainly true for
n = 1. Suppose it is true for n = r and consider the case n = r+1. We
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have X = Y,H- - -BHY,.HW., for some W, € K by the inductive assump-
tion. Because V,,1 < X = YV H---HY.BW,, it follows from Proposi-
tionthat either ), ;1 < Y forsome kwithl < k<ror)Y,.1 <W,.
The former alternative is impossible because Vi,..., V., V41 € I are
distinct. Thus, YV,i1 < W, and we have W, = YV,.1 W, for some
W,,1 € K. This implies that X = Yy H---HY, H YVry1 HW,41 and
hence ViH:---BY,HY,+1 < &, completing the inductive step. O

Theorem 5.8. Given any X € K\{E}, there is either a finite sequence
(X)X, or an infinite sequence (X,)*_, of irreducible elements of K
such that X = Xy H - --H Xy in the first case and X = lim,,_, 5 Xy
-~ &, in the second. The sequence is unique up to the order of its
terms. FEach irreducible element appears a finite number of times, so
the representation s specified by the irreducible elements that appear
and their finite multiplicities.

Proof. We first establish the existence claim. Let y := x; be the
semicharacter defined by (3.2). Put J, :={Yel: Y <X, 1 -2 <
x(Y) <1 —2"¢+D} for k e N. It follows from Proposition that
if Vi,...,Vm are distinct elements of Ji, then VI H: ---H YV, < &,
and hence 0 < x(X) < x(O1) -+ x(Vm) < (1 — 2=FD)™ 5o that Jj,
is finite. Each of the sets J; can be ordered. With a slight abuse of
notation, we will use the same symbol < for this order for all k.

Define Xy, X1, ... as follows. Let Ky := min{k € N : J; + ¢J} and
set Ay to be minimal element with respect to the order < of the set
{Velg, : Y < X} Tt follows from Proposition that Ky and &)
are well-defined. By Proposition there exists Z; € K such that
X = A HZ. If 2y =&, then set N = 0 and terminate the procedure.
Suppose that &p,..., X, and Z,..., Z, have been defined such that
X =XH BXHZ for 0 <i<n, where X; € Jk, and Z; + &
for 0 < ¢ < n, and the procedure has yet to terminate. Let K, i :=
inf{k € N:3Y € Jysuch that Y < Z,} and set X,,;; to be the minimal
element with respect to the order < of the set {¥ € Ik, ., : YV < Z,}.
It follows from Proposition that K, and &), are well-defined.
By Proposition there exists Z,,1 € K such that Z, = X, .1 H 2,41,
sothat X = Ay H-- - BX, 1 HZ,1. If 2,01 =&, thenset N =n+1
and terminate the procedure.

If the procedure terminates, then it is clear that X = Ay H - --
Xn. Suppose that the procedure does not terminate. By part (a) of
Corollary , the sequence (XyH- - -HAX, )nen converges to a limit, say
Y < X. Observe that Ky < K; < .... Moreover, #{n : K,, = k} is
finite for all k € N, because otherwise lim,, o, x(XoH - -HX,) =0 +
x(Y). Therefore, K,, — o0 as n — o0. By Proposition[l.2, X = YHZ
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for some Z € K. If Y + X, so that Z + &, then it follows from
Proposition that there is a W e I such that W < Z. However,
this would mean that W < Z,, for all n, but W € J, for some k € N,
and so this would contradict the conclusion that K,, — o0 as n — oo.
Therefore, Y = X, as required.

We now turn to the uniqueness claim. This may fail because X has
two different representations as a finite sum of irreducible elements,
one representation as a finite sum and another as a limit of finite sums,
or two different representations as a limit of finite sums. We deal with
the last case. The other two are similar and are left to the reader.
Suppose then that two sequences (X )nen and (X)) )nen represent X
An argument similar to one above shows that any particular irreducible
element appears a finite number of times in each sequence. Suppose
that ) € T appears M’ times in (X ),eny and M” times in (X),en with
M'" £ M”. Assume without loss of generality that M’ > M”. We have
YA ---BYHZ, =X =YH---HYHZ/, where the first sum has
M’ terms, the second sum has M” terms and Z, Z" € K are such that
Y £ 2/ and Y « Z/. Using Proposition , YH---BYHZ, = Z],
where the sum has M’ — M"” > 0 terms. This, however, would violate
the second part of Proposition |5.6| U

Remark 5.9. It follows easily from Theorem that, for the partial
order <, every pair of elements of K has a join (that is, a least upper
bound) and a meet (that is, a greatest lower bound), and so K with
these operations is a lattice. It is not hard to check that this lattice is
distributive (that is, the meet operation distributes over the join op-
eration and vice versa). Furthermore, the Gromov-Prohorov distance
between X and ) equals the maximum of the distances between the

meet of X and Y and either X or ).

