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Abstract

High dimensional data suffer from unwanted variation, such as the batch effects common in microarray
data. Unwanted variation complicates the analysis of high dimensional data, leading to high rates of false
discoveries, high rates of missed discoveries, or both. In many cases the factors causing the unwanted
variation are unknown and must be inferred from the data. In such cases, negative controls may be used
to identify the unwanted variation and separate it from the wanted variation. We present a new method,
RUV-4, to adjust for unwanted variation in high dimensional data with negative controls. RUV-4 may
be used when the goal of the analysis is to determine which of the features are truly associated with a
given factor of interest. One nice property of RUV-4 is that it is relatively insensitive to the number of
unwanted factors included in the model; this makes estimating the number of factors less critical. We
also present a novel method for estimating the features’ variances that may be used even when a large
number of unwanted factors are included in the model and the design matrix is full rank. We name this
the “inverse method for estimating variances.” By combining RUV-4 with the inverse method, it is no
longer necessary to estimate the number of unwanted factors at all. Using both real and simulated data
we compare the performance of RUV-4 with that of other adjustment methods such as SVA, LEAPP,
ICE, and RUV-2. We find that RUV-4 and its variants perform as well or better than other methods.

1 Introduction

High dimensional data often suffer from unwanted variation. Microarray data, for example, frequently exhibit
batch effects and many other forms of unwanted variation (Leek et al., 2010; Scherer, 2009; Stafford, 2008).
This unwanted variation may be either technical or biological in nature, and the sources of this unwanted
variation may range from RNA degradation during the time between sample extraction and preservation, to
the amount of ozone in the air, to the natural day-to-day and hour-to-hour variation within a subject. For
references, see Baggerly et al. (2008), Bakay et al. (2002), Ballard et al. (2007), Boedigheimer et al. (2008),
Boelens et al. (2007), Fare et al. (2003), Huang et al. (2001), Lin et al. (2006), Ma et al. (2006), Schaupp
et al. (2005), Thompson et al. (2007), Whitney et al. (2003); this list is hardly complete. Microarray data
are not the only high dimensional data that suffer from unwanted variation. Functional Magnetic Resonance
Imaging (fMRI) data are often corrupted by changes in the rate of blood flow, the level of blood oxygenation,
and many other factors (Behzadi et al., 2007). NMR spectroscopic metabonomic data may be influenced
by changes in sample volume or other factors (Craig et al., 2006; Ebbels et al., 2011) and other forms of
metabolomic data are also afflicted (De Livera et al., 2012). Proteomics data suffer as well (Karpievitch
et al., 2009).

Unwanted variation complicates the analysis of high dimensional data. Unwanted variation may lead to
high rates of false discoveries, high rates of missed discoveries, or both. Consider an example in which a
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researcher wishes to learn which features of the data are associated with a particular factor of interest. For
example, a researcher may wish to use fMRI data to learn which regions of the brain are activated by a
particular auditory stimulus. If there are unwanted factors (e.g. blood flow) that are correlated with the
factor of interest (the auditory stimulus), this confounding of the stimulus with blood flow may lead to false
discoveries. Conversely, if there are unwanted factors that are uncorrelated with the stimulus, the unwanted
variation may simply obscure any true association between the stimulus and brain activity levels, and thus
lead to missed discoveries.

The causes of unwanted variation are often partially or entirely unknown. In some cases, factors that
cause unwanted variation are known (e.g. blood flow), but cannot be easily or precisely measured. In other
cases, only proxies of the true unwanted factors may be known. For example, in a microarray study, “batch
effects” may be created if samples in one batch are processed at a higher temperature than in another
batch. A researcher may know that a batch effect exists, and even know which samples were processed in
which batch, but not know the cause of the batch effect (temperature). The researcher may try to model
the unwanted variation using a dummy variable for batch. However, the batch variable is only a proxy for
temperature. If the temperature varied within batches as well as between batches, the batch variable may
be a poor proxy. Of course, in many other cases, even proxy variables are unavailable, and the causes of
unwanted variation are a complete mystery.

This complicates the removal of unwanted variation. If the factors causing the unwanted variation are
unknown, or even just poorly measured, it becomes difficult to discern what variation may be attributed
to the unwanted factors. It becomes correspondingly difficult to discern what variation may actually be
attributed to the factor of interest. A researcher trying to remove unwanted variation may fail to remove all
of the unwanted variation, may accidentally remove the variation of interest, or both.

In such situations, negative controls may play a critical role in identifying the unwanted variation. Nega-
tive controls are features (e.g. genes, voxels, etc.) that are known a priori to be truly unassociated with the
factor of interest. For example, in the hypothetical fMRI study described above, a researcher may wish to
regard voxels in the white matter or cerebrospinal fluid, or perhaps even the primary visual cortex (V1), to be
negative controls. In gene expression studies it is often reasonable to regard housekeeping genes as negative
controls. Negative controls can be used to identify unwanted variation. Since negative controls are assumed
to be truly unassociated with the factor of interest, any observed variation in the negative controls can be
assumed to be unwanted variation. This allows a researcher to infer the unwanted factors. The researcher
may then use the inferred unwanted factors to separate wanted variation from unwanted variation. Specific
algorithms that exploit negative controls in this way have been proposed by Lucas et al. (2006), Behzadi
et al. (2007), Wu and Aryee (2010), and Gagnon-Bartsch and Speed (2012).

In this paper we will build on this work and present novel methods to remove unwanted variation from
high dimensional data with negative controls. For concreteness, we will focus on microarray data, but we
believe the methods of this paper should be widely applicable to many other types of high dimensional data.
The structure of this paper is as follows. In what remains of the introduction we provide a brief summary
of existing methods to remove unwanted variation and highlight the novel contributions of this paper. In
Section 2 we present the datasets we will use to evaluate the performance of our methods. In Section 3 we
present our methods. In Section 4 we evaluate the performance of our methods using simulated data, and in
Section 5 we evaluate the performance of our methods on the real datasets of Section 2. Section 6 concludes.

Methods to adjust for unwanted variation can be divided into two broad categories. In the first category
are methods that can be used quite generally, and provide a global adjustment. A global adjustment produces
a modified (adjusted) dataset that is essentially identical to the original dataset but — hopefully — with the
unwanted variation removed. An example of a global adjustment would be quantile normalization, which
is commonly used in the preprocessing of microarray data. Quantile normalization is generally regarded as
a self-contained step, and plays no role in the downstream analysis of the data. In the second category of
adjustment methods are application specific methods. Application specific methods integrate the adjustment
for unwanted variation directly into the main analysis of interest. For example, in a microarray differential
expression study, batch effects may be handled by explicitly adding batch terms to a linear model. A modified
(adjusted) dataset is not created in the process. Thus, this method is application specific in the sense that it
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is only useful in the context of a differential expression analysis. It is not necessarily clear how — or whether
— the method may be altered in order to adjust for unwanted variation in other types of analyses, such as
classification or clustering analyses. For further discussion, see Gagnon-Bartsch and Speed (2012).

Much of the progress that has been made in removing unwanted variation from microarray data has
been with application specific methods intended for use in differential expression analyses. In some of these
methods it is assumed that the factors causing the unwanted variation are known. Combat is one such
successful and well-known method; in particular Combat has been shown to work well with small datasets
(Johnson et al., 2007). While Combat and other similar methods can be quite successful, their use is limited
by the assumption that the unwanted factors are known. As discussed above, the unwanted factors are often
only partially known, or entirely unknown.

Other methods presume the sources of the unwanted variation to be unknown. Most of these methods
use linear regression models. In some methods the unwanted variation is handled by including extra terms
for the unwanted factors in the design matrix. The unwanted factors are inferred from the data using some
form of factor analysis. Methods using this approach have been proposed by Leek and Storey (2007, 2008)
(SVA), Stegle et al. (2008, 2010), Sun et al. (2012) (LEAPP), Desai and Storey (2012), and Gagnon-Bartsch
and Speed (2012) (RUV-2). In other methods the unwanted variation is handled by folding the unwanted
variation into the error term, and allowing the covariance of the error term to have a complicated structure.
Methods using this approach have been proposed by Kang et al. (2008a) (ICE) and Listgarten et al. (2010)
(LMM-EH). Other, related methods of potential interest include Yu et al. (2005), Patterson et al. (2006),
Price et al. (2006), Kang et al. (2008b), Friguet et al. (2009), Karpievitch et al. (2009), Blum et al. (2010),
Kang et al. (2010), Mecham et al. (2010), and Chakraborty et al. (2012). Some of the first uses of factor
analysis to adjust for unwanted variation can be found in Alter et al. (2000) and Nielsen et al. (2002),
although in these examples there is no explicit linear model.

In this paper we will build primarily upon the work of Gagnon-Bartsch and Speed (2012). Gagnon-
Bartsch and Speed (2012) proposed a simple, two-step method (RUV-2) to adjust for unwanted variation
using control genes. The method is application specific and meant for use in differential expression studies.
The two steps of RUV-2 are: 1) perform factor analysis on the control genes to infer the unwanted factors,
and 2) perform a simple linear regression of the observed expression levels on the factor of interest, including
the inferred unwanted factors in the model as covariates.

The contributions of this paper are several. To begin, we present a new method, RUV-4. RUV-4
superficially resembles RUV-2. RUV-4 is intended for use in differential expression studies, uses control
genes to identify unwanted factors, and includes the estimated unwanted factors as covariates in a regression
model. However, the exact method by which the unwanted factors are estimated is different, and this
difference has important statistical implications. The performance of RUV-2 is relatively sensitive to the
number K of unwanted factors that are included in the regression model. The performance of RUV-4 is
much less sensitive to the choice of K. Compared to RUV-2, RUV-4 is also much less sensitive to violations
of the control genes assumption, i.e. situations in which the designated “negative controls” are in fact truly
associated with the factor of interest.

RUV-4 is also of theoretical interest. It is possible to view RUV-4 as a method in which unwanted factors
are inferred from the data and then included in the design matrix of a regression model. In this way, RUV-4
is similar to RUV-2, SVA, LEAPP, and other related methods. However, we show that it is also possible to
view RUV-4 as form of generalized least squares (GLS). In this way, RUV-4 is similar to ICE, LMM-EH, and
other related methods. RUV-4 provides an interesting theoretical link between these two classes of methods.
Perhaps more importantly, however, RUV-4 may also be viewed as an exercise in prediction, or function
estimation. This view of RUV-4 is important for two reasons. Firstly, it allows for a deeper understanding
of the assumptions of RUV-4, giving researchers more insight into when RUV-4 is likely to succeed, when it
may fail, and why. Secondly, viewing RUV-4 as a prediction problem leads quickly and naturally to ideas
for more advanced methods.

Another important contribution of this paper is a novel method for estimating variances, which we name
the “inverse method.” This method, which uses random “factors of interest,” allows us to estimate gene-wise
variances even when all available degrees of freedom have been used up adjusting for unwanted variation,
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i.e. when K is so large that the design matrix is full rank. By using the inverse method, we may simply set
K to be very large by default, and in most cases suffer no performance penalty. Thus, the inverse method
eliminates any need to estimate the number of unwanted factors. Nonetheless, methods somewhat related to
the inverse method may also be used to estimate the number of unwanted factors when such an estimate is
needed. We present one such method that we have found to perform reasonably well in practice.

Additional contributions of this paper include 1) a “ridged” variant of RUV-4, useful in situations where
only a small number of negative controls are available; 2) methods to empirically adjust estimates of variances,
in order to achieve better control of the type I error rate; 3) a discussion on how negative controls might
be discovered “empirically;” and 4) “projection plots,” a novel diagnostic plot that allows a researcher
to visualize the adjustment being made by RUV-2 or RUV-4, and assess whether this adjustment seems
appropriate.

2 Data

In order to compare the relative performance of the methods discussed in this paper, we will want to apply the
methods to a few real datasets. Following Gagnon-Bartsch and Speed (2012), we will investigate differential
expression with respect to gender in the brain. The primary reason we investigate differential expression
with respect to gender is because the answer is in some sense “known.” It is sensible to assume a priori
that most, if not all, of the genes differentially expressed with respect to gender in the brain will come from
either the X or Y chromosomes. This observation provides us with some very straight-forward metrics with
which we can compare the performance of various methods intended to find differentially expressed genes.
We can, for example, simply take the 100 top-ranked genes (in terms of p-values) and count the number of
these top-ranked genes that come from the X or Y chromosomes. With only a few minor caveats, we may
regard the better method to be the one that finds more X/Y genes. See Gagnon-Bartsch and Speed (2012)
for further discussion on the use of gene rankings as a quality metric, and discussion on quality metrics more
generally.

We focus on the brain partly because the relatively complex biology of the brain makes finding differen-
tially expressed genes more challenging, and partly because of the availability of several suitable datasets.
Following Gagnon-Bartsch and Speed (2012), we will use data from three different studies: a “gender study”
in which the original scientific goal was to find genes in the brain differentially expressed with respect to
gender; an “Alzheimer’s study” in which the original scientific goal was to find genes differentially expressed
with respect to the severity of Alzheimer’s disease, and the The Cancer Genome Atlas’s (TCGA) glioblas-
toma multiforme study. To be clear, despite the fact that these studies were originally conducted with
different scientific goals in mind, we will use each of these datasets in exactly the same way — to find genes
differentially expressed with respect to gender. Further information on the gender and Alzheimer’s studies
can be found in Vawter et al. (2004) and Blalock et al. (2004), respectively.

In total we will examine 11 distinct datasets. We will examine two variants of the gender dataset. One
has been fully preprocessed using RMA (Bolstad et al., 2003; Irizarry et al., 2003b,a). The other has not;
the background correction and quantile normalization steps have been omitted. These two datasets are
exactly those described in Gagnon-Bartsch and Speed (2012). The point of using data that has not been
preprocessed is that it is much “noisier” than preprocessed data, and therefore more challenging. It is of
interest to see how the various methods discussed in this paper handle this added challenge. Likewise, we
examine both preprocessed and non-preprocessed versions of the Alzheimer’s data. Again, these two datasets
are exactly those described in Gagnon-Bartsch and Speed (2012).

The remaining seven datasets come from TCGA data. TCGA glioblastoma multiforme expression data
is available from three different microarray platforms: the Affymetrix GeneChip Human Exon 1.0 ST array,
the Affymetrix HT HG-U133A array, and the Agilent custom 244K array. Gagnon-Bartsch and Speed (2012)
examined data from the two Affymetrix arrays. Here we examine datasets from all three arrays. Note however
that the Affymetrix datasets that we examine in this paper are not identical to those in Gagnon-Bartsch
and Speed (2012). TCGA has continued to assay additional samples, and the datasets we examine here
have been “updated” to include many of the newer samples. Moreover, note that TCGA provides both raw
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(“Level 1”) and preprocessed (“Level 3”) data. Gagnon-Bartsch and Speed (2012) began with the raw data
and performed the preprocessing themselves. Here however we simply downloaded TCGA’s preprocessed
datasets.