Remark 5.10. Given f : I — [0,1], the map x : K — [0,1] that
sends X to [, f(X,), where Xp, X, ... are as in Theorem , is a

semicharacter.

The following result will be a key ingredient in the characterization
of the infinitely divisible random elements of K in Theorem [9.1]

Corollary 5.11. If ® : R, — K is a continuous function such that
O(0) =& and P(s) < P(t) for0 < s <t <o, then d=¢E.

Proof. Suppose that ® is a function with the stated properties. If ®
E, then there exist 0 < u < v < o such that ®(u) < ®(v). It follows
from Theorem that there exists ) € I such that the multiplicity of
Y in the factorization of ®(v) is strictly greater than the multiplicity
of Y in the factorization of ®(u). Define M : R, — N by setting M (s),
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s = 0, to be the multiplicity of ) in the factorization of ®(s). This
function is nondecreasing and so there must exist © < t < v such that
M(t—) < M(t+). Tt follows that ®(t —e) HYH - --HY < ®(t +¢) for
all € > 0, where there are M (t+) — M (t—) summands in the sum, and
this contradicts the continuity of ®. U

The next result will be a consequence of the characterization of infin-
itely divisible random elements of K in Theorem [9.1], but we present it
here as in illustration of a nonobvious and initially somewhat surprising
feature of K.

Corollary 5.12. Suppose that X € K is infinitely divisible in the sense
that for each positive integer n there exists X,, € K such that X =
X, H - -HX,, where the sum has n terms. Then, X = &.

Proof. This is immediate from Theorem Indeed, a decomposition
of the form X = X, - --H A, is only possible if n divides each of the
multiplicities with which the various irreducible elements appear in the
factorization of X. O

Remark 5.13. A simpler and more direct proof of Corollary is to
note that if X can be written as X, (- - -EH&,, for all n, then the push-
forward of the probability measure ;%> by the map (', ") — rx (2, 2")
is an infinitely divisible probability measure supported on [0, diam(&X)]
and hence it must be a point mass at zero, where we again use the fact
that any infinitely divisible probability measure with bounded support
is a point mass, a fact that, as we noted in Remark [5.3] has a simple di-
rect proof. An argument along these lines can also be used to establish

Corollary
The following result is an immediate consequence of Corollary [5.12]

Corollary 5.14. If & : R, — K is a function such that ®(0) = &€ and
O(s)HP(t) = P(s+t) for 0 < s,t < o0, then & =E.

Remark 5.15. Although Corollary says there are no nontrivial ad-
ditive functions from R, to K, there do exist nontrivial superadditive
functions; that is, functions ® : R, — K such that &(0) = £ and
O(s)HP(t) < D(s+1t) for 0 < s,t < 0. For example, take X € K\{€}
and set ®(t) = XH---HX for n <t <n+ 1, n € N, where the sum
has n terms and we interpret the empty sum as £. We have

O(s) B (1) = ([s)) B O([t]) = B([s] + [t]) < (s +1).

However, by Corollary there are no nontrivial continuous super-
additive functions. Furthermore, there are no superadditive functions
® such that ®(t) + & for all t > 0.
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There are also nontrivial subadditive functions; that is, functions
® : R, — K such that ®(0) = £ and ®(s) H P(t) = P(s + t) for
0 < s,t < . For example, it suffices to take some X € K\{€} and
set ®(t) = X for ¢t > 0. However, there are no continuous subadditive
functions because if ® is such a function and Y € I is such that Y <
®(t), then it follows from ®(£)HP(5) = (t) that Y < () and hence
Y < ®(5) for all n € N, but this contradicts the continuity of ® at 0.

Remark 5.16. With Theorem |5.8|in hand, we can give a more concrete
description of the group G described in Remark Recall that VE»
denotes the sum of n terms V- --H YV, and we interpret the empty
sum as €. With this notation, any &/ € K has a unique representation
as U = Hygq VF™, where ny = 0 for all but countably many V € I
and Y, ny diam(V) < c0. Any element of G corresponds to a unique

pair ([ VI, [y VE™), where nfi = 0 and n;, = 0 for all but
countably many V € I, 3, ny; diam(V) < o and Y}, ny, diam(V) <
0, and ny;n;;, = 0 for all V € I. We can therefore identify an element
of G with the corresponding object ((ny;,n3;))ver. In terms of this
representation, the binary operation on G transforms the two objects
((m5, m3,))ver and ((n3;, ny;))ver into the object

(5, = [, +np ] A [y, 05, |y my gy = [m, 0y [ A [my, 40y ]))ver.

6. PRIME FACTORIZATIONS AS MEASURES

Theorem guarantees that any A € K has a unique representa-
tion as X = [, y’”k, where the )}, € I are distinct, the integers m;,
are positive, and we define the empty sum to be £. The number of )
outside any neighborhood of £ is finite. It is natural to code such a fac-
torization as the measure W(X) := >, mydy, on K that is concentrated
on I and assigns mass my to the point ), for each k.

Denote by 91 the family of Borel measures N on K such that
N(K\I) = 0 and N(B) € N for every Borel set B that does not in-
tersect some neighborhood of £. Any N € 91 can be represented as the
positive integer linear combination of Dirac measures

N = Z mk5yk
k

for distinct ), € I and positive integers my, where the sum may be
finite or countably infinite depending on the cardinality of the support
of N. Given N € 91 with such a representation we define a unique

element of K by
S(N) = [ YE™,
k
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if the sum converges (recall from Corollary that the convergence of
the sum is independent of the order summands). Thus, X(V (X)) = X
for all X € K.

It is possible to topologize 91 with the metrizable w?-topology of
[DVJ03, Section A2.6]. This topology is the topology generated by
integration against bounded continuous functions that are supported
outside a neighborhood of £. The resulting Borel o-field coincides o-
field generated by the N-valued maps N — N(B) Borel measurable,
where B is a Borel subset of K that is disjoint from some neighborhood
of £, see [DVJ03, Theorem A2.6.111].

Proposition 6.1. The map ¥ : K — N is Borel measurable.

Proof. The set {(X,Y) € K*: Y < X} is closed by part (a) of Corol-
lary and the set I is a G by Proposition [5.1} It follows that the
set B:= {(X,V)eK?:Y < X,)Y el}isaGssubset of K? and, in
particular, it is Borel.

For any X € K, the section By :={Y e K: (X, V) eB} ={YeK:
Y < X, Y € I} is countable (indeed, it is discrete with & as its only
possible accumulation point).

By [Kec95, Exercise 18.15], the sets M, := {X¥ € K : #Bx = n},
n = 1,2,...,00, are Borel and for each n there exist Borel functions
(0™)o<i<p such that:

. HZ(”) : M, —» K,

o the sets {(X,)) : X e M,,, Y = QZ(")(X)}, 0<i<mn n-=
1,2,...,00, are pairwise disjoint,

¢ By = {0 (X):0<i<n}for XeM,, n=1,2,...,0

Recall the Borel function M from part (b) of Corollary [£.4 For
X € M, the set {(8(X), M(X,60 (X)) : 0 < i < n} is a listing of the
elements of the set {Y € I : Y < X'} along with their multiplicities in the
prime factorization of X'. The functions &' — (GZ@(X), M(x, 92(")()()),
XeM,, 0<i<n,n=1,2,...,00, are measurable and so

n)
ZM (X, 9 )50§n)(2{)

for X € M, provides a measurable map from K to 9, see [DV.J0S|
Proposition 9.1.X]. O

Remark 6.2. The map V¥ is not continuous for the w#-topology. In
fact, any X € (K\I)\{€} is a discontinuity point, as the following argu-
ment demonstrates. Because I of is dense in I, it is possible to find a
sequence X, € I that converges to X'. Therefore, U(X,,) = dx,, whereas
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U(X) has total mass at least two and the distance between any atom
of U(X) and the point &, is bounded away from zero uniformly in n.

We omit the straightforward proof of the following result.

Lemma 6.3. The set {N € M : X(N) is defined} is measurable and the
restriction of the map X to this set is measurable.

7. SCALING

Given X € K and a > 0, set aX’ := (X,arx, pux) € K. This scaling
operation operation is continuous and satisfies the first distributivity
law

(7.1) a(XAHY) = (aX)H (aY) for X,V eKand a > 0.

The semigroup (K,H) equipped with this scaling operation is a con-
vex cone. The neutral element £ is the origin in this cone; that is,
lim,gaX = & for all X € K. Note that diam(aX) = adiam(X) for
X € K and a > 0. While the Gromov—Prohorov metric is not homoge-
neous for the scaling operation, the D-metric introduced in [Stu06] is
homogeneous and yields the same topology on K.

It follows from that ) € I if and only if a) € I for all a > 0.

There is an analogue of the scaling operation for the semigroup of
semicharacters (x)aea given by

axa(X) = xa(aX) = xaa(X), a>0,AeA Xek

We have seen that (K, <) is a distributive lattice. There is a large
literature on lattices that are equipped with an action of the additive
group of the real numbers (see, for example [Kap48| [Pie59, [Hol69]).
Using exponential and logarithms to go back and forth from one setting
to the other, this work can be recast as being about lattices with an
action of the group consisting of R, , = (0, 00) equipped with the usual
multiplication of real numbers. Unfortunately, one of the hypotheses
usually assumed in this area translates to our setting as an assumption
that X < aX for a > 1. The following result shows that this is far
from being the case and also that scaling operation certainly does not
satisfy the second distributivity law.