Three of the TCGA datasets that we examine are simply the three “full” datasets, i.e. one “full” dataset
for each of the three platforms (Exon, U133A, and Agilent). We created a fourth TCGA dataset by combining
data from all three platforms. Because the full datasets are all individually quite large, we included only a
subset of the data from each of the three platforms. We included the first 100 arrays from the Exon dataset,
the second 100 arrays from the U133A dataset, and the third 100 arrays from the Agilent dataset. The
“combined” dataset therefore includes 300 samples, none of which are technical replicates. Only genes that
are common to all three platforms are included in the “combined” dataset. The final three TCGA datasets
are simply the three subsets of the “combined” dataset corresponding to each of the three platforms, i.e. the
100 Exon samples, the 100 U133A samples, and the 100 Agilent samples. Note that these “subset” datasets
are subsets of the “full” datasets not only in the sense that they include only a subset of samples, but also in
the sense that they include only a subset of the genes (specifically, those common to all the platforms). The
point of examining these three “subset” datasets individually is so that we have a valid basis for comparison
when we discuss the advantages and disadvantages of combining data from different platforms.

In Table 1 we report the number of samples m, the number of genes n, and the number of available
control genes nc in each of the 11 datasets. The control genes we use are the housekeeping genes discovered
by Eisenberg and Levanon (2003). This is the same set of housekeeping genes used by Gagnon-Bartsch
and Speed (2012). Unlike Gagnon-Bartsch and Speed (2012) however, we do not discuss the use of spike-in
controls in this paper.

m (# of arrays) n (# of genes) nc (# of control genes)
Gender (preprocessed) 84 12600 799
Gender (non-preprocessed) 84 12600 799
Alzheimer’s (preprocessed) 31 22283 1112
Alzheimer’s (non-preprocessed) 31 22283 1112
TCGA – Exon (Full) 420 18632 518
TCGA – U133A (Full) 490 12042 520
TCGA – Agilent (Full) 466 17472 521
TCGA – Combined 300 11750 509
TCGA – Exon (Subset) 100 11750 509
TCGA – U133A (Subset) 100 11750 509
TCGA – Agilent (Subset) 100 11750 509

Table 1: The number of arrays, genes, and control genes in each dataset.

3 Methods

In this section we formally present the methods of this paper. In Section 3.1 we present a model and some
notation. In Section 3.2 we review RUV-2 (Gagnon-Bartsch and Speed, 2012) and discuss its relationship
to IVLS. In Section 3.3 we present RUV-4, one of the main contributions of this paper. We then compare
RUV-4 to RUV-2 in Section 3.4. In Section 3.5 we investigate the basic statistical properties of RUV-4,
and in Section 3.6 we consider additional statistical properties of RUV-4 that are particularly relevant to
the use of RUV-4 with real data. In Section 3.7 we present the inverse method for estimating variances,
a second important contribution of this paper. In Section 3.8 we introduce the functional approach. This
section provides an alternative framework by which to understand the methods of this paper, and, just as
importantly, suggests directions for future research. In Section 3.9 we present a few variations and extensions
of the main methods of this paper.
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3.1 Background and Model

First we present the model. Then we define some additional notation. Finally, we provide a brief general
discussion of the statistical challenges we face when fitting the model.

3.1.1 The Model

Assume we have m arrays each with n genes (or probes or probesets). Let yij denote the observed log
expression level of the jth gene on the ith array, and let Y denote the m× n matrix (yij). We model Y as:

Ym×n = Xm×pβp×n + Zm×qγq×n +Wm×kαk×n + εm×n (1)

where

Rank [(X | Z |W )] = p+ q + k < m (2)

εij ∼ N(0, σ2
j ) (3)

εij ⊥⊥ εi′j′ if (i, j) 6= (i′, j′) (4)

Here, X is an observed matrix whose columns are the factors of interest (e.g. disease state, treatment /
control), Z is a matrix whose columns are observed covariates (e.g. batch, ethnicity), and W is a matrix
whose columns are unobserved covariates (e.g. sample quality). Note that k is unobserved. The matrices β,
γ, and α are all unobserved coefficients that determine the influence of a particular factor on a particular
gene. We regard X, Z, W , β, γ, and σj to be fixed. As for α, in some sections we will regard it as fixed; in
other sections we will regard it to be random. We begin by assuming it is fixed. When we do regard α as
random we assume:

α ⊥⊥ ε (5)

αij ⊥⊥ αi′j′ if (i, j) 6= (i′, j′) (6)

The Zγ term is optional; a researcher may not be aware of any observed covariates, or may wish to treat
observed covariates as if they were unobserved. Unless we specifically state otherwise, we will assume for
simplicity that there are no observed covariates, and only one factor of interest. The model simplifies to

Ym×n = Xm×1β1×n +Wm×kαk×n + εm×n (7)

3.1.2 Additional Notation

• Let σ2 denote the n-dimensional vector of gene variances (σ2
j ).

• Let nc denote the number of control genes.

• Let Yc, αc, βc, and εc be reduced versions of Y , α, β, and ε that only contain the columns of the
negative control genes. Thus Yc is an m × nc matrix, αc is k × nc, etc. Recall that negative control
genes are genes that we assume are uninfluenced by the factor of interest. Thus we assume βc = 0. We
refer to this as the “control gene assumption.”

• Let jc index control genes and jc̄ index non-control genes.

• If A is a matrix, denote the ith row of of A by Ai? and the jth column of A by A?j .

• If A is a matrix with a single column, let Ai ≡ Ai1. If A is a matrix with a single row, let Aj ≡ A1j .

• Denote the range (column space) of a matrix A by R(A).

• Denote the projection operator of a matrix A by PA; i.e. PA ≡ A(A′A)−1A′ projects onto R(A).
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• Denote the residual operator of a matrix A by RA; i.e. RA ≡ I − A(A′A)−1A′ projects onto the
orthogonal complement of R(A).

• Denote the particularly important quantity RXW by W0.

• If A is some matrix with N rows and rank M < N , let A⊥ denote some (possibly arbitrary) rank
N −M matrix whose columns are unit length, mutually orthogonal, and such that A′A⊥ = 0.

• Denote the partial regression coefficient of A on B as bAB and the partial regression coefficient of A
on B adjusted for C as bAB.C . Let βAB and βAB.C denote the associated parameters. Alternatively,
readers may simply choose to regard the following as definitions:

bY X ≡ (X ′X)−1X ′Y (8)

bYcX ≡ (X ′X)−1X ′Yc (9)

bWX ≡ (X ′X)−1X ′W (10)

bYcX.W ≡ (X ′RWX)−1X ′RWYc (11)

bYcW.X ≡ (W ′RXW )−1W ′RXYc (12)

βYcX.W ≡ βc (13)

βYcW.X ≡ αc (14)

Note: We will assume throughout this paper without loss of generality that the columns of W0 are mutually
orthogonal and have unit length, and that ||X|| = 1 as well.

3.1.3 Statistical Challenges

Our model (7) closely resembles a standard linear regression model. The difference is that in our model
W is unobserved. A natural strategy to fit our model would therefore be to find some way to estimate W
and then proceed with standard regression. The difficulty with this approach is that W is not identifiable
without additional assumptions.

Let A be any invertible k × k matrix. Then

(WA)(A−1α) = Wα, (15)

so neither W nor α are identifiable. However, this particular form of unidentifiability is not a problem. Our
ultimate goal is to estimate β. For this, knowledge of the column-space of W will suffice. To see this, note
that knowledge of R(W ) would allow us to compute RW , the residual operator of W . We could therefore
calculate (X ′RWX)−1X ′RW , the OLS estimate of β.

The real problem is that even R(W ) is unidentifiable. To illustrate the unidentifiability, let a be an
arbitrary 1× k row-matrix. Then

X(β + aα) + (W −Xa)α = Xβ +Wα. (16)

In words, since we don’t know the correlation of X and W , we are unable to separate β from α. This is the
fundamental problem that needs solving. Our solution is to use control genes. As we will see, the assumption
that βc = 0, along with a few other technical assumptions, is enough to make R(W ), and thus β, identifiable.

3.2 The Two-Step Method (RUV-2)

First we present the method. Then we provide a brief discussion.
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3.2.1 The Method

Consider only the expression values for the negative control genes. By (7),

Yc = Xβc +Wαc + εc. (17)

The “control gene assumption” however is that βc = 0, so (17) becomes

Yc = Wαc + εc. (18)

This is a typical model in factor analysis, and many methods exist to estimate W (e.g. SVD). The two-step
method therefore is to

• Step 1: Estimate W by factor analysis on Yc.

• Step 2: Estimate β by regressing Y on X and the estimate of W .

More explicitly, we may denote the estimate of W as Ŵ (RUV−2) and define

β̂(RUV−2) ≡
(
X ′RŴ (RUV−2)X

)−1
X ′RŴ (RUV−2)Y. (19)

In the future, we will drop the RUV-2 superscript when it is clear from context.

3.2.2 Relationship to IVLS and Further Discussion

RUV-2 is discussed in depth by Gagnon-Bartsch and Speed (2012). In this paragraph we merely summarize
some important points of this work. The first is that no matter what factor analysis method is used, W
can only be estimated if rank(αc) = k. This means that in addition to requiring that the control genes be
unassociated with the factor of interest, we must also require that they be associated with the unwanted
factors. Choosing an appropriate set of control genes is essential to the success of RUV-2. A second point is
that we must estimate k. This can be very difficult. Again, see Gagnon-Bartsch and Speed (2012) for more
on this matter.

One point not discussed in Gagnon-Bartsch and Speed (2012) is the relationship of RUV-2 to instrumental
variables least squares (IVLS). Some readers may find RUV-2 reminiscent of IVLS. (Readers unfamiliar with
IVLS may wish to consult Freedman (2009).) Indeed, there are some similarities. Let V be a full rank
m × r matrix of instruments such that m > r ≥ p, such that V ′W ≈ 0, and such that V ′X is full
rank. An IVLS estimator of β would be [X ′V (V ′V )−1V ′X]−1X ′V (V ′V )−1V ′Y . Alternatively, we may
write this IVLS estimator as (X ′PVX)−1X ′PV Y . Compare the IVLS estimator to the RUV-2 estimator(
X ′RŴX

)−1
X ′RŴY . With both the IVLS estimator and the RUV-2 estimator, we “avoid” the unwanted

variation by projecting the data into a “safe” subspace that is (approximately) orthogonal to R(W ). In the
case of IVLS the “safe” subspace is R(V ). This subspace is orthogonal to R(W ) by assumption. In practice,
the assumption that R(V ) is orthogonal to R(W ) usually derives from the assumption that W and V are
stochastically independent. In the case of RUV-2 the “safe” subspace is R(Ŵ⊥). This subspace is orthogonal
to R(W ) if R(W ) ⊆ R(Ŵ ). In practice, the assumption that R(W ) ⊆ R(Ŵ ) derives from the assumptions

that rank(αc) = k, that k̂ ≥ k, and that the factor analysis “works.”
We might choose to view IVLS and RUV-2 as complementary. With IVLS we identify a “safe” subspace

using instruments. Instruments are variables that we assume lie within the “safe” subspace. With RUV-2 we
identify a “safe” subspace using negative controls. Negative controls are variables that we assume lie within
the “dangerous” subspace that is the orthogonal complement of the “safe” subspace. With both IVLS and
RUV-2 there is a caveat. The caveat is that X must not be orthogonal to the “safe” subspace. In the case
of IVLS, this means that V must be reasonably correlated with X; we want to avoid weak instruments. In
the case of RUV-2, this means that X must lie outside R(Ŵ ); the control genes must not be influenced by
X.
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3.3 The Four-Step Method (RUV-4)

We now present a new method to estimate β. As we did with RUV-2, we first present the method and then
provide a brief discussion.

3.3.1 The Method

We estimate β in four steps.

• Step 1: Fit and Remove X

Multiply both sides of (7) by RX to obtain

RXY = RXXβ +RXWα+RXε (20)

= W0α+RXε (21)

• Step 2: Factor Analysis

Use some variant of factor analysis to produce an estimate Ŵ0α of W0α. In addition, define individual

estimates Ŵ0 and α̂ such that Ŵ0α̂ = Ŵ0α. Although we need not commit to a specific method of
factor analysis, we impose two requirements:

PXŴ0 = 0 (22)

and

α̂ =
(
Ŵ ′0Ŵ0

)−1

Ŵ ′0Y. (23)

Note that W0 and α are not identifiable, so the factorization of Ŵ0α into Ŵ0 and α̂ will be somewhat
arbitrary; this turns out not to matter.

• Step 3: Estimate W

We begin with the observation that

W = W −X(X ′X)−1X ′W +X(X ′X)−1X ′W

= (I −X(X ′X)−1X ′)W +X
[
(X ′X)−1X ′W

]
= W0 +XbWX (24)

We know X and we have an estimate of W0. We therefore would like to estimate bWX . To do so we
make use of the identity

bYcX = bYcX.W + bWXbYcW.X . (25)

Assuming
(
bYcW.Xb

′
YcW.X

)−1
exists, solving for bWX yields

bWX = (bYcX − bYcX.W ) b′YcW.X

(
bYcW.Xb

′
YcW.X

)−1
. (26)

Note that
bYcX.W ≈ βYcX.W = βc = 0 (27)

and
bYcW.X ≈ βYcW.X = αc ≈ α̂c (28)

so
bWX ≈ bYcX α̂

′
c (α̂cα̂

′
c)
−1
. (29)

We therefore define our estimate of W as

Ŵ ≡ Ŵ0 +XbYcX α̂
′
c(α̂cα̂

′
c)
−1. (30)
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• Step 4: Regress Y onto X and Ŵ to estimate β

Just as in the two-step method, we plug in our estimate of W as a covariate in a regression model.
More explicitly, we may denote Ŵ as Ŵ (RUV−4) and define

β̂(RUV−4) ≡
(
X ′RŴ (RUV−4)X

)−1
X ′RŴ (RUV−4)Y. (31)

Again, we will drop the superscript when it is clear from context.

3.3.2 Discussion

RUV-4 may be roughly regarded as a hybrid between RUV-2 and SVA (Leek and Storey, 2007, 2008). Recall
that a central problem when using factor analysis to discover unwanted factors is that the factor analysis
might also pick up signal from the biological factor of interest. RUV-2 addressed this problem by limiting
the factor analysis to negative control genes. Leek and Storey proposed a different solution: first remove
the signal of interest by projecting the data onto the orthogonal complement of R(X), and only then do the
factor analysis. This effectively solves the problem of picking up the factor of interest in the factor analysis,
and we borrow the technique in steps 1 and 2 of RUV-4.

However, this technique introduces a problem of its own. A factor analysis on RXY will not accurately
estimate the unwanted factors W . Instead, it will estimate W0. Therefore, we need to recover the bit of W
that was projected away in step 1. This is complicated by the unidentifiability of R(W ) highlighted in (16).
We address this problem by borrowing the main idea of RUV-2 — that negative control genes can be used
to make R(W ) identifiable.

Step 3 of RUV-4 is where we attempt to recover the component of W lost in step 1. Step 3 is the most
important and complicated step, so we clarify a few points. The control gene assumption enters in (27),
when we assume bYcX.W ≈ 0. The exact interpretation of this assumption is a bit subtle. Recall that bYcX.W

is the partial regression coefficient of Yc on X adjusted for W . In other words, it is the OLS estimate of βc
that we would get in a regression of Yc on X and W , if in fact we had the true W available to us. Since we
assume βc = 0, and since bYcX.W is the hypothetical OLS estimate of βc, we conclude bYcX.W ≈ 0. To be
even more precise, note that

bYcX.W = (X ′RWX)−1X ′RWYc (32)

= (X ′RWX)−1X ′RW (Xβc +Wαc + εc) (33)

= βc + (X ′RWX)−1X ′RW εc (34)

= (X ′RWX)−1X ′RW εc (35)

and that E
[
(X ′RWX)−1X ′RW εc

]
= 0.

The exact interpretation of (28) is subtle as well. We assume that bYcW.X ≈ αc, that α̂c ≈ αc, and thus
that bYcW.X ≈ α̂c. The first of these assumptions is analogous to our assumption that bYcX.W ≈ βc. The
second assumption is simply that our estimate of αc from step 2 (factor analysis) is in fact a good estimate
of αc. The composite assumption that bYcW.X ≈ α̂c is therefore an assumption that two different estimates
of αc — one hypothetical, and one obtainable — are approximately equal to one another. A different way
to view this assumption is as follows: bYcX.W = (W ′0W

′
0)−1W ′0Yc and α̂c = (Ŵ ′0Ŵ0)−1Ŵ ′0Yc. Therefore, if

Ŵ0 ≈ W0, bYcX.W ≈ α̂c. Indeed, if Ŵ0 is a particularly good estimate of W0, it may turn out that bYcX.W

and α̂c are closer to one another than either is to αc. In fact, since Ŵ0 is in general a better estimate of W0

than α̂ is of α (a consequence of the fact that n� m), it may often be the case in practice that bYcX.W and
α̂c are closer to one another than either is to αc. Finally, a minor technical point: A careful reader might
object that the unidentifiability of W and α expressed in (15) implies that Ŵ0 and W0 are not necessarily
approximately equal to one another, and likewise for α̂ and α. This is true — recall that the factorization

of Ŵ0α into Ŵ0 and α̂ is arbitrary. However, it can be shown that β̂(RUV−4) is independent of the choice of
factorization. See Section (A.1) in the SM.

A reformulation of β̂(RUV−4) that will prove useful later is:

β̂(RUV−4) = (X ′X)
−1
X ′(Y − Ŵ α̂). (36)
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To see that this is true, note that we have defined β̂(RUV−4) in (31) as the OLS coefficient of X in a regression
of Y on X and Ŵ . Note further that as a consequence of (22) and (23), α̂ is the OLS coefficient of Ŵ in a

regression of Y on X and Ŵ , and that therefore (X ′X)
−1
X ′(Y − Ŵ α̂) is also the OLS coefficient of X in a

regression of Y on X and Ŵ . Finally, note that (36) can itself be reformulated as

β̂(RUV−4) = bY X − b̂WX α̂ (37)

where b̂WX ≡ bYcX α̂
′
c (α̂cα̂

′
c)
−1

.

Finally, some additional notation. Let k̂ denote an estimator of k. In Section 3.6.6 we will explicitly define

k̂; until then we may think of k̂ as representing some arbitrary estimator. Let Ŵ
(K)
0 denote the estimate of

W0 that we would get in Step 2 if we instructed our factor analysis routine to produce an estimate of W

that was of dimension m×K. Similarly denote α̂(K), b̂
(K)
WX , Ŵ (K), etc. as the estimates of α, bWX , W , etc.

that we would subsequently produce if we were to use Ŵ
(K)
0 as our estimate of W0. Note that there are

three “k”s: k is the true parameter in the model; k̂ is an estimate of k; and K may be viewed either as a
parameter in an algorithm, or simply as an index variable.

3.4 Comparison of RUV-2 and RUV-4

In both RUV-2 and RUV-4, we estimate β̂ by first estimating W , and then regressing Y on X and Ŵ .
The difference between the methods is only in how we estimate W . In both methods, however, we use
factor analysis to estimate W , making special use of control genes to make R(W ) identifiable. It is therefore
natural to ask whether there are any substantive differences between the methods. Indeed there are, and
in this section we attempt to develop some intuition for these differences using a few simple examples and
illustrations.

Consider a very simple example in which m = 2 and k = 1. Note that in this specific example, W0 = X⊥.
Note in particular that we do not need any factor analysis to “discover” W0. Step 2 of RUV-4 is therefore
irrelevant in this example, but this does not seriously detract from the intuition we develop in the discussion
that follows.

Now, note that because m = 2, for any gene j the vector of expression levels across samples (i.e. Y?j)
is a two-dimensional vector and can be plotted as a point on a standard coordinate plane. X and W0 form
a natural set of basis vectors against which we can plot Y?j . Such plots of Y against X and W0 are very
helpful for developing an intuitive understanding of RUV-4; as we will see later, they are also a very useful
diagnostic tool.

Figure 1 decomposes such a plot for a single Y?j . A few simplifications are made for visual clarity. We

suppress the subscripts on Y?j , βj , etc. Far more importantly, we do not distinguish between W and Ŵ (or

between bWX and b̂WX). Although the distinction between W and Ŵ is an important one, including both

W and Ŵ (and bWX and b̂WX) in the figure introduces too much clutter. We leave the distinction to the
reader’s imagination.

In Figure 1 we see that Y?j is the vector sum of Xβj , Wαj , and ε?j . We decompose Y?j into a horizontal
component and a vertical component. The magnitude of the horizontal (W0) component gives us an estimate
of how much of the unwanted factor is present; i.e. it is our α̂j . This estimate is unbiased, and accurate
up to the error introduced by the horizontal component of ε?j . The vertical component of Y?j (i.e. bY?jX)
may be regarded as the “observed X-signal.” The magnitude of the “observed X-signal” is the sum of three
terms — the “true X-signal” βj , the magnitude of the vertical component of Wαj , and the magnitude of the
vertical component of ε?j . There is not much we can do about the vertical component of ε?j , but we can try
to adjust for the vertical component of Wαj . We can estimate the magnitude of the vertical component of

Wαj by b̂WX α̂j . We can thus subtract b̂WX α̂j from the “observed X-signal” bY?jX to produce our estimate

β̂j of βj . Note that in this way, we have just graphically re-derived formula (37) — however, we have left

out the important detail of where b̂WX comes from!
Figure 2 shows where b̂WX comes from. Instead of plotting Y?j for a single gene j, we plot all n = 1000

genes. Control genes are plotted as green. Genes for which βj 6= 0 are plotted as purple. All other genes
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Figure 1: A graphical depiction of RUV-4. See main text for commentary.

(i.e. genes for which βj = 0 but which are not specifically designated as control genes) are plotted as gray.

W is plotted as black. Ŵ is plotted as orange. For one arbitrary example gene (plotted as solid purple) we

show that β̂j is the vertical distance from Y?j to the dotted orange line spanned by Ŵ .

Now, b̂WX is simply the slope of the dotted orange line. Estimating bWX (and thus W ) therefore amounts

to choosing the slope of this “baseline” from which we measure β̂j . The RUV-4 strategy for choosing this
slope is to draw the regression line (without an intercept) through the control genes (green). That is why

b̂WX = bYcX α̂
′
c (α̂cα̂

′
c)
−1

.
We are now in a position to compare RUV-4 with RUV-2. Figure 3A compares the RUV-4 and RUV-2

estimators using the same example data as in Figure 2. To reduce clutter, we have removed the vector
representation of Ŵ (RUV−4), leaving only the orange dotted line to show its span. The brown dotted line is

the span of Ŵ (RUV−2). Just as β̂
(RUV−4)
j is the vertical distance from Y?j to the orange dotted line, β̂

(RUV−2)
j

is the vertical distance from Y?j to the brown dotted line. The difference between RUV-4 and RUV-2 is
essentially the difference between these two lines. We have seen that the orange dotted line is the regression
line through the control genes. To see where the brown dotted line comes from, recall that in RUV-2 we
estimate W by taking the first k eigenvectors of YcY

′
c . Since k = 1 in this example, Ŵ (RUV−2) is simply

the principal eigenvector of YcY
′
c . To assist in visualizing this, we have included in Figure 3A a green ellipse

that “summarizes” the structure of YcY
′
c . The major and minor axes of this ellipse are aligned with the

12



Figure 2: A graphical depiction of the estimation of bWX . See main text for commentary. The simulated
data were generated as follows: X = (0, 1)′; W = (1, 0.5)′; αj ∼ N(0, 1); εij ∼ N(0, 1

16 ); βj ∼ N(0, 9
4 ) for

1 ≤ j ≤ 50; βj = 0 for 51 ≤ j ≤ 1000.

first and second eigenvectors of YcY
′
c , and the lengths of the axes are proportional to the square roots of the

associated eigenvalues. As we see in the plot, the brown dotted line goes directly along the major axis of
this ellipse. Roughly speaking then, we may summarize the difference between RUV-2 and RUV-4 in the
terminology of Freedman et al. (2007) as this: where RUV-2 uses the SD line, RUV-4 uses the regression
line.1

In Figure 3A, there is little difference between β̂
(RUV−2)
j and β̂

(RUV−4)
j . Figure 3B, however, provides

an example in which the difference between β̂
(RUV−2)
j and β̂

(RUV−4)
j is quite substantial. The reason for the

difference between the two estimators in Figure 3B is that the unwanted variation is less pronounced. While
some unwanted variation from Wα is clearly present, most of the scatter in the plot is purely random, i.e.
comes from ε. Graphically, this can also be seen in the fact that the green ellipse is much more circular.

RUV-2 and RUV-4 are clearly different, but which is better? As we can see in Figure 3B, RUV-2 seems
to do a better job at accurately estimating W . On the other hand, it also appears that RUV-4 provides
what our intuition might suggest to be the better estimate of βj . This leads to a curious conclusion — that

1Strictly speaking this is not true, since the regression line and the SD line as defined in Freedman et al. (2007) both pass
through the point of averages. We, however, force our lines to pass through the origin.
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A B

Figure 3: A comparison of RUV-4 and RUV-2. See main text for commentary. The simulated data in B were
generated as follows: X = (0, 1)′; W = (1, 1)′; αj ∼ N(0, 9

64 ); εij ∼ N(0, 1
4 ); βj ∼ N(0, 9

4 ) for 1 ≤ j ≤ 50;
βj = 0 for 51 ≤ j ≤ 1000.

to get a better estimate of βj , it may actually be a good idea to mis-estimate W . This peculiar observation
is our first hint that the RUV-4 estimator may be more naturally formulated in the context of a different
(or at least more fully specified) model. Indeed, we will see later that the RUV-4 estimator does arise more
naturally in the context of a mixed effects model, in which α is explicitly modeled as random.

The differences between RUV-2 and RUV-4 are especially interesting when certain assumptions break
down. In particular, we will now provide some intuition to suggest that RUV-4 may outperform RUV-2
when the control genes are not properly specified, or when k is overestimated. We begin with an example
in which k is overestimated. The example is essentially the same as those in Figure 3, except that now in
truth k = 0. Nonetheless, we still proceed to estimate W as if we had estimated k̂ = 1. In other words,
Ŵ = Ŵ (1). Since in truth there is no unwanted variation (Wα) term to adjust for, we would ideally like that

no adjustment is made; we would like b̂WX to equal 0 and our dotted line to be horizontal. Figure 4 shows
three different simulations of this example. As we can see, RUV-4 does a much better job of providing no
adjustment when none is needed; the orange dotted lines are relatively horizontal, while the brown dotted
lines flap around wildly.

This example is particularly interesting in that it suggests that when performing RUV-4, we may in fact
pay only a small price in performance if we overestimate k. Indeed, in this particularly simple example it

is easy to see that E
[
b̂
(RUV−4)
WX

]
= 0, and that Var

[
b̂
(RUV−4)
WX

]
approaches 0 as the number of control genes

grows large. With a large enough set of control genes, there is effectively no harm at all in overestimating k.
Figure 5 makes this point using real data. In both the Alzheimer’s and Gender datasets, the performance of
RUV-2 drops substantially if K is too high. The performance of RUV-4 however remains good even for very
high K. Indeed RUV-4 performs at least as well as the unadjusted case (K = 0) for nearly every possible
K.

Finally, note that although the performance of RUV-4 does decrease somewhat if K is set too large, this
is not necessarily an indication that the performance of β̂(RUV−4) is decreasing with large K. Estimates of
the variances (i.e. the σ̂2

j ) may instead be to blame. Indeed, if we use standard methods instead of Limma
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Figure 4: A comparison of RUV-4 and RUV-2 when k has been overestimated. See main text for commentary.
The simulated data were generated as follows: X = (0, 1)′; εij ∼ N(0, 1

4 ); βj ∼ N(0, 9
4 ) for 1 ≤ j ≤ 50; βj = 0

for 51 ≤ j ≤ 1000.

(Smyth, 2004) to estimate σ̂2, the performance of RUV-4 is nearly as bad as the performance of RUV-2 for
large K (data not shown). The performance of RUV-4 as a whole depends on getting good estimates of both

β and σ2. We have demonstrated there is reason to believe that β̂(RUV−4) performs well even for very high
K. Getting good estimates of σ2 is a separate challenge. We will return to this point in Section 3.7.

We now consider an example in which the control genes are misspecified. Figure 6A shows an example
similar to those in Figure 3. 100 genes are (correctly) designated as control genes, and colored green. Figure
6B shows the same example dataset, but now 110 genes are designated as control genes — the same 100
as in Figure 6A, plus an additional 10 that have been incorrectly designated as control genes. These 10
misspecified control genes are plotted as purple circles filled in with a green dot.

As we can see, the inclusion of these 10 misspecified control genes does not substantially affect the RUV-4
estimate of Ŵ , but does affect the RUV-2 estimate. It is easy to see why the RUV-2 estimate is affected.
The additional scatter in the vertical direction introduced by the 10 misspecified control genes “pulls” the
principal eigenvector into a more vertical position. Why is the RUV-4 estimate not also affected? The
reason is that there is not a strong correlation between α and β. The misspecified control genes in this
example introduce additional vertical scatter, but they are not, for example, systematically too high on the
right (where α is positive) and too low on the left (where α is negative). The slope of the regression line is
therefore largely unaffected.

We see then that RUV-4 is relatively robust to misspecification of the control genes. As we show in
Section 3.5, RUV-4 does not require that βc = 0 but only that βcα

′
c = 0. This is clearly a much weaker

requirement of the control genes. It is also a fairly mysterious requirement that is hard to interpret and
nearly impossible to verify. Thus, the extent to which we can exploit this weaker requirement is limited. For
example, we may be tempted to reason loosely that W contains mainly technical factors (e.g. temperature
of the scanner, etc.), and that the effects of the technical factors (i.e. α) should not relate in any systematic
way to the effects of biological factors (i.e. β), and thus that βcα

′
c ≈ 0. Why, we might reason, should the

genes that are up-regulated by cancer also be the genes whose observations are biased upwards by an overly
warm scanner? And yet, this could very well be. For example, if the genes that are up-regulated by cancer
tend to be genes that are highly expressed, and genes whose observations are biased upwards by an overly
warm scanner also tend to be genes that are highly expressed, we would get just that scenario. Instead, we
view the relatively weak requirements placed on the control genes by RUV-4 not as something to exploit
per se, but rather as a comforting reassurance that even if we accidentally misspecify some control genes,
we may still get lucky and end up OK — or at least not as badly off as if we had used RUV-2.