Proposition 7.1. a) If X < aX for some X € K and a + 1,
then a > 1 and X = [H,_,a *Z, where Z is defined by the
requirement that aX = X H Z.

b) If (aX)H (bX) = ¢X, for some X € K and a,b,c > 0, then
X =E.
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Proof. Consider part (a). Suppose that X # £ is such that X < aX
for a #+ 1. Because diam(&X') < diam(aX’) = adiam(X'), it must be the
case that a > 1. It follows from Proposition[4.2]that Z well-defined. We
have X = a ' Z@a ' X. Iterating, we have X = [H,_, a *ZHa"X.
By part (a) of Corollary 3.6/ (or part (b) of Corollary , Hi_,a*Z
exists. Moreover, lim,,_,,, diam(a™"X) = 0, and part (a) follows.
Consider part (b). Suppose that (aX) H (bX) = cX for some X €
K and a,b,c > 0. By part (a) of Lemma 2.4 (a + b)diam(X) =
diam((aX) @H (bX)) = diam(cX) = cdiam(X), and so a + b = ¢. An
irreducible element ) € I appears in the factorization of X guaranteed
by Theorem if and only if ¢) € I appears in the factorization of c¢X,
and similar remarks hold for the factorizations of aX and bX. Suppose
that ¢ is the maximum of the diameters of the irreducible elements
that appear in the factorization of X. (There could, of course, be more
than one - but only finitely many - irreducible factors with maximal
diameter.) It follows that ¢X has in irreducible factor with diameter
cd, whereas all the irreducible factors of (aX) H (bX') have diameters
at most (a v b)d, which is impossible since (a v b) < c. O

Remark 7.2. While it is possible to introduce a notion of convexity
for subsets of K using the addition and scaling in an obvious way, the
absence of the second distributivity law makes the situation entirely
different from the classical case. For instance, a single point {X'} is not
convex for X # & and its convex hull is the set of spaces of the form
aXH---Ha,X for ay,...,a, = 0such that a; +---+a, =1. Itisa
consequence of Remark [8.3 that this latter set is not even pre-compact.

Remark 7.3. The map that sends a € R,, to the automorphism
X — aX of (K,H) is a homomorphism from (R,,, x) to the group
of automorphisms of (K,H). We can therefore define the semidirect
product K x R, to be the semigroup consisting of the set K x R,
equipped with the operation [¥] defined by

(X, a) (), b) == (XH(a)),ab).

This semigroup has the identity element (£, 1) and is noncommutative.
The semidirect product of the group (G,H) considered in Remark
and Remark and the group (R, ., x) can be defined similarly. It
would be interesting to extend the investigation of infinite divisibility
in Section [9] to this semigroup and group, but we leave this topic for
future study.
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8. THE LAPLACE TRANSFORM

A random element in K is defined with respect to the Borel o-algebra
on K generated by the Gromov-Prohorov metric.

Lemma 8.1. Two K-valued random elements X and Y have the same
distribution if and only if E[xa(X)] = E[xa(Y)] for all A€ A.

Proof. 1t follows from Lemma [3.5]that the set of functions {x4 : A € A}
generates the Borel o-algebra on K. From Remark [3.3] this set is a
semigroup under the usual multiplication of functions and, in partic-
ular, it is closed under multiplication. The result now follows from a
standard monotone class argument. U

Remark 8.2. Recall from Section [@ the set 91 of N-valued measures that
are concentrated on I and the associated measurable structure. Fol-
lowing the usual terminology, we define a point process to be a random
element of . It follows from Proposition that any K-valued ran-
dom element X can, in the notation of Section [6] be viewed as a point
process N := U(X) such that 3(N) = X. If we write N = Y mdy,
on I, then

Elua(X)] = EDea(S(e(X)] = E| [ Trea(yi)™ |

The right-hand side is the expected value of the product of the func-
tion x4 applied to each of the atoms of N taking into account their
multiplicities and hence it is an instance of the probability generating
functional of the point process N, see [DVJ08, Equation (9.4.13)].

Remark 8.3. A fairly immediate consequence of Lemma is that
there is no analogue of a law of large numbers for random elements of
K in the sense that if (Xj)ken is an i.i.d. sequence of random elements
of K that are not identically equal &£, then %EZ; X} does not even
have a subsequence that converges in distribution. Indeed, for A € A
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with A e RS}L) we have
1 n 1
. 1 "
= lim <E [XA <—X1)])
n— o0 n
_ l. 1 .
= ngrolo - exp _ﬁ Z aijrx(%',%)

I<i<jsm

lim E | xa
n—00

x p¥"(dr) P{X,; € dX})n

= €Xp ( J J aijrx (i, v;) p" (dx) P{X, € dX})
" 1<z<]<m

= exp <— Z f J rx (w1, m9) 2 (dz) P{X, € dX})
1<i<jsm

by a standard argument that is used to prove the weak law of large
numbers for a sequence of i.i.d. nonnegative random variables using
Laplace transforms. If some subsequence of %Hz;é X converged in
distribution to a limit Y, then we would have