Figures 6C and 6D provide an even starker example of the difference between RUV-2 and RUV-4 when
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Figure 5: Comparison of the performance of RUV-2 (brown cross) and RUV-4 (orange circle) as a function
of K in the Alzheimer’s and Gender studies. The horizontal axis is K. K = 0 corresponds to no adjustment.
For each K, genes were ranked by p-value; the vertical axis is the number of X / Y genes ranked in the top
60. Data were preprocessed. Housekeeping genes were used as control genes. p-values were computed using
Limma.

control genes are misspecified. As in Figure 6A, in Figure 6C there are 100 genes correctly designated as
control genes. Figure 6D shows the same example dataset as Figure 6C, but with an additional 10 misspecified
control genes. The difference between Figures 6C and 6D and Figures 6A and 6B is that in Figures 6C and
6D, k has been overestimated. As in Figure 5, k = 0 but K = 1. The combination of misspecified control
genes and an overestimated k is particularly damaging to RUV-2. Since there is no more unwanted variation,
the only remaining systematic variation in the control genes comes from the misspecified control genes —
and is in the X direction. As we can see, the slope of the brown dotted line in Figure 6D is much steeper
than in Figure 6C. In this example, RUV-2 clearly detects — and adjusts away — the biological factor of
interest. On the other hand, the slope of the orange dotted line is largely unaffected. RUV-4 is relatively
robust to misspecification of control genes and overestimation of k, even in combination.
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A B

C D

Figure 6: A comparison of RUV-4 and RUV-2 when control genes have been misspecified. See main text
for commentary. The simulated data in A and B were generated as follows: X = (0, 1)′; W = (1, 0.5)′;
αj ∼ N(0, 1

4 ); εij ∼ N(0, 1
4 ); βj ∼ N(0, 9

4 ) for 1 ≤ j ≤ 50; βj = 0 for 51 ≤ j ≤ 1000. The simulated data
in C and D were generated as follows: X = (0, 1)′; εij ∼ N(0, 1

4 ); βj ∼ N(0, 9
4 ) for 1 ≤ j ≤ 50; βj = 0 for

51 ≤ j ≤ 1000.
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3.5 Statistical Properties of RUV-4

We now explore the bias and variance of β̂. Calculating the bias and variance requires that we specify
whether α is to be regarded as fixed or random. Ideally we would like to analyze the bias and variance of β̂
under the assumption that α is fixed. However, this is difficult. Therefore we will occasionally regard α as
random. To make the discussion consistent, we will always formally treat α as if it is random, but condition
on α when appropriate.

Unfortunately, exact calculations of the bias and variance are difficult if not impossible for a variety of
reasons, so instead we focus on simplifications and approximations that are both illuminating and reasonably
accurate. One complication is that the statistical properties of β̂j depend on whether the jth gene is a control
gene or not. In what follows we limit our discussion to a gene jc̄ that is not a control gene.

Another complication when calculating the bias and variance of β̂ is that we must know the statistical
properties of Ŵ0 and α̂. These properties depend on the choice of factor analysis method — and are difficult
to calculate in any case. We therefore simplify the situation by making use of a hypothetical idealized factor
analysis method. Specifically, we suppose that Ŵ0 = W0 and thus that α̂ = (W ′0W0)

−1
W ′0Y . In other words,

we imagine we have access to an idealized factor analysis method that perfectly estimates W0; with this we
then additionally estimate α by OLS as specified in (23). This simplification is not entirely unrealistic; with
tens of thousands of genes, estimates of W0 can be quite good.

3.5.1 Results for fixed α

We begin by defining

ζ ≡ (X ′X)−1X ′ε

ξ ≡ (W ′0W0)
−1
W ′0ε

and noting that

ζjc̄ ∼ N(0, σ2
jc̄)

ξ?jc̄ ∼ N(0, σ2
jc̄I)

b̂WX ⊥⊥ ζjc̄
b̂WX ⊥⊥ ξ?jc̄
ζjc̄ ⊥⊥ ξ?jc̄ .

It follows that

β̂ = (X ′X)
−1
X ′
(
Y − Ŵ α̂

)
= (X ′X)

−1
X ′
[
Xβ + (W0 +XbWX)α+ ε−

(
W0 +Xb̂WX

)
α̂
]

= β + bWXα− b̂WX α̂+ ζ

= β + bWXα− b̂WX

[
α+ (W ′0W0)

−1
W ′0ε

]
+ ζ

= β +
(
bWX − b̂WX

)
α+ ζ − b̂WXξ

and that

E
[
β̂jc̄

]
= βjc̄ + E

[
bWX − b̂WX

]
E [α?jc̄ ]

Var
[
β̂jc̄

]
= Var [ζjc̄ ] + Var

[
b̂WX (α?jc̄ + ξ?jc̄)

]
= σ2

jc̄ + E
[
α′?jc̄

]
Var

[
b̂WX

]
E [α?jc̄ ] + E

[
b̂WX

]
Var [α?jc̄ + ξ?jc̄ ]E

[
b̂′WX

]
+

tr

(
Var

[
b̂WX

] 1
2

Var [α?jc̄ + ξ?jc̄ ] Var
[
b̂WX

] 1
2

)
.
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If we now condition on αjc̄ we find that

E
[
β̂jc̄

∣∣∣α?jc̄] = βjc̄ + E
[
bWX − b̂WX

]
α?jc̄

Var
[
β̂jc̄

∣∣∣α?jc̄] = σ2
jc̄ + α′?jc̄Var

[
b̂WX

]
α?jc̄ + σ2

jc̄E
[
b̂WX

]
E
[
b̂′WX

]
+ σ2

jc̄tr
(

Var
[
b̂WX

])
and conclude

Bias
[
β̂jc̄

∣∣∣α?jc̄] = E
[
bWX − b̂WX

]
α?jc̄ (38)

Var
[
β̂jc̄

∣∣∣α?jc̄] = σ2
jc̄

{
1 + E

[
b̂WX

]
E
[
b̂′WX

]}
+ σ2

jc̄tr
(

Var
[
b̂WX

])
+ α′?jc̄Var

[
b̂WX

]
α?jc̄ . (39)

Recall that these expressions do not take into account any bias or variance introduced by the estimation of
W0, but are otherwise exact.

3.5.2 Discussion: E
[
b̂WX

]
We now consider E

[
b̂WX

]
. As we will soon see, this leads us to an error-in-variables regression problem.

Begin by noting

b̂WX = bYcX α̂
′
c (α̂cα̂

′
c)
−1

(40)

= (X ′X)−1X ′Yc (αc + ξc)
′ [

(αc + ξc) (αc + ξc)
′]−1

(41)

= (βc + bWXαc + ζc) (αc + ξc)
′ [

(αc + ξc) (αc + ξc)
′]−1

(42)

= (bWXαc + ζc) (αc + ξc)
′ [

(αc + ξc) (αc + ξc)
′]−1

+βc (αc + ξc)
′ [

(αc + ξc) (αc + ξc)
′]−1

. (43)

If the control gene assumption βc = 0 holds, the second term vanishes, and we are left with

b̂WX = (bWXαc + ζc) (αc + ξc)
′ [

(αc + ξc) (αc + ξc)
′]−1

.

This would be the OLS estimator for the parameter bWX in a regression of the “response variable” bWXαc+ζc
on the “explanatory variable” αc, were it not for the fact that the “explanatory variable” αc has been
corrupted by the error term ξc.

3.5.3 Results for random α

Error-in-variables regression problems are difficult to analyze, and general expressions for the bias and

variance are not known. We are therefore unable to analyze E
[
b̂WX

]
in general. Instead, we attempt to

gain some insight into E
[
b̂WX

]
by considering a simple, specific example. Assume that for all control genes

α?jc ∼ N(0,Ψ2) (44)

σ2
jc = σ2

0 (45)

where σ2
0 is some fixed constant. Assume without a loss in generality that Ψ2 is diagonal. Assume also that

nc is large. Then

b̂WX = (bWXαc + ζc) (αc + ξc)
′ [

(αc + ξc) (αc + ξc)
′]−1

=

(
bWXαcα

′
c

nc
+
ζcα
′
c

nc
+
bWXαcξ

′
c

nc
+
ζcξ
′
c

nc

)(
αcα

′
c

nc
+
ξcα
′
c

nc
+
αcξ
′
c

nc
+
ξcξ
′
c

nc

)−1

≈ bWXΨ2
(
Ψ2 + σ2

0I
)−1

.
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We therefore see that the entries of b̂WX are asymptotically biased towards 0. In particular, the (1, l)th

entry of b̂WX (which we denote (b̂WX)l) is asymptotically biased by a factor of
ψ2

l

ψ2
l +σ2

0
, where ψ2

l is the lth

diagonal entry of Ψ2. This observation agrees with the intuition we developed in Section (3.4) — b̂WX is
biased towards 0, and the bias grows stronger as the unwanted variation becomes weaker.

Under assumptions (44) and (45) and the assumption that nc is large, we may simplify (38) as

Bias
[
β̂jc̄

∣∣∣α?jc̄] ≈ bWX

(
Ψ2/σ2

0 + I
)−1

α?jc̄ . (46)

Moreover, under the same assumptions Var
[
b̂WX

]
≈ 0, so we may we may simplify (39) as

Var
[
β̂jc̄

∣∣∣α?jc̄] ≈ σ2
jc̄

{
1 + E

[
b̂WX

]
E
[
b̂′WX

]}
(47)

≈ σ2
jc̄

(
1 + bWXΨ4

(
Ψ2 + σ2

0I
)−2

b′WX

)
. (48)

From this we conclude

MSE
[
β̂jc̄

∣∣∣α?jc̄] ≈ σ2
jc̄ + bWX

[(
Ψ2/σ2

0 + I
)−1

α?jc̄α
′
?jc̄

(
Ψ2/σ2

0 + I
)−1

+ σ2
jc̄Ψ4

(
Ψ2 + σ2

0I
)−2
]
b′WX .(49)

This is a complicated expression and somewhat difficult to interpret. It is clear that, unless bWX = 0, the
MSE can be arbitrarily large depending on the value of α?jc̄ . However, it is not clear how large the MSE
might be in a “typical” case. To investigate this question, we will now assume

α?jc̄ ∼ N(0,Ψ2) (50)

σ2
jc̄ = σ2

0 (51)

just as we did for the control genes. Under these assumptions

MSE
[
β̂j

]
≈ σ2

0 + bWX

[(
Ψ2/σ2

0 + I
)−1

Ψ2
(
Ψ2/σ2

0 + I
)−1

+ σ2
0Ψ4

(
Ψ2 + σ2

0I
)−2
]
b′WX (52)

= σ2
0 + bWX

(
Ψ2/σ2

0 + I
)−2 (

Ψ2 + Ψ4/σ2
0

)
b′WX (53)

= σ2
0 + bWXΨ2

(
Ψ2/σ2

0 + I
)−1

b′WX (54)

= σ2
0

[
1 + bWXΨ2

(
Ψ2 + σ2

0I
)−1

b′WX

]
. (55)

It may not be immediately obvious whether (55) is “good” or “bad.” For sake of comparison, suppose

we knew W , and could simply estimate β by OLS. Designate this hypothetical estimator by β̂(OLS). Now,
β̂(OLS) is unbiased, so the MSE is simply the variance:

MSE
[
β̂

(OLS)
j

]
= σ2

0 (1 + bWXb
′
WX) . (56)

(See Section A.2 for a proof.) Thus, under assumptions (44), (45), (50), (51) and the assumption that nc is

large, we see that MSE
[
β̂

(RUV−4)
j

]
< MSE

[
β̂

(OLS)
j

]
, at least up to approximation:

MSE
[
β̂

(OLS)
j

]
−MSE

[
β̂

(RUV−4)
j

]
≈ σ2

0bWX

[
I −Ψ2

(
Ψ2 + σ2

0I
)−1
]
b′WX (57)

= σ2
0

k∑
l=1

σ2
0

ψ2
l + σ2

0

(bWX)2
1l. (58)
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3.5.4 Discussion: Random or Fixed?

In the previous section we analyzed the RUV-4 estimator under the assumption that α is random. This was
motivated by the fact that it is very difficult to analyze the RUV-4 estimator under the assumption that
α is fixed. Regarding α as random allowed us to develop some intuition about the behavior of the RUV-4
estimator that we might not have been able to develop otherwise. We found that under our assumptions
the RUV-4 estimator actually has a smaller MSE than the (hypothetical) OLS estimator. This result may
be surprising at first, but can be easily understood as RUV-4 exploiting the assumption that the α?jc̄ and
the α?jc are drawn from the same normal distribution. The conclusion is that RUV-4 has the potential to
outperform OLS. For it to do so, however, the control genes must satisfy an additional criterion. The control
genes must not only be uninfluenced by X yet influenced by W , but they must also be influenced by W in
much the same way as all of the other genes are. The α?jc must be “representative” of the α?jc̄ .

In Section 3.7 we will reformulate the RUV-4 estimator. Under this reformulation, we will see that the
RUV-4 estimator arises very naturally from a model in which α is random. In Section 5 we will observe that
RUV-4 works very well when applied to real datasets.

A natural question to ask, then, is whether we should regard α as random. This question does not have
an easy answer. The RUV model is highly artificial. We regard the model primarily as a source of inspiration
for new methods; the value of these methods must then be established independently, by testing how well
they perform on real data. In this context, it may be wise to regard α as random. RUV-4 is an effective
method that arises naturally from a model in which α is random. Regarding α as random may ultimately
inspire ideas for even more effective methods.

On the other hand, neither the effectiveness nor the “naturalness” of an estimator can ultimately justify
the model from which the estimator arose. Moreover, despite the fact the RUV model is artificial, there
is an obvious interest in keeping the model as realistic as feasible. In this context, it seems wise to regard
α as fixed. Random effects seem implausible; we are unaware of any physical argument that would justify
regarding α as random, let alone the distributional assumptions we have imposed on α. For example, if α4,25

is the effect of temperature on the observed expression level of the 25th probe, should we not expect α4,25

to be dictated by the physical and chemical properties of the 25th probe, and thus to be constant from one
experiment to the next?

Instead of regarding α as random, it may be better to regard α as fixed with some (non-random) distri-
bution that can often be reasonably approximated in practice by a normal distribution. The distinction may
seem pedantic, but we believe regarding α in this manner is useful. For example, it serves as a reminder that
some αij may be serious outliers, and that these outliers may reveal interesting information upon further
investigation. It also serves as a reminder that different genes may have different biases. It may be that
β̂ is consistently biased one way or another for genes with high GC content, or for genes that are highly
expressed. If these biases are consistent from one experiment to the next, they may lead to inaccurate
conclusions, despite the replication. We believe it is helpful to keep such considerations in mind.

To summarize, there is no clear answer as to whether α should be regarded as fixed or random. Both
points of view are useful in their own way. Moreover, a decisive answer may not be necessary. In Section 3.8
we will provide still another framework for understanding RUV-4 that partly sidesteps the issue. Finally,
and most importantly, we reiterate that we have seen that the superior performance of RUV-4 relies on the
α?jc being “representative” of the α?jc̄ . This clearly has important practical implications for choosing a set
of control genes.

3.6 Practical considerations for RUV-4

We now consider several topics including the estimation of σ2, Var
[
β̂jc̄

∣∣∣α?jc̄] and k; the handling of covari-

ates; the consequences of misspecified control genes; and the consequences of under- or over-estimating k.
We continue to formally treat α as if it is random, conditioning when appropriate.
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3.6.1 Estimating σ2 and Var
[
β̂jc̄

∣∣∣α?jc̄]
Suppose we want to estimate σ2

j . If we disregard the fact that Ŵ is an estimate and simply treat it as W ,

the “standard” estimate for σ2
j is:

σ̂2
j ≡ 1

m− k̂ − 1

m∑
i=1

(
Yij −Xβ̂j − Ŵ α̂?j

)2

(59)

=
1

m− k̂ − 1

(
R(X|Ŵ )Y?j

)′ (
R(X|Ŵ )Y?j

)
. (60)

R(X|Ŵ ) depends only on the column space of (X|Ŵ ), and the columns of X and Ŵ0 together form a basis

of R
[
(X|Ŵ )

]
, so R(X|Ŵ ) = R(X|Ŵ0). Thus σ̂2

j is independent of our estimate of bWX . Indeed, if Ŵ0 = W0

then R(X|Ŵ ) = R(X|W ) and σ̂2
j is identical to the “standard” estimate of σ2

j that we would get if W were
known.

Now suppose we want to estimate Var
[
β̂jc̄

∣∣∣α?jc̄]. Recall that when nc is large,

Var
[
β̂jc̄

∣∣∣α?jc̄] ≈ σ2
jc̄

{
1 + E

[
b̂WX

]
E
[
b̂′WX

]}
(61)

≈ σ2
jc̄

(
1 + b̂WX b̂

′
WX

)
. (62)

Given our estimate σ̂2
jc̄

of σ2
jc̄

, we may therefore estimate Var
[
β̂jc̄

∣∣∣α?jc̄] as

V̂ar
[
β̂jc̄

∣∣∣α?jc̄] ≡ σ̂2
jc̄

(
1 + b̂WX b̂

′
WX

)
. (63)

This is a particularly appealing result since (63) is equivalent to the standard estimate of Var
[
β̂jc̄

∣∣∣α?jc̄] that

we would calculate if we simply treated Ŵ as W and ran a standard regression (see Section A.2 of the SM
for proof).

To summarize, if nc is large and Ŵ0 ≈ W0 then plugging in Ŵ for W and and estimating σ2 and

Var
[
β̂jc̄

∣∣∣α?jc̄] in the standard way will provide satisfactory results. Thus, once we have computed Ŵ using

RUV-4, standard methods and software can be used to estimate variances, calculate t statistics and p-values,
etc. However, we should note that even under these “ideal” conditions, p-values computed in the standard
way are not necessarily reliable, since β̂jc̄ is biased (conditional on α?jc̄). Even more importantly, we note
that a major implicit assumption in our analysis is that we have properly estimated k. Serious problems may
occur if we mis-estimate k. See Section 3.6.5. Finally, note that strictly speaking (63) is only appropriate
for non-control genes. In practice however, we apply it to the control genes as well.

3.6.2 Handling Covariates, and the Case p > 1

In (7) we made the simplifying assumptions that there is no Z term and that p = 1. We now consider what
to do when this is not true. We will first consider the case that p = 1 but that observed covariates Z are
available. We will then consider the case that p > 1. We find that both cases can be reduced to the case
that there is no Z term and p = 1. However, there is more than one way to reduce to the case that there is
no Z term and p = 1, and it is not always clear which way is best.

Suppose observed covariates Z are available. There are two options. The first is to simply ignore them.
RUV-4 can then estimate these unwanted factors and incorporate them into Ŵ just as it would any other
unwanted factors. This is often the best option. Gagnon-Bartsch and Speed (2012) argue that the observed
covariates that one has available are often only proxies for the “true” unwanted factors. For example, “batch”
itself does not cause “batch effects.” Batch effects are the result of other factors (e.g. temperature) that are
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correlated with batch. Compared to the proxy variables in Z, factor analysis may provide a better estimate
of the “true” unwanted factors.

The second option is to explicitly adjust for Z. Multiplying both sides of (1) by Z ′⊥ yields

Z ′⊥Y = (Z ′⊥X)β + (Z ′⊥W )α+ Z ′⊥ε. (64)

Note that
Z ′⊥ε?j ∼ N(0, σ2

j I(m−q)×(m−q)).

We may therefore simply use Z ′⊥Y and Z ′⊥X instead of Y and X, and proceed as we would in the case that
there is no Z term. Note that we have effectively “projected” Z away. However, strictly speaking this is not
a “projection” in the technical sense, since we premultiply by Z⊥ instead of by RZ ; instead of mapping the
data from Rm to a m− q dimensional subspace of Rm, we map the data from Rm to Rm−q.

When should we explicitly adjust for Z and when should we just ignore it? A few observations are
relevant. One such observation is that a poor proxy variable can create more problems than it solves.
Assume that in truth

Y = Xβ + Zγ + ε (65)

but that we regress Y on X and Z̃, where Z̃ is correlated with but not equal to Z. It is possible that the bias
of β̂ in this case is even larger than if we had simply regressed Y on X and ignored Z̃. This is of particular
concern if Z̃ is highly correlated with X. Another observation is that by explicitly including a Z term, we
are effectively treating γ as fixed. By letting RUV-4 incorporate Z into W and γ into α, we are effectively
treating γ as random. By explicitly including a Z term, we may therefore lose some of the performance
advantage offered by RUV-4. A final observation is that explicitly adjusting for Z may hinder our ability to
estimate W and α. If W and Z are correlated, projecting away Z will also project away some of W . This will
make the estimation of W and α more difficult. If the factors contained in Z are less important than those
contained in W (i.e Zγ is “smaller” than Wα), it may be better to ignore Z for sake of a better estimate
of Wα. A rather extreme example may help make this point more clear. Suppose there are m − 1 known
covariates. Suppose that none of these covariates has a strong influence on Y , i.e. γ is “small.” Adjusting
for these m−1 covariates may remove the relatively minor bias of the Zγ term, but it will also leave us with
only one dimension for Ŵ ! Taken together, these observations tend to suggest that Z should generally be
ignored.

However, there is an important exception. Consider the case that γ is sparse. Suppose that we leave
Z out of the model. Since only a few genes exhibit the effects of Z, the factor analysis routine may not
properly estimate Z and incorporate it into W . This may cause problems. The problems are somewhat
different depending on whether or not X is correlated with Z. We discuss both cases in turn.

Suppose first that Z is strongly correlated with X. Suppose that gene j is one of the few genes such that
γj 6= 0. If we do not explicitly adjust for Z, β̂j may be strongly biased. If in truth βj = 0, we may falsely
conclude that βj 6= 0. In other words, we may be led to false discoveries. On the other hand, suppose that
in truth βj 6= 0. We would likely correctly conclude that βj 6= 0 (barring a very unfortunate cancellation

of the Xβj and Zγj terms). However, β̂j would still be biased, and perhaps even the sign would be wrong.
This would be quite unfortunate. Since gene j is in fact differentially expressed with respect to X, gene j
— and the actual value of βj — is presumably of substantial scientific interest.

Suppose now that Z is not strongly correlated with X. We do not need to worry that omitting Z from
the model will seriously bias βj . However, the estimate σ̂2

j of σ2
j may be inflated, as the Zγ will still be

present in the residuals. If in truth βj = 0, an inflated σ̂2
j is not of much concern. However, if in truth

βj 6= 0, an inflated σ̂2
j will lead to a drop in power. We might fail to discover that gene j is differentially

expressed with respect to X.
Nonetheless, our conclusion is not simply “if γ is sparse, include Z.” A better motto might be “if γ is

sparse, proceed with caution.” If Z suffers from measurement error, or is simply a proxy for some other
variable, it may still be best to leave Z out. Moreover, our discussion so far has been far from complete.
Additional complications arise, for example, if Z is correlated with W . A complete discussion is beyond the
scope of this paper. On balance, if Z is important, if Z is well-measured, if q (the number of columns of Z)
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is small, and if γ is sparse, it is probably best to include Z. This is especially true if we believe that both
β and γ are sparse, and that the few genes for which β is non-zero are also the few genes for which γ is
non-zero. Still, this is only a rule of thumb. Repeating the analysis both with and without Z and inspecting
the results seems reasonable.

We now consider the case that p > 1. There are three ways to handle this case. However, two of the
three ways turn out to be equivalent, so effectively there are only two ways to handle the case p > 1. We
now describe the three possibilities. The first strategy to handle the case p > 1 is to proceed with the RUV-4
algorithm exactly as described in Section 3.3.1; nothing in the procedure requires that p = 1. Of course, we
do require that p < m. The second strategy to handle the case p > 1 is to run RUV-4 p times. Each time we
redefine X to be just a single column of the original X, and ignore the other columns. The third strategy
to handle the case p > 1 is to run RUV-4 p times. Each time we redefine X to be just a single column of
the original X, and move the remaining columns of X to Z; we then explicitly adjust for this “Z.”

It turns out that the first and the third strategies are equivalent; β̂, σ̂2, p-values, etc. all are identical.
We may therefore limit our attention to the second and third strategies. In both strategies, we run RUV-4
p times. Each time, we select a single column of X to be the factor of interest. Denote this column of X
by X̃. The remaining columns of X play the role of observed covariates. Denote these columns by Z̃ (no
relation to the Z̃ mentioned above). The difference between strategies two and three is whether or not we
explicitly adjust for Z̃.

Which strategy is better? Once again, there is no clear answer. All of the considerations regarding
whether or not to include Z continue to apply. However, there are additional complications as well. For
example, we have assumed that βc = 0. It follows that γ̃ = 0. Thus, even if γ̃ is not sparse in general, it is
“sparse” for the control genes. If we leave Z̃ out of the model, RUV-4 may not properly incorporate Z̃ into
W . This is a strong argument for including Z̃. A second complication is that, in cases in which p > 1, it is
common in practice that the columns of X are in some way “related.” For example, several columns of X
may simply be dummy variables representing different levels of a single factor. As a result, if βlj is non-zero
for one value of l, we might expect that βl′j is non-zero for several other values of l′ as well — even when

β as a whole is sparse. Thus, the genes for which β̃ is non-zero will also tend to be the genes for which γ̃
is non-zero. This too may be an argument for including Z̃. On balance, if p is small, it is probably best to
include Z̃. Once again, however, the most prudent strategy may simply be to run the analysis both with
and without Z̃, and carefully inspect the results.

3.6.3 Violation of the control gene assumption

We now consider what happens when certain assumptions are violated. In particular, we will first con-
sider what happens when βc 6= 0. Later we will consider what happens when K 6= k. Suppose βc 6= 0.
By (43) we see that this will result in additional conditional bias to b̂WX . The amount of this bias is

E
[
βc (αc + ξc)

′ [
(αc + ξc) (αc + ξc)

′]−1
∣∣∣αc]. In general, depending on βc and αc, this bias may be arbitrar-

ily bad. However, we observe that if β′c is approximately orthogonal to (αc + ξc)
′

then the bias will be
approximately 0. With high probability ξc is approximately orthogonal to βc. Therefore, we should not
expect violations of the control gene assumption to be problematic unless βcα

′
c is appreciably non-zero.

More formally, suppose βcα
′
c = 0. Then

βc (αc + ξc)
′ [

(αc + ξc) (αc + ξc)
′]−1

= βcPβ′cξ
′
c

[(
αc + ξcPβ′c + ξcRβ′c

) (
α′c + Pβ′cξ

′
c +Rβ′cξ

′
c

)]−1
(66)

= βcPβ′cξ
′
c

[
ξcPβ′cPβ′cξ

′
c +

(
αc + ξcRβ′c

) (
α′c +Rβ′cξ

′
c

)]−1
. (67)

Now, the joint distribution of
(
ξcPβ′c , ξcRβ′c

)
is equal to the joint distribution of

(
−ξcPβ′c , ξcRβ′c

)
, so

E
{
βcPβ′cξ

′
c

[
ξcPβ′cPβ′cξ

′
c +

(
αc + ξcRβ′c

) (
α′c +Rβ′cξ

′
c

)]−1
∣∣∣αc}

= E
{
βc
(
−Pβ′cξ

′
c

) [(
−ξcPβ′c

) (
−Pβ′cξ

′
c

)
+
(
αc + ξcRβ′c

) (
α′c +Rβ′cξ

′
c

)]−1
∣∣∣αc} (68)

= −E
{
βcPβ′cξ

′
c

[
ξcPβ′cPβ′cξ

′
c +

(
αc + ξcRβ′c

) (
α′c +Rβ′cξ

′
c

)]−1
∣∣∣αc} (69)
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and therefore E
{
βc (αc + ξc)

′ [
(αc + ξc) (αc + ξc)

′]−1
∣∣∣αc} = 0. No bias is introduced by a breakdown of the

control gene assumption in which βc 6= 0 but βcα
′
c = 0.

3.6.4 Misspecification of k: Consequences for β̂

We now consider what happens when K 6= k. There are two possible cases: K < k and K > k. First
consider the case that K < k. We may be tempted to regard Ŵ (K) as simply a “reduced” version of Ŵ (k)

from which we have dropped k −K columns. In other words, we might guess that R
(
Ŵ (K)

)
⊂ R

(
Ŵ (k)

)
.

Since omitting terms from a regression model generally leads to biased estimates, we might therefore reason
that setting K < k will lead to (additional) bias in our estimate of β. This is only partially correct.

Setting K < k does bias β̂. However, it is not generally true that R
(
Ŵ (K)

)
⊂ R

(
Ŵ (k)

)
. One trivial

reason for this is that, depending on our choice of factor analysis routine, it may not even be the case that

R
(
Ŵ0

(K)
)
⊂ R

(
Ŵ0

(k)
)

. However, suppose that indeed R
(
Ŵ0

(K)
)
⊂ R

(
Ŵ0

(k)
)

. It does not follow that

R
(
Ŵ (K)

)
⊂ R

(
Ŵ (k)

)
. Recall that we estimate bWX by regressing bYcX on α̂c. However, the rows of α̂c

are not in general orthogonal. Dropping some rows from α̂c therefore leads to a different estimate bWX , even
for the rows that remain. The conclusion then is that setting K < k biases β̂, but quantifying the bias is
difficult. Nonetheless, by considering the limiting case that K = 0 (i.e. no adjustment), we may reason that
the bias is potentially substantial. The simulations of Section 4 support this conclusion.

We now consider the case that K > k. We focus on the “worst case” in which K = m−1, but our results
are clearly relevant whenever k < K < m − 1. Note that when K = m − 1 there is no role for the factor

analysis in Step 2; Ŵ
(m−1)
0 is simply equal to X⊥. Let W1 ≡ (X|W0)⊥. Assume without loss of generality

that Ŵ
(m−1)
0 = (W0|W1). Now define

W̃ ≡ (W |W1) (70)

α̃ ≡
(

α
0m−k−1×n

)
. (71)

Observe that bW̃X = (bWX |0) and W̃ α̃ = Wα. We may therefore regard W̃ α̃ as a reparameterization of

Wα. Under this reparameterization, Ŵ
(m−1)
0 is a perfect estimator of W̃0. Therefore, expressions (38) and

(39) apply exactly. To analyze the bias and variance under assumptions (44), (45), and the assumption that
nc is large, first define

Ψ̃2 ≡
(

Ψ2 0k×m−k−1

0m−k−1×k 0m−k−1×m−k−1

)
. (72)

By (46)

Bias
[
β̂

(m−1)
jc̄

∣∣∣α̃?jc̄] ≈ bW̃X

(
Ψ̃2/σ2

0 + I
)−1

α̃?jc̄ (73)

= bWX

(
Ψ2/σ2

0 + I
)−1

α?jc̄ (74)

≈ Bias
[
β̂

(k)
jc̄

∣∣∣α?jc̄] (75)

and by (48)

Var
[
β̂

(m−1)
jc̄

∣∣∣α̃?jc̄] ≈ σ2
jc̄

(
1 + bW̃XΨ̃4

(
Ψ̃2 + σ2

0I
)−2

b′
W̃X

)
(76)

= σ2
jc̄

(
1 + bWXΨ4

(
Ψ2 + σ2

0I
)−2

b′WX

)
(77)

≈ Var
[
β̂

(k)
jc̄

∣∣∣α?jc̄] . (78)
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Thus, up to approximation, the bias and variance of β̂
(m−1)
jc̄

and β̂
(k)
jc̄

are the same; nothing is lost by
over-estimating k. It is useful to recall at this point what approximations are being made that justify this
conclusion. The approximations are based on the assumption that nc is large. The approximations may be
made arbitrarily good by a sufficiently large nc. If nc is not sufficiently large, we may in fact pay a substantial

price by overestimating k. In particular, Var
[
b̂WX

]
may no longer be negligible, and the σ2

jc̄
tr
(

Var
[
b̂WX

])
and α′?jc̄Var

[
b̂WX

]
α?jc̄ terms of (39) may become important. We return to this point in Section 3.9.1.