J f exp ( aijry(yi,yj)> ps" (dr) P{Y € dy}
" I<i<js<m

= exp (— Z J J rx(x1, z2) ,uX (d:z:) P{X; e dX}) .
I<i<jsm

By the unicity of Laplace transforms for nonnegative random vectors,
this implies that

f M@/z{(yl,yz) eY?:ry(y1,10)
K

[ o) () POXs € a2} PO € a9)
X2

and hence there is a constant ¢ > 0 such that for P{Y € -}-almost
all Y € K we have ry(y1,y2) = ¢ for ,u3®,2—almost all (y1,12) € Y2, but
this is impossible for nontrivial a compact metric space (Y,ry) and
probability measure py with full support.
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9. INFINITELY DIVISIBLE RANDOM ELEMENTS

A random element Y of K is infinitely divisible if for each positive
integer n there are i.i.d. random elements Y,,..., Y,, such that Y
has the same distribution as Y,,; - --H Y.

A K-valued Lévy process is a K-valued stochastic process (X;):=o
such that:

° X() =&

e t — X, is cadlag (that is, right-continuous with left-limits)

e Given 0 =ty < t; < ... < t,, there are independent K-valued
random variables Zy., , Z,1,, - - -, Ly, 41, such that the distribu-
tion of Zy, .., only depends on ¢, 11 — ¢, for 0 <m <n—1
and Xy, = Xy, B %4, B B2y, for0<k<l<n.

An account of the general theory of infinitely divisible distributions
on commutative semigroups may be found in [BCR84]. The following
result is the analogue in our setting of the classical Lévy-Hincin-1to
description of an infinitely divisible, real-valued random variable.

Theorem 9.1. a) A random element Y of K is infinitely divisible
if and only if it has the same distribution as Xy, where (X;)i=o
1s a Lévy process with distribution uniquely specified by that of
Y.

b) For eacht > 0 there is a unique random element AX, such that
X, = X;- HAX,.

c) For each t > 0, X; = [H,_,., AX,, where the sum is a well-
defined limit that does not depend on the order of the summands.

d) The set of points {(t,AX;) : AX; + £} form a Poisson point
process on R, x (K\{E}) with intensity measure A\@v, where A
is Lebesque measure and v is a o-finite measure on K\{E} such
that

(9.1) J (diam(X) A 1) v(dX) < .

e) Conversely, if v is a o-finite measure on K\{€} satisfying (9.1]),
then there is an infinitely divisible random element Y and a
Lévy process (Xy)i=0 such that (a)-(d) hold, and the distribu-
tions of this random element and Lévy process are unique.

Proof. Write D for the set of nonnegative dyadic rational numbers. It
follows from the infinite divisibility of Y and the Kolmogorov extension
theorem that we can build a family of random variables (X;),ep such
that:

.X():ga
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e X, has the same distribution as Y,

e Given qp,...,q, € D with 0 = 9 < ¢4 < ... < @n, there are
independent K-valued random variables Zy,q,, Zg, 455 - - - » Lig,,_1n
such that the distribution of Z,, .., only depends on ¢, 41 —Gm
for0<m<n-1and X, = X, HZyq,,, H --HZ , for
0 <k </ <n. In particular, X, < X, for p,q € D with p < gq.

We claim that if p € D, then
(9.2) lim X, =X, as.

qlp, qeD

To see that this is the case, note that if p,q € D with p < ¢, then
X, = X, HZ,, and it suffices to show that lim,|, sep dapr(Zpg, E) = 0
almost surely.

By part (b) of Lemma [2.4] it will certainly suffice to show that
limgy, gep diam(Z,,) = 0 a.s. However, note that if we set Tp = 0
and T, = diam(Z,,.,) for r € D\{0}, then the R,-valued process
(T})rep has stationary independent increments. It is well-known that
such a process has a cadlag extension to the index set R, and hence,
in particular, lim, o rep 7, = 0.

Lemma applied to (X,),ep gives that it is possible to extend
(X,)pen to a Lévy process (X;)i=o. This establishes (a). Moreover, for
each t > 0 there is a unique K-valued random variable AX; such that
Xy = X HAXY, Yooy diam(AX) is finite, and X, = [H,_, ., AXj,
where the sum is well-defined. This establishes (b) and (c).

A standard argument (see, for example, [Kal02, Theorem 12.10])
shows that the set of points {(t,AX;) : AX; #+ &£} form a Poisson
point process on R, x (K\{£}). The stationarity of the “increments”
of (X¢)i=o forces the intensity measure of this Poisson point process to
be of the form A® v, and the fact that > ,_ _, diam(AX,) is finite for
all ¢ = 0 implies (9.1)), see, for example, [Kal02, Corollary 12.11]. This
establishes (d).