3.6.5 Misspecification of k: Consequences for σ̂2

In practice, estimating σ2 is much more complicated than Section 3.6.1 suggests. The difficulty arises in
the estimation of k. The performance of σ̂2

j depends critically on a proper estimation of k. Unlike β̂j , σ̂
2
j

performs poorly both when k has been underestimated and when k has been overestimated. Therefore we
cannot simply dodge the issue by systematically over- or underestimating k as we can with β̂.

We will not analyze the statistical properties of σ̂2
j in any detail. Roughly speaking, however, we may

summarize the main issues as follows: Firstly, overestimating k increases the variance of σ̂2. This is simply
because σ2 must be estimated using fewer degrees of freedom. Moreover, overestimating k biases σ̂2 down-
wards on average. This is because the factor analysis routine in Step 2 will presumably allocate the extra
K − k dimensions of Ŵ0 to the (random) dimensions in which ε shows the greatest variation. The residuals
will therefore be too small. Finally, underestimating k biases σ̂2 upwards on average, possibly substantially.
This is because some terms of Wα are not effectively adjusted away. Some unwanted variation remains in
the residuals, and this inflates σ̂2.

To see that underestimating k biases σ̂2 upwards on average and overestimating k biases σ̂2 downwards
on average it is helpful to consider the specific case in which we use the singular value decomposition (SVD)
as our factor analysis method. Let UDV ′ be the singular value decomposition of RXY , i.e. RXY = UDV ′

where U and V are orthonormal matrices and D is a diagonal matrix with decreasing diagonal entries denoted

by di. Ŵ
(K)
0 is defined to be the first K columns of U . Let σ̄2 ≡

∑n
j=1 σ

2
j denote the average gene variance.

Let σ̇2 ≡
∑n
j=1 σ̂

2
j denote the estimated average variance. The estimated average variance as a function of

K is therefore

(
σ̇2
)(K)

=
1

n

n∑
j=1

(
σ̂2
j

)(K)
(79)

=
1

n

n∑
j=1

1

m−K − 1

(
R(

X|Ŵ (K)
0

)Y?j
)′(

R(
X|Ŵ (K)

0

)Y?j
)

(80)

=
1

n(m−K − 1)

n∑
j=1

(
R
Ŵ

(K)
0

RXY?j

)′ (
R
Ŵ

(K)
0

RXY?j

)
(81)

=
1

n(m−K − 1)

n∑
j=1

Vj?DU
′R
Ŵ

(K)
0

UDV ′j? (82)

=
1

n(m−K − 1)

n∑
j=1

m∑
i=K+1

V 2
jid

2
i (83)

=
1

n(m−K − 1)

m∑
i=K+1

d2
i . (84)

Thus
(
σ̇2
)(K)

is decreasing in K, since the di are decreasing in i. Since σ̇2 is an unbiased estimator of σ̄2

when Ŵ0 = W0, it follows that if Ŵ
(k)
0 = W0,

(
σ̇2
)(K)

will be biased upwards when K < k and biased

downwards when K > k. Of course, in practice, it is not true that Ŵ
(k)
0 = W0 but rather that Ŵ

(k)
0 ≈ W0,
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so these results hold only approximately. A full discussion is beyond the scope of this paper. Nonetheless,
we do feel that the above argument is useful for the intuition it provides. Moreover, in both simulation
experiments and the analysis of real data, we have found that the conclusions tend to hold — when K is
too large, σ̂2 is too small; when K is too small, σ̂2 is too large.

3.6.6 Estimating k

As Sections 3.6.4 and 3.6.4 suggest, a good choice ofK is critical to the performance of RUV-4. Unfortunately,
selecting an appropriate K is difficult. It is not even clear that the optimal K for β̂ is the same as the optimal
K for σ̂2. (Indeed, we have had success estimating β̂ and σ̂2 using different values of K, but we do not
discuss this approach in this paper.)

As with RUV-2, we feel the best way to select K for RUV-4 is to run the analysis for several values of
K and choose the “best” one based on p-value histograms, RLE plots, the rankings of positive controls, and
other quality assessments Gagnon-Bartsch and Speed (2012). We are unaware of any good algorithmic way
to estimate k, and we feel there is an important role for human judgment.

Nonetheless, this hands-on approach is not always feasible or desirable. For example, in Section 4 we
present the results of simulation experiments in which RUV-4 was run thousands of times. Estimating k
“by hand” thousands of times is not feasible. Therefore we will now present a method to estimate k that we
have found to perform moderately well in many situations.

Our method for estimating k relies on control genes. The key insight is that if RUV-4 works as intended

E
[
β̂c

∣∣∣α] ≈ 0 (85)

and thus

β̂2
jc ∼̇ Var

[
β̂jc

∣∣∣α]χ2
1. (86)

The symbol ∼̇ means “is approximately distributed as.” Unfortunately, the quantity Var
[
β̂jc

∣∣∣α] is difficult

to analyze. We therefore begin by considering a gene j0 that is not a designated control gene but nonetheless
such that βj0 = 0.

Assume (44), (45), and that nc is large. Assume that RUV-4 works as intended so that E
[
β̂j0

∣∣∣α] ≈ 0.

By (62)

Var
[
β̂j0

∣∣∣α] ≈ σ2
j0

(
1 + b̂WX b̂

′
WX

)
(87)

and therefore

s2
j0 ≡

β̂2
j0

1 + b̂WX b̂′WX

∼̇ σ2
j0χ

2
1. (88)

As in Section (3.6.4), suppose that Ŵ
(m−1)
0 = (W0|W1). Assume that W1, while otherwise arbitrary, is fixed.

Then for all i such that k < i < m and all j such that 1 ≤ j ≤ n,

s2
ij ≡

(
α̂

(m−1)
ij

)2

∼ σ2
jχ

2
1. (89)

Now, for 1 ≤ i < m consider the quantity

r
(0)
i ≡ medianj0

√
s2
ij0
/s2
j0
. (90)

This quantity gives some measure of the scale of the ith row of α̂(m−1) relative to the scale of ε. In light of

(88) and (89), we would expect that r
(0)
i ≈ 1 for k < i < m. We can exploit this fact to estimate k. For

example, we could estimate k by #
{
r

(0)
i > C

}
, where C > 1 is some cutoff value.
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In practice, we will want to designate every gene known to be uninfluenced by X as a control gene. Thus
we should not expect to have available any genes j0 as described above. Instead, we will just use the control
genes. However, the statistical properties of the control genes are different than the statistical properties
of the other genes. In particular, since we estimate bWX by regressing bYcX on α̂c, it is not true that b̂WX

is independent of ζjc and ξ?jc . The practical consequence of this is that b̂WX is overfitted to the control

genes, and as a result the variance of β̂jc tends to be somewhat less than σ2
jc

(
1 + b̂WX b̂

′
WX

)
. Note that β̂c

may be regarded as the residuals of a regression of bYcX on α̂c. In a “standard” regression, the residuals are
“too small” by a factor of

√
(N − P )/N , where N is the number of observations and P is the number of

regressors. This inspires us to define:

ri ≡ medianjc

√(
nc −K0

nc

)
s2
ijc

s2
jc

(91)

where s2
jc

is defined analogously to (88), and where K0 is the value of K used in the calculation of s2
jc

.2 This
is somewhat ad hoc. The regression of bYcX on α̂c is not a “standard” regression. In particular, we have
ignored the fact that different genes have different variances. Nonetheless, we now define our estimate of k
as

k̂(C) ≡ # {ri > C} . (92)

We must choose a value for C. In choosing a value for C we consider the fact that it is not actually true

that Ŵ
(m−1)
0 = (W0|W1) where W1 is some arbitrary but fixed matrix. In particular, we may not take W1 to

be fixed. Its parameterization is random, and determined by the factor analysis routine in Step 2 of RUV-4.
This did not matter in Section 3.6.4 because the parameterization of Ŵ0 was irrelevant. Here, however, the
parameterization of Ŵ0 does matter; ri is defined in terms of the individual columns of Ŵ0. Assume that
we use the SVD as the method of factor analysis in Step 2 of RUV-4. In this case, we might expect that

Ŵ
(k)
0 ≈W0. Again, this is only approximately correct, and a full discussion is beyond the scope of this paper.

For sake of argument, however, simply assume that Ŵ
(k)
0 = W0. We may then write Ŵ

(m−1)
0 = (W0|W̃1),

implicitly defining W̃1. The problem is that W̃1 is not fixed; it has been rotated so that the most variation
is captured by first column. As a result, we should not expect that rk+1 ≈ 1 but rather that rk+1 > 1. To
fix this problem, we set C > 1. We choose to set C = E(η) where η is the principal singular value of an
m×n matrix of independent N(0, 1

n ) random variables. In the analyses of this paper we simply approximate
C by simulation. A far more computationally efficient approach would be to approximate C using the fact
that the distribution of η2 is approximately Tracy-Widom. This approximation can be very good. See, for
example, Ma (2012).

3.7 The Inverse Method

In Section 3.6.4 we saw that overestimating k does not seriously degrade the performance of β̂ as long as a
sufficient number of control genes are available. In Section 3.6.5 we saw that overestimating (or underesti-
mating) k does seriously degrade the performance of σ̂2. We are left with a dilemma. A good estimate of β
is readily available — just set K as high as it can go, to m− 1 — but we are unable to estimate σ2. To solve
this dilemma we will introduce a novel method for estimating σ2, which we name the “inverse method.” We
introduce the abstract method in Section 3.7.1. In Section 3.7.2 we apply the inverse method to RUV-4.
In Sections 3.7.3 and 3.7.5 we reformulate our estimators. These reformulations are of both theoretical and
practical interest. We provide discussions in Sections 3.7.4 and 3.7.6.

3.7.1 The Inverse Method

We now present the inverse method in the abstract, followed by a simple example. The method is so simple
as to seem trivial. However, as we will eventually see, properly applied it can be quite powerful. Note that

2The obvious question now is how to choose K0. We do not explore this question in detail, but note that one simple strategy
is to simply let K0 vary with i and set K0 = i.
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all of the notation used in this section is specific to this section only.
Let θ̂U be a family of estimators indexed by U . What θ̂U estimates need not be relevant. Assume that

there exist some (possibly random) values of U , denoted U1, U2, ..., Ui, ..., such that

E
[
θ̂Ui

∣∣∣Ui] = 0. (93)

Assume also that

Var
[
θ̂Ui

∣∣∣Ui] = fUi(σ
2) (94)

where σ2 is some unknown parameter and fUi
is some function. Combining (93) and (94) gives

E
[
θ̂2
Ui

∣∣∣Ui] = fUi(σ
2). (95)

If the fUi
are linear functions of σ2, then

f−1
Ui

(
E
[
θ̂2
Ui

∣∣∣Ui]) = σ2 (96)

E
[
f−1
Ui

(
θ̂2
Ui

)∣∣∣Ui] = σ2 (97)

where f−1
Ui

is the functional inverse of fUi .
If such Ui are available, if the functions fUi are known, and if we have the data necessary to compute

θ̂Ui , we are able to compute f−1
Ui

(
θ̂2
Ui

)
. We may regard each of these f−1

Ui

(
θ̂2
Ui

)
as estimates of σ2. We may

then combine the f−1
Ui

(
θ̂2
Ui

)
in some way, e.g. take their average, to produce a final “inverse” estimate of

σ2.
For concreteness, we will now present a very simple (but contrived) example. Suppose we have a standard

linear regression model

Yn×1 = Xn×pβp×1 + εn×1 (98)

where Y is observed, X is fixed and observed, β is fixed and unknown, p < n, and the elements of ε are IID
with expectation 0 and variance σ2. To estimate σ2 using the inverse method, first note that we may model
Y as

Y = Xβ + Uθ + ε (99)

where U may be any n× 1 matrix and θ = 0. If U is not a linear combination of X, then we may estimate
θ by OLS and let

θ̂U ≡ (U ′RXU)
−1
U ′RXY.

Let U1, U2, ..., Ui, ... be random matrices whose entries are IID standard normal and independent of ε. Then
with probability 1, Ui is not a linear combination of the columns of X and θ̂Ui

exists. Moreover,

E
[
θ̂Ui

∣∣∣Ui] = 0 (100)

Var
[
θ̂Ui

∣∣∣Ui] = σ2 (U ′iRXUi)
−1

(101)

and therefore

E

[
θ̂2
Ui

(U ′iRXUi)
−1

∣∣∣∣∣Ui
]

= σ2. (102)
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Thus, we might imagine generating many Ui, and for each Ui calculating θ̂2
Ui
/ (U ′iRXUi)

−1
, and then aver-

aging these values to produce an estimate of σ2. Or, by taking the limit of this process, we may define the
inverse estimator of σ2 to be

σ̂2
inv ≡ EU1

[
θ̂2
U1

(U ′1RXU1)
−1

]
. (103)

Note that, defined this way, it is actually the case that

σ̂2
inv =

1

n− p
(Y −Xβ̂)′(Y −Xβ̂) (104)

and σ̂2
inv is thus equivalent to the standard OLS estimate of σ2 (proof omitted).

3.7.2 The Inverse Method for RUV-4

We now apply the inverse method to RUV-4. Let X? be a random “factor of interest” chosen uniformly at
random from the unit (m − 1)-sphere. Since X? is random, it should not be “truly associated” with the
expression levels of any of the genes. We may model Y as

Y = Xβ +Wα+X?β? + ε (105)

where β? = 0. We will estimate β? by RUV-4. In this context, X is now an unwanted factor and plays the
role of Z. In Section 3.6.2 we discussed two ways to handle a known covariate: ignore it and let RUV-4
incorporate it into W , or explicitly adjust for it. In this case, it is almost certainly better to explicitly adjust
for X. By assumption, the control genes are uninfluenced by X, and therefore RUV-4 will not properly
incorporate X into W . β̂? may be biased, violating the key assumption of the inverse method (see (112),
below).

Therefore, we explicitly adjust for X. Define U to be the matrix whose columns are the first m − 1
eigenvectors of RXYcY

′
cRX . Note that U is a specific parameterization of X⊥. This parameterization will

prove convenient in Section 3.7.5. Now define:

Y ≡ U′Y (106)

X ≡ U′X? (107)

W ≡ U′W (108)

ε ≡ U′ε (109)

m ≡ m− 1. (110)

Note that:
Ym×n = Xm×1β

?
n×1 + Wm×kαk×n + εm×n. (111)

Let β̂? denote the RUV-4 estimator of β? for some fixed K. Typically we set K = m− 1.
We now state the key assumption of the inverse method applied to RUV-4. We assume that with high

probability

E
[
β̂?
∣∣∣X] ≈ 0. (112)

The real assumption here is that RUV-4 “works” — that the unwanted variation is effectively adjusted for,
and that the regression coefficients corresponding to a random “factor of interest” that is not truly associated
with the expression levels of any genes will in fact be estimated to be about 0.

If nc is large, we have by (62) that

Var
[
β̂?jc̄

∣∣∣X] ≈ σ2
jc̄

(
1 + b̂WXb̂

′
WX

)
. (113)
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Following the example of the previous section, we define

(
σ̂2
jc̄

)(K,inv) ≡ EX


(
β̂?jc̄

)2

1 + b̂WXb̂′WX

 . (114)

In Section 3.7.5 we will develop an exact analytic expression for
(
σ̂2
jc̄

)(K,inv)
in the special case that

K = m−1. However, it is also very straight-forward to approximate
(
σ̂2
jc̄

)(K,inv)
more generally by repeatedly

generating random X = U′X?, fitting with RUV-4, calculating
(
β̂?jc̄

)2

/
(

1 + b̂WXb̂
′
WX

)
, and averaging the

results.
We conclude this section by reiterating the importance of explicitly adjusting for X when calculating

β̂?. Suppose we do not explicitly adjust for X and RUV-4 does not properly incorporate X into W ; X is

thus simply unadjusted for. As a result, β̂?jc̄ will be biased.
(
β̂?jc̄

)2

will be too large and
(
σ̂2
jc̄

)(K,inv)
will

be inflated. To see this more clearly, we present an analogy. In the simple example of Section 3.7.1 we
estimate θ by (U ′RXU)

−1
U ′RXY ; we “explicitly adjust for X.” The resulting inverse-method estimate σ̂2

is [1/(n− p)](Y −Xβ̂)′(Y −Xβ̂), and E[σ̂2] = σ2. Now suppose that we had not explicitly adjusted for X,

but instead had estimated θ by (U ′U)
−1
U ′Y . The resulting inverse-method estimate σ̂2 would be (1/n)Y ′Y .

The expected value of σ̂2 would be

β′
(
X ′X

n

)
β + σ2.

Thus, by not explicitly adjusting for X, we would inflate our estimate of σ2 by a factor of roughly

1 +
β′X ′Xβ

nσ2
.

3.7.3 A Closed-Form Solution for β̂(RUV−inv)

Define β̂(RUV−inv) to be the RUV-4 estimator when K = m−1. Note that the notation is slightly misleading,
since strictly speaking the inverse method is a method for estimating variances, and can be applied to a wide
class of estimators, including RUV-4 for any K. However, the RUV-4 estimator with K = m − 1 is the
preferred estimator to which we apply the inverse method — and indeed the estimator which most requires
and initially inspired the method — and hence we denote it by β̂(RUV−inv). The goal of this section is to
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produce a closed-form expression for β̂(RUV−inv). We begin by reformulating the four-step estimator:

β̂(RUV−4) = X ′
(
Y − Ŵ α̂

)
(115)

= X ′
[
Y −

(
Ŵ0 +XbYcX α̂

′
c (α̂cα̂

′
c)
−1
)
α̂
]

(116)

= X ′Y − bYcX α̂
′
c (α̂cα̂

′
c)
−1
α̂ (117)

= X ′Y −X ′YcY ′c Ŵ0

(
Ŵ ′0YcY

′
c Ŵ0

)−1

Ŵ ′0Y (118)

= X ′
[
I − YcY ′c Ŵ0

(
Ŵ ′0YcY

′
c Ŵ0

)−1

Ŵ ′0

]
Y (119)

= X ′ (YcY
′
c )

1
2

[
I − (YcY

′
c )

1
2 Ŵ0

(
Ŵ ′0YcY

′
c Ŵ0

)−1

Ŵ ′0 (YcY
′
c )

1
2

]
(YcY

′
c )
− 1

2 Y (120)

= X ′ (YcY
′
c )

1
2 R

(YcY ′c )
1
2 Ŵ0

(YcY
′
c )
− 1

2 Y (121)

= X ′ (YcY
′
c )

1
2 P

(YcY ′c )−
1
2 Ŵ0⊥

(YcY
′
c )
− 1

2 Y (122)

= X ′ (YcY
′
c )

1
2

[
(YcY

′
c )
− 1

2 Ŵ0⊥

(
Ŵ ′0⊥ (YcY

′
c )
−1
Ŵ0⊥

)−1

Ŵ ′0⊥ (YcY
′
c )
− 1

2

]
(YcY

′
c )
− 1

2 Y (123)

= X ′Ŵ0⊥

(
Ŵ ′0⊥ (YcY

′
c )
−1
Ŵ0⊥

)−1

Ŵ ′0⊥ (YcY
′
c )
−1
Y. (124)

If we now set K = m− 1 so that Ŵ0 = X⊥ and thus Ŵ0⊥ = X, then (124) becomes

β̂(RUV−inv) =
(
X ′ (YcY

′
c )
−1
X
)−1

X ′ (YcY
′
c )
−1
Y. (125)

Again note that although we give the inverse estimator a special name and are able to define it using a
relatively simple, closed form expression, it is still exactly equivalent to the RUV-4 estimator with K = m−1.

3.7.4 Discussion: β̂(RUV−inv)

β̂(RUV−inv) is of considerable theoretical interest. It has the form of a GLS estimator. Consider the case in
which α is random. Let Σ ≡ Cov [Wα?j ] and let δ ≡Wα+ ε. We then have

Y?j = Xβ1j + δ?j (126)

with
Σj ≡ Cov [δ?j ] = Σ + σ2

j I. (127)

We may therefore wish to regard β̂(RUV−inv) as a GLS estimator of β in which Σj has been (implicitly)
approximated by 1

nc
(YcY

′
c ). Now,

E
[

1

nc
(YcY

′
c )

]
=

1

nc

∑
jc

E
[
Y?jcY

′
?jc

]
(128)

=
1

nc

∑
jc

E
[
δ?jcδ

′
?jc

]
(129)

=
1

nc

∑
jc

Σ + σ2
jcI (130)

= Σ + σ̄2
cI (131)
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where

σ̄2
c ≡

1

nc

∑
jc

σ2
jc . (132)

Therefore

Σj = E
[

1

nc
(YcY

′
c )

]
+
(
σ2
j − σ̄2

c

)
I (133)

and 1
nc

(YcY
′
c ) is a biased estimate of Σj , with bias

(
σ̄2
c − σ2

j

)
I. To some extent, this complicates the

interpretation of β̂(RUV−inv) as a GLS estimator. β̂(RUV−inv) is not the “best” estimator for any specific
gene. However, if the values of σ2

j do not vary wildly from gene to gene and σ̄2
c ≈ σ̄2 then we may wish to

regard β̂(RUV−inv) as a GLS-like estimator that is “reasonably good on average.”
In light of (133) we may be tempted to refine our estimator of β on a gene-by-gene basis. For example,

if initial estimates σ̂2
j of σ2

j and σ̇2
c of σ̄2

c are available, we may be tempted to estimate βj by{
X ′
[
YcY

′
c + nc

(
σ̂2
j − σ̇2

c

)
I
]−1

X
}−1

X ′
[
YcY

′
c + nc

(
σ̂2
j − σ̇2

c

)
I
]−1

Y?j .

This is not necessarily a good idea, and may very well prove disastrous. In Section A.3 of the SM we discuss
this issue a bit further. To summarize Section A.3, it may be possible to make use of initial estimates of
σ2
j and σ̄2

c to refine our estimator of β on a gene-by-gene basis, but to do so requires considerable care,
and is beyond the scope of this paper. In any case, any gain in performance is likely to be minor, and the
performance of the “unrefined” estimator β̂(RUV−inv) is generally adequate.

Finally, we note that the GLS interpretation is not unique to β̂(RUV−inv). From (124) we see that, after
an appropriate transformation of the data and some additional algebra (omitted), the RUV-4 estimator may
be viewed as a GLS-like estimator for any K, not just K = m−1. More specifically, if we let Ỹ ≡ P(X|Ŵ0)Y

it can be shown that

β̂(RUV−4) =

(
X ′
(
ỸcỸ

′
c

)+

X

)−1

X ′
(
ỸcỸ

′
c

)+

Ỹ . (134)

Note that we must use the generalized inverse
(
ỸcỸ

′
c

)+

because ỸcỸ
′
c is only rank K + 1. Alternatively, we

may redefine Ỹ as
(
X
∣∣∣Ŵ0

)′
Y and let X̃ ≡

(
X
∣∣∣Ŵ0

)′
X. The RUV-4 estimator can then be expressed as

β̂(RUV−4) =

(
X̃ ′
(
ỸcỸ

′
c

)−1

X̃

)−1

X̃ ′
(
ỸcỸ

′
c

)−1

Ỹ . (135)

In either case, we may informally describe the approach as throwing away the dimensions spanned by(
X
∣∣∣Ŵ0

)
⊥

and fitting by GLS in the remaining K + 1 dimensions. If the dimensions spanned by
(
X
∣∣∣Ŵ0

)
⊥

only contain noise, removing them should reduce the variance of β̂. Thus we may view RUV-4 as fitting
by GLS with an additional noise-reducing dimensionality reduction step. It is interesting to note just how
different this view of RUV-4 is from the one initially presented in Section (3.3).

3.7.5 An Analytic Solution for
(
σ̂2
j

)(RUV−inv)

Define (
σ̂2
jc̄

)(RUV−inv) ≡
(
σ̂2
jc̄

)(m−1,inv)
.

When it is clear from context, we will drop the superscript and the c̄ subscript on the j and refer to this
quantity simply as σ̂2

j . The goal of this section is to produce an analytic expression for σ̂2
j .
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Combining (114) and (125) we have

σ̂2
j ≡ EX


[(

X′ (YcY
′
c)
−1 X

)−1

X′ (YcY
′
c)
−1

Y?j

]2

1 + b̂WXb̂′WX

 (136)

Let D denote the diagonal matrix whose diagonal entries are the first m− 1 eigenvalues of RXYcY
′
cRX and

note that YcY
′
c = D. Further note that

Var
[
β̂?jc̄

∣∣∣X,Yc] =
(

1 + b̂WXb̂
′
WX

)
σ2
jc̄ (137)

and

Var
[
β̂?jc̄

∣∣∣X,Yc] =

∣∣∣∣∣∣∣∣(X′ (YcY′c)−1
X
)−1

X′ (YcY
′
c)
−1

∣∣∣∣∣∣∣∣2 σ2
jc̄ (138)

and thus

1 + b̂WXb̂
′
WX =

∣∣∣∣∣∣∣∣(X′ (YcY′c)−1
X
)−1

X′ (YcY
′
c)
−1

∣∣∣∣∣∣∣∣2 . (139)

We may now simplify (136) as

σ̂2
j = EX


[(
X′D−1X

)−1
X′D−1Y

]2
∣∣∣∣∣∣(X′D−1X)

−1 X′D−1
∣∣∣∣∣∣2
 (140)

= EX

[
Y′?jD

−1X
(
X′D−1X

)−2
X′D−1Y?j

(X′D−1X)
−1 X′D−2X (X′D−1X)

−1

]
(141)

= Y′?jEX

[
D−1XX′D−1

X′D−2X

]
Y?j . (142)

To calculate the expectation, first note that the distribution of X is uniform on the unit (m− 1)-sphere.
Let

X̃ ∼ N (0, Im×m) (143)

ρ ∼
√
χ2
m (144)

and note that if ρ and X are independent then X̃ is equal in distribution ρX. Then

E ≡ EX

[
D−1XX′D−1

X′D−2X

]
(145)

= EX̃

[
D−1X̃X̃′D−1

X̃′D−2X̃

]
. (146)

For the off-diagonal entries of E we have

Eij = EX̃

[
d−1
i d−1

j X̃iX̃j∑m
l=1 d

−2
l X̃2

l

]
(147)

= 0 (148)

where di ≡ Dii. For the diagonal entries ei ≡ Eii of E we have

Eii = EX̃

[
d−2
i X̃2

i∑m
l=1 d

−2
l X̃2

l

]
(149)
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which can be shown to be equal to∫ ∞
0

dt

d2
i (1 + 2t/d2

i )
∏m
l=1

√
1 + 2t/d2

l

(150)

using the results of Magnus (1986). To summarize,

σ̂2
j = Y′?jEY?j (151)

=

m∑
i=1

Y2
ij

d2
i

∫ ∞
0

dt

(1 + 2t/d2
i )
∏m
l=1

√
1 + 2t/d2

l

. (152)

3.7.6 Discussion:
(
σ̂2
jc̄

)(RUV−inv)

We wish to develop some intuition for σ̂2
j . Write σ̂2

j as

σ̂2
j =

m∑
i=1

eiY
2
?j . (153)

It can be shown (see below) that
∑m
i=1 ei = 1. σ̂2

j is therefore a weighted average of Y2
?j . To interpret this

result, recall that U is the first m − 1 left singular vectors of RXYc. If we use the SVD as the method of

factor analysis in Step 2 of RUV-4, U = Ŵ
(m−1)
0 . We therefore assume that

U ≈ (W0|W1)

for an appropriate parameterization of W0 and W1. Then

Y ≈ (W0|W1)
′
Y (154)

=

(
W ′0Y
W ′1Y

)
(155)

=

(
α
0

)
+ ε. (156)

A weighted average of Y2
?j is therefore an appropriate estimator of σ2

j . The weights ei should be small (ideally

0) for i ≤ k and large (ideally 1
m−k ) for i > k.

With the inverse method, this is indeed what happens. The weights ei are functions of the di. Now,

di =
∑
jc

Yijc
2. (157)

For i > k the di will all be approximately equal to one another and relatively small. For i ≤ k the di
will be relatively large. We therefore want ei to be small when di is large and vice versa. Indeed, if we
consider a single di and hold all other di′ constant, then ei approaches 1 as di approaches 0. Conversely, ei
is asymptotically proportional to 1/d2

i as d2
i grows large. See Figure 7.

We now verify the claim
∑m
i=1 ei = 1. Begin by noting

E = EX [VV′] (158)

where

V ≡ D−1X√
X′D−2X

. (159)
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di = 1 (i > 1) di = i/10 (i > 1) di = 10/i (i > 1)
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Figure 7: Plots of ei as a function of di. In each plot m = 100, d1 is varied from 10−2 to 102, and di is
kept fixed for i > 1. The solid green line is a plot of e1. The solid red line is a plot of e10 (note that in
each of the three plots, d10 = 1). For purpose of comparison, the green and red dotted lines are plots of
(1/d21)/(

∑m
l=1 1/d2

l ) and (1/d210)/(
∑m
l=1 1/d2

l ).