We omit the straightforward proof of (e). O

Following the usual terminology, we refer to the o-finite measure in
Theorem as the Lévy measure of the infinitely divisible random el-
ement Y or the Lévy process (X;);>0. The following is immediate from
Theorem [0.1], the multiplicative property of the semicharacters x 4, and
the usual formula for the Laplace functional of a Poisson process.

Corollary 9.2. If Y 1is an infinitely divisible random element of K
with Lévy measure v, then the Laplace transform of Y is given by

93)  E[xa(Y)] = exp (_ fu ) y(dy)>  AeA
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Remark 9.3. In the notation of Theorem [9.1] the random measure

> dax,

0<t<1

is a Poisson random measure on K with intensity measure v and we
have Y = X, = [{H;_,<; AX;. The push-forward of this random mea-
sure by the map ¥ of Proposition is a Poisson random measure
on the space M of N-valued measures that are concentrated on I. The
intensity measure of this latter Poisson random measure is the push-
forward ) of the Lévy measure v by W. The “points” of the latter
Poisson random measure are usually called clusters in the point pro-
cesses literature, while @ itself is called the KLM measure, see [DV.JOS|
Definition 10.2.IV]. Let N be the point process on I obtained as the
superposition of clusters; that is, N = >,/ _, ., W(AX,) is the sum of
the N-valued measures given by each individual cluster. This point
process on I is called the Poisson cluster process in the Poisson point
process literature. The infinite divisibility of Y implies the infinite di-
visibility of the point process ¥(Y) and the equality U(Y) = N is an
instance of the well-known fact that infinitely divisible point processes
are Poisson cluster processes. Furthermore, corresponds to the
classical representation of the probability generating functional of an
infinitely divisible point process specialized to the space I, see [DV.JOS|
Theorem 10.2.V]. On the other hand, if M is a Poisson cluster process
on I such that (M) is almost surely well-defined, then (M) is an
infinitely divisible random element of K, and our observations above
show that all infinitely divisible random elements of K appear this way.

We end this section with a deterministic path-regularization result
that was used in the proof of Theorem [9.1]

Lemma 9.4. Suppose that = : D — K is such that Z(0) = &, Z(p) <
=(q) for p,q € D with 0 < p < ¢, and limy, ep Z(q) = E(p) for all
peD. Then, Z(t) := lim,y; . =(q) exists for all t € Ry. Moreover,
the function = : Ry — K has the following properties:
=(p) = E(p) forpeD,
=(s) < E(t) for s,t e Ry with s < t,
t — =(t) is cadlag,
for p,q € D with 0 < p < q, there is a unique O(p,q) € K such
)
s

—_
—
—
—_
—
—

that =(q) = Z(p) B O(p,q), ) )
f s < t, there is a unique O(s,t) € K such that Z(t) =
Z(s)HO(s,t) and O(s,t) = limy, s, g4, pgen O (P, ), B

cht > 0 there is a unique AZ(t) € K such that Z(t) =
limgy Z(s) HAZ(?)
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> cicw diam(AE(t)) < diam(6(u, v)) for all 0 < u < v,
the sum [H,_ o, A=(s) is well-defined for all t = 0,
E(t) = [Hycser AZ(s) for allt = 0.

t

Proof. 1t follows from part (b) of Corollary (3.6 that lim,; ,ep Z(q) =:
=(t) exists for all t > 0.

It is clear that =(p) = Z(p) for p € D and that Z(s) < Z(¢) for
s,t € R, with s <t. It is also clear that t — =(t) is right-continuous.
It follows from part (b) of Corollary [3.6/that Z(t—) := lim, Z(s) exists
for all ¢ > 0 and Z(t—) < Z(¢) for all ¢t > 0.

The existence and uniqueness of O(s,t) such that =(¢) = Z(s)
O(s,t) and the fact that O(s,t) = limys g1t pgep O(p, q) follow from
Proposition [£.2]

It also follows from Proposition that AZ(t) exists and is well-
defined.

For any 0 < u <vandu <t <---<t, <v we have AZ(¢;) [
- AZ(t,) < O(u,v). It follows from part (a) of Corollary [3.7] that
FHo s AZ(s) is well-defined.

It is clear that [,_,., AZ(s) < E(t) for all ¢ = 0 and so we can
use Proposition to define a unique function ® : R, — K such that
2(t) = ®(t)BH- ., AZ(s) for all ¢ > 0. The function ® is continuous
and ®(s) < ®(¢t) for 0 < s < t. Also, ®(0) = E. It follows from
Corollary that ® = £, completing the proof of the lemma. O

10. STABLE RANDOM ELEMENTS

A K-valued random element Y is stable with index o > 0 if for any
a,b > 0 the random element (a + b)iY has the same distribution as
axY' @ baY" , where Y’ and Y” are independent copies of Y. Note
that a stable random element is necessarily infinitely divisible. If Y
is stable, then its diameter is a nonnegative strictly stable random
variable.