Note that ||V|| = 1. Now,

m∑
i=1

ei = tr (E) (160)

= tr (EX [VV′]) (161)

= EX [tr (VV′)] (162)

= EX [tr (V′V)] (163)

= 1 (164)

Next we investigate the distribution of σ̂2
j . It is easy to show that

V′Y?j =
X′D−1X√
X′D−2X

E
[
β̂?j

∣∣∣X]+ V′ε?j . (165)

If we assume
E
[
β̂?j

∣∣∣X] ≈ 0

it follows that

V′Y?j ≈ V′ε?j (166)

and therefore that

σ̂2
j = EX

[
Y′?jVV

′Y?j
]

(167)

≈ EX

[
ε′?jVV

′ε?j
]

(168)

= ε′?jEε?j . (169)

Since ε?j ∼ N(0, σ2
j I) we conclude that

σ̂2
j ∼̇ σ2

j

m∑
i=1

eiχ
2
1,i (170)
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where the χ2
1,i are IID χ2

1.
We pause to interpret our analysis. One way to think of the inverse method is as follows: (1) Generate

a random X. (2) Transform X into V. (3) Calculate s2j ≡ (V′Y?j)
2. (4) Repeat (1-3) many times and

average the resulting s2j . The key step is (2). Ideally, V will be a random unit vector in R(W⊥). Then

(V′Y?j)
2 ∼ σ2

jχ
2
1. However, we cannot sample from R(W⊥) because W is unknown. We therefore sample

from Rm and attempt to orthogonalize to W. In step (2) we “effectively orthogonalize” X to W by multiplying
X by D−1. V is just D−1X rescaled to have unit length. V, therefore, is a random unit vector more or less
confined to R(W⊥).

Note that we can imagine generating an infinite number of s2j , each of which is approximately distributed

as σ2
jχ

2
1. However, in (170) we see that the (approximate) distribution of σ̂2

j can be expressed as the sum

of a finite number of rescaled χ2
1 random variables. The reason is that the s2j are dependent. They are

all calculated using the same observation of ε?j . The only difference between the s2j is the V that is used.

The dependence between the s2j is therefore a consequence of the fact that the V are sampled from a finite
dimensional space.

Now suppose we want to calculate the t statistic tj ≡ β̂j/
√
σ̂2
j . If we want to use this t statistic to calculate

p-values, etc., we must know its distribution. tj does not follow the t distribution because σ̂2
j does not follow

a rescaled χ2 distribution. Therefore, we cannot calculate exact p-values using standard methodology and
software. However, we might wish to approximate the distribution of tj by some t distribution. In this case
it is necessary to approximate the distribution of σ̂2

j /σ
2
j by some rescaled χ2 distribution. In particular, we

must come up with an “effective degrees of freedom.” To do so we note that

E

[
m∑
i=1

eiχ
2
1,i

]
= 1 (171)

Var

[
m∑
i=1

eiχ
2
1,i

]
= 2

m∑
i=1

e2
i . (172)

Let

r̂ ≡ 1/

m∑
i=1

e2
i .

Then

E
[
χ2
r̂

r̂

]
= 1 (173)

Var

[
χ2
r̂

r̂

]
= 2

m∑
i=1

e2
i . (174)

We therefore approximate the distribution of tj by the t distribution with r̂ degrees of freedom.
An interesting observation is that r̂ may be useful for more than just specifying which t distribution

to use when calculating p-values. As previously noted, V is a random unit vector more or less confined to
R(W⊥). If it were in fact the case that V was a unit vector distributed uniformly on the unit m − k − 1
sphere in R(W⊥), then σ̂2

j would have a rescaled χ2
m−k distribution. Therefore, if in reality σ̂2

j approximately

follows a rescaled χ2
r̂ distribution, it may be reasonable to regard r̂ as a measure of the “effective dimension”

of W⊥. We may therefore choose to estimate k as

k̂(inv) ≡ m− r̂. (175)

Although we find this idea quite interesting, we have not found k̂(inv) to perform any better in practice than
the k̂ described in Section 3.6.6. In some cases it performs notably worse. For example, k̂(inv) may perform
poorly when nc is only marginally larger than m and the smaller eigenvalues of YcY

′
c are noisy.
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3.7.7 A Brief Note on Preprocessing

In Section 3.7.6 we noted that ei approaches 1 as di approaches 0. This fact has important implications for
data preprocessing. Several common preprocessing steps wholly or partially remove one or more degrees of
freedom from the data. Consider a simple example. It is common practice to subtract away gene averages.
This is equivalent to setting Z = 1m×1 and multiplying Y by RZ . This reduces the rank of Y to m− 1. The
smallest singular value of Y will be 0 and the inverse method will fail. One should not multiply Y by RZ as
a preprocessing step. Instead, one should multiply X and Y by Z ′⊥ as suggested in Section 3.6.2.

Subtracting off gene means is just one example of a preprocessing step that wholly or partially removes
a degree of freedom from the data. We are in no position to discuss all such examples. Moreover, it is
common for a researcher to be given preprocessed data without knowing the exact preprocessing methods
that were used. Therefore, we need a general strategy for dealing with preprocessed data. One possible
strategy is as follows: First, a researcher makes a scree plot of the (preprocessed) data. The researcher then
notes whether there are any abnormally small singular values, and if so, how many. Suppose the researcher
observes ns abnormally small singular values. The researcher then takes the final ns left singular vectors of
Y and includes these vectors as columns of Z. This effectively removes the ns troublesome dimensions of Y
by transforming Y into a lower dimensional space.

3.8 The Functional Approach

In this section we introduce a new framework for understanding RUV-4 and for developing new, more general
methods. In this framework, we transform the problem of estimating β into a standard prediction or function
estimation problem. Control genes play the role of a training set.

The justification of the approach is rather informal. We find that the “technical assumptions” are less
important than the “practical assumptions.” In particular, the question of whether α is random or fixed is
of secondary importance. By contrast, the assumption that the α?jc are “representative” of the α?jc̄ takes
center stage.

3.8.1 Motivating Example

We begin with a motivating example. The example will demonstrate a weakness of RUV-4 and the need for
a new approach. Recall that if we model α?j as random with expectation 0 and variance Σ, then β̂(RUV−inv)

is (approximately) the minimum variance unbiased linear estimator of β. This is a reasonable estimator
to use if α?j follows a (multivariate) normal distribution. However, if α is not normally distributed, other
estimators may be preferable. Our example will illustrate this fact.

Recall the examples of Section 3.4 in which m = 2 and k = 1. Recall that β̂ = bY X − b̂WX α̂, and that we
may interpret β̂j as the vertical distance from the point (W ′0Y?j , X

′Y?j) to the line that passes through the

origin and has slope b̂WX (see Figures 1 and 2). In the examples of Section 3.4, α was normally distributed.
Here we consider an example in which αj equals either -1 or 1, each with probability 0.5. This example

is shown in Figure 8. As before, β̂(RUV−4) is given by the vertical distance to the orange line. However,
simple visual inspection suffices to convince us that other estimators may be preferable. For example, we
have drawn horizontal red lines through the vertical mean of the control genes of each of the two clouds.
Instead of using the vertical distance to the orange line, we may prefer to estimate β by the vertical distance
to the horizontal red lines.

We will now try to formalize the intuition provided by Figure 8. We begin by writing

bY X = β + bWXα+ ζ. (176)

We may rewrite this as

bY X = β +B(α) + ζ (177)
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Figure 8: An example in which α is not normally distributed. See main text for commentary. The simulated
data were generated as follows: X = (0, 1)′; W = (1, 0.5)′; αj equals either -1 or 1, each with probability
0.5; εij ∼ N(0, 1

16 ); βj ∼ N(0, 1) for 1 ≤ j ≤ 50; βj = 0 for 51 ≤ j ≤ 1000.

where B denotes the conditional bias of bY X as a function of α, i.e.

B(α) ≡ E [bY X − β|α] (178)

= bWXα. (179)

In this context, we may think of β̂(RUV−4) as an “approximately de-biased” version of bY X , i.e.

β̂ = bY X − b̂WX α̂ (180)

= bY X − B̂(α̂) (181)

where B̂(α̂) ≡ b̂WX α̂.

In light of (181), we see that the quality of β̂ as an estimator of β is directly determined by the quality
of B̂(α̂) as an estimator of B(α). We see intuitively that B̂(α̂) is a good estimator of B(α) in Figure 2 but
not in Figure 8. What is the difference? Consider the quantity E [B(α)|α̂]. We may think of E [B(α)|α̂] as
the “best guess” of the unobserved quantity B(α) given the observed quantity α̂. Note that E [B(α)|α̂] is a
function of α̂. Indeed,

E [B(α)|α̂] = E {E [bY X − β|α]|α̂} (182)

= E {E [bY X − β|α, α̂]|α̂} (183)

= E [bY X − β|α̂] (184)

= B(α̂) (185)
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where

B(α̂) ≡ E [bY X − β|α̂] . (186)

We may think of B(α̂) as the “ideal” estimator of B(α). We cannot calculate B(α̂) itself because we do not
know the function B, the distribution of α, or σ2. However, it is nonetheless the case that a good estimator
of B(α) will be some function of α̂ that closely approximates B(α̂).

It turns out that B̂j(α̂) closely approximates Bj(α̂) if αj is normally distributed with expectation 0. To
see this, assume

αj ∼ N(0, ψ2). (187)

It follows that

Bj(α̂) = E [Bj(α)|α̂] (188)

= E [bWXαj |α̂j ] (189)

= bWXE [αj |α̂j ] (190)

= bWX

(
ψ2

ψ2 + σ2
j

)
α̂j (191)

= E
[
b̂WX

]
α̂j (192)

≈ b̂WX α̂j (193)

= B̂j(α̂). (194)

Thus, B̂j(α̂) ≈ Bj(α̂) and we consider B̂j(α̂) to be a good estimator of Bj(α).
In the example of Figure 8, however, α is not normally distributed and Bj(α̂) is no longer a linear function

of α̂j . Indeed, it can be shown that in this particular example

Bj(α̂) =
1

2

(
e8(α̂j+1)2 − e8(α̂j−1)2

e8(α̂j+1)2
+ e8(α̂j−1)2

)
. (195)

This function is plotted in Figure 8 in blue. It is no longer true that B̂j(α̂) ≈ Bj(α̂); the orange line does

not approximate the blue curve. B̂(α̂) is no longer a good estimator of B(α).

3.8.2 The Functional Approach, Part I

To summarize our discussion so far: bY X = β + bWXα + ζ. In RUV-4, we estimate B(α) = bWXα by

B̂(α̂) = b̂WX α̂ and set β̂ = bY X − B̂(α̂). This works well if α is normally distributed, but does not
necessarily work well otherwise. The important point to notice is that when we estimate B(α) in RUV-4 we
effectively do so in two parts: we estimate the linear function B by the linear function B̂, and we estimate
α by α̂. We then combine these and use B̂(α̂) as our estimate of B(α). This seams reasonable at first, but
as we have seen, the “best” estimate of B(α) is not necessarily linear in α̂.

These considerations inspire a new approach. We do not attempt to estimate W and then estimate β
by linear regression. We do not focus our attention on the estimation of bWX . We do not estimate B(α) by

B̂(α̂). Rather, our goal is to directly estimate the function B. Equipped with an estimate B̂ of B we then

estimate β by bY X − B̂(α̂). We call this the functional approach, or RUV-fun. Note that unlike RUV-2 or
RUV-4, RUV-fun does not refer to a specific algorithm but rather to a general strategy; we may estimate B
by any method we see fit. Indeed, we may view RUV-4 as a special case of RUV-fun.

How might we estimate B? As always, the key is the control genes. Recall that

bY X = β +B(α) + ζ (196)

≈ β + B(α̂) + ζ (197)
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and thus for the control genes we have

(bY X)c ≈ Bc(α̂) + ζc. (198)

We can use (bY X)c and α̂c to help us estimate B. However, we also need an additional assumption. We need
an additional assumption because B is a vector of n functions:

B(α̂) = (B1(α̂?1),B2(α̂?2), ...,Bn(α̂?n)) (199)

In principle, each of these Bj may be different functions. However, we only have one observation of each α̂?j
and each (bY X)j . It is not feasible to estimate the entire function Bj from a single observation. Moreover,
the fundamental idea of the functional approach is to use the biases of the control genes to help us estimate
the biases of the non-control genes. This is not possible if we treat each Bj as its own distinct entity. We
need an assumption that will relate the Bj to one another in some way, and allow us to estimate the Bj
jointly. We are in no position to estimate all n Bj separately.

Faced with this dilemma, we make a very strong technical assumption. We assume that the (α̂?j , Bj(α))
pairs are IID. This is the key technical assumption of the functional approach. From this assumption it
follows that

B1 = B2 = ... = Bn.

We can now define
B0 ≡ Bj .

B0 is the function that we will estimate.
Each (α̂?jc , (bY X)jc) pair provides an estimate of B0 evaluated at a specific point. In other words, control

genes play the role of a training set in a prediction problem. The α̂?jc are the predictors, and the (bY X)jc
are the response variables. We may choose to estimate B0 by any of a number of methods. We need not
restrict ourselves to linear functions, or even parametric functions. We have at our disposal the numerous
methods available in the prediction, function estimation, and machine learning literature.

3.8.3 The Assumptions of RUV-fun

In this section we discuss the assumptions of the functional approach. We distinguish between “technical
assumptions” and “practical assumptions.” The technical assumptions include the modeling assumptions
of Section 3.1 and the assumption that the (α̂?j , Bj(α)) pairs are IID. We find the technical assumptions
implausible. We also argue that violations of the technical assumptions do not necessarily lead the functional
approach to perform poorly. The practical assumptions are less rigorous than the technical assumptions.
We find these assumptions plausible. We also believe these assumptions must be satisfied to ensure the
functional approach performs well. We argue that that the practical assumptions may also be used as an
informal justification of the functional approach.

We begin with a more careful look at the main technical assumption of RUV-fun. The main technical
assumption of RUV-fun is that the pairs (α̂?j , Bj(α)) are IID. This assumption does not follow as a necessary
consequence of the modeling assumptions presented in Section 3.1. For example, suppose we model α as
fixed. Then the α̂?j will not be IID. Suppose instead we model the α?j as random and IID. Even then, the
α̂?j need not be IID. Recall that α̂?j = α?j + ξ?j . The ξ?j are not IID unless σ2

j = σ2
0 for all j. However, if

we do assume that the α?j are IID and that σ2
j = σ2

0 for all j, it does follow that the pairs (α̂?j , Bj(α)) are
IID.

To satisfy the main technical assumption of the functional approach we assume that the α?j are IID and
σ2
j = σ2

0 for all j. We find the assumption that σ2
j = σ2

0 for all j to be implausible. However, we also believe

this assumption to be relatively unimportant. Recall the discussion of Section 3.7.4. We noted that 1
nc

(YcY
′
c )

is a biased estimate of Σj unless σ2
j = σ̄2

c . Under the assumption that σ2
j = σ2

0 for all j, σ2
j = σ̄2

c = σ2
0 and

1
nc

(YcY
′
c ) is an unbiased estimate of Σj . We may view the consequences of a violation of the assumption

that σ2
j = σ2

0 as analogous to the consequences of using a biased estimate of Σj in Section 3.7.4. We argue
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in Section A.3 of the SM that the consequences of using a biased estimate of Σj are not severe. Likewise,
we do not believe that the consequences of a violation of the assumption that σ2

j = σ2
0 are very severe.

We have just argued that the main technical assumption of the functional approach is false but that in
practice this doesn’t matter. This is somewhat