There is a general investigation of stable random elements of convex
cones in [DMZ08]. In general, not all such objects have Laplace trans-
forms that are of the type analogous to those described in Corollary[9.2]
For example, there can be Gaussian-like distributions. However, no
such complexities arise in our setting.

Theorem 10.1. Suppose that Y is a nontrivial a-stable random ele-
ment of K. Then, 0 < a < 1 and the Lévy measure v of Y obeys the
scaling condition

v(aB) = a *v(B), a>0,
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for all Borel sets B < K. Conversely, if v is a o-finite measure on
K\{€} that obeys the scaling condition for 0 < a < 1 and satisfies
(9.1), then v is the Lévy measure of an a-stable random element.

Proof. 1f (X;)=0 is the Lévy process corresponding to Y, then it is not
difficult to check that the process (a‘éXat)»O has the same distribution
as (X;)s=0, and the scaling condition for v follows easily.

Write n for the push-forward of v by the map diam. It is clear from
the scaling condition and the property diam(aX) = adiam(X) that
n([x,0)) = cx~* for some constant ¢ > 0, and so

J(diam(y) ADv(dY) = J(y A1) cay= @D dy.

In order for this integral to be finite, it must be the case that a@ < 1.

The remainder of the result is straightforward and we omit the proof.
O

Remark 10.2. One of the conclusions of Theorem [I0.1] is that there

are no nontrivial a-stable random elements for o« > 1. This also fol-

lows from the following argument. If Y was a nontrivial a-stable ran-

dom element and (Y )reny was a sequence of independent copies of Y,

then - HZ:) Y would have the same distribution as Y and hence
na

% Z;(l) Y, would certainly converge in distribution as n — oo, but this
contradicts Remark [8.3] where we observed that there is no analogue
of a law of large numbers in our setting.

By [DMZ08, Theorem 7.14], each a-stable random element Y can
be represented as a LePage series

1
(10.1) Y Ly [[HTn " Zn,
neN
where «y is a suitable constant, (I';,),en is the sequence of successive
arrivals of a homogeneous unit intensity Poisson point process on R
and (Zy,)nen is sequence of i.i.d. random elements of K with almost
surely constant diameter 1.

For the sake of completeness, we give a quick self-contained proof of
why this is so in our setting. From Theorem and Theorem (10.1}
Y has the same distribution as F{X : (¢, X) € II}, where II is a
Poisson point process on [0, 1] x (K\{€}) with intensity A ® v for a
measure v that has the property v(aB) = a*v(B), for all a > 0
and all Borel sets B < K. From the proof of Theorem [10.1, we
know that the values of diam(X) as we range over points (¢, X) in
IT are distinct and form a Poisson point process with intensity mea-
sure 1, where n([z,0)) = cx~® for some constant ¢ > 0. Similar
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reasoning shows that {(diam(X),diam(X)~'X) : (¢,X) € II} is a Poi-
son point process with intensity measure n ® s for some probability
measure k supported on {Y € K : diam()) = 1}. It follows that
{(c”= diam(X)~®, diam(X)~'X) : (¢, X) € II} is a Poisson point pro-
cess with intensity A ® . If we denote this Poisson point process by =
and list the points of = as ((I',,, Z,,) )nen, where the first coordinates are
in increasing order, then this sequence has the description given above
and {X : (t,X) e I} = {C_JT’F;EZn : n € N}, which establishes the
result.

It is possible to reconstruct the Poisson process II from the sequences
(T'p)nen and (Zy, )nen, so that the uniqueness part of Theorem yields
that the common distribution of the random elements Z,, is unique. A
sum of the form produces an a-stable random element for any
i.i.d. sequence (Z,)neny with the property that the sum is well-defined

1

which, by part (b) of Corollary is equivalent to > T'n  diam(Z,,) <
oo almost surely (that is, it is not necessary to impose the condition
that the diameters of the random elements Z, are constant). If p
is the common distribution of the random variables diam(Z,), then
the latter sum converges almost surely if and only if { 2% p(dz) < 0.
If the diameters of the Z, are not constant, then different common
distributions for the Z, may yield sums in that have the same
distribution.

Example 10.3. We consider the a-stable random element Y obtained
by constructing the LePage series in which the Z; are copies of some
common nonrandom Z € K. In this case Y is the infinite product
Y = Z% equipped with the metric

ry((20), (20)) = YT rp(2h, 21)

and the probability measure uy := u$*. Note that ry((2,), (2")) is a
positive strictly stable random variable with index «.

11. THINNING

Recall the map ¥ that associates with each X € K a N-valued
measure on [. For p € [0,1], the independent p-thinning of an
N-valued measure N := }, mydy, is defined in the usual way as
N®) .= > iy, , where &, k € N, are independent binomial random
variables with parameters m; and p. In other words, each atom of N
is retained with probability p and otherwise eliminated independently
of all other atoms and taking into account the multiplicities.
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Applying an independent p-thinning procedure to the point process
N := ¥U(X) generated by random element X in K yields a K-valued
random element X® := ¥ (N®) that we call the p-thinning of X. Note
that the X® < X, X© = £ XM = X, and it is possible to couple
the constructions of these random elements so that X® < X(@ for
0<p<gqg<l

For 0 < p,q < 1 the random element (X®)(@ has the same distribu-
tion as the random element X®9. Also, if X and Y are independent
random elements and X® and Y® are constructed to be independent,
then X® [ Y® has the same distribution as (X HY)®. It follows
from this last property that, for fixed A € A and 0 < p < 1, the map

X > Exa(@XP)] =] [(1—p+pxadh))

is a semicharacter, where the product ranges over the factors that ap-
pear in the factorization of X into a sum of irreducible elements of
K (repeated, of course, according to their multiplicities). This is a
particular case of the construction in Remark

12. THE GROMOV-PROHOROV METRIC

We follow the definition of the Gromouv-Prohorov metric in [GPW09).
Recall that the distance in the Prohorov metric between two proba-

bility measures p1 and pe on a common metric space (Z,ry) is defined
by

d%Zr’TZ)(Msz) = inf{e > 0: u1(F) < po(F*) + €, VF closed},

where
Fi={z€Z:rz(z7) <e, for somez € F}.

An alternative characterization of the Prohorov metric due to Strassen
(see, for example, [EK86, Theorem 3.1.2] or [Dud02l, Corollary 11.6.4])
is that

A7 (1, ps) = infinf{e > 0: 7{(2,2") € Z x Z : r5(2,2') = e} < ¢},

where the infimum is over all probability measures = such that (- x
Z) = py and w(Z x -) = ps.

The following result is no doubt well-known, but we include it for
completeness. Recall that if (X, rx) and (Y, ry) are two metric spaces,
then rx @ ry is the metric on the Cartesian product X x Y given by

rx @ry (¢, y), (@, ") = rx (@, 2") + v (v, "),
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Lemma 12.1. Suppose that py and ps (resp. vi and vo) are probability
measures on a metric space (X,rx) (resp. (Y,ry)). Then,

dp O (1 @ v, iy @ va) < dipy ) (pua, piz) + dp (v, ).

Proof. This is immediate from the observation that if o and § are
probability measures on X x X and Y x Y, respectively, such that

a{(x,2") e X x X :rx(2/,2") = v} <~y
and
B,y eY xY iry(y,y") =6} <6
for 7,0 > 0, then
a®B{((2",y), (2", y") e (X xY) x (X xY)
trx (2, 2") v (Y y") = v + 0}
< v 49,

where, with a slight abuse of notation, we identify the measure a ®
on (X x X) x (Y xY) with its push-forward on (X x Y) x (X xY)

by the map ((z',2"), (v, y")) = ((«',), (2", y")). m
The following lemma is also probably well-known.

Lemma 12.2. Suppose that py and py are two probability measures
on a compact metric space (X,rx) and v is a probability measure on
another compact metric space (Y,ry). Then,

d%)fXY’TX@TY)(#l R, jis ® I/) _ dgr(,rx)(lul’ ,UQ)-
Proof. 1t follows from Lemma that
A ) (1 @ vz @ v) < iy ™ (o) + i, (v, )

= dg”)(ﬂh fa2).

On the other hand, suppose that 7 is a probability measure on (X x
Y) x (X xY) such that 7(- x (X xXY)) = 13 ®u, 7((X xY) x:) = p2®@v
and
m{((@',y), (2", 9y") € (XxY)x(XxY) :rx(2/,2")+ry(y,y") = e} < e

for some ¢ > 0. If p is the push-forward of © by the map
(2", y), (2", y")) — (2',2"), then it is clear that p(- x X) = puy,
p(X x ) = g and

pl((@2") e X x X irx(af,2") = e} <,
and hence

= dgr(JX)(:ula p2) < ngY’TX@W)(M ® U, s @ ).
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The Gromov-Prohorov metric is a metric on the space of equivalence
classes of compact metric measure space (recall that two compact met-
ric measure spaces are equivalent if there is an isometry mapping one
to the other such that the probability measure on the first is mapped
to the probability measure on the second). Given two compact metric
measure spaces X = (X,rx,ux) and Y = (Y,ry, uy), the Gromov-
Prohorov distance between their equivalence classes is

dGPr(Xa y) = inf d%Zr7TZ) ((QSX)#p’Xa (¢Y)#MY)7
(px,0v,Z)

where the infimum is taken over all compact metric spaces (Z,rz) and
isometric embeddings ¢x of X and ¢y of Y into Z, and (¢x)xpx (resp.
(¢y)upy) denotes the push-forward of uX by ¢x (resp. uy by ¢y ).
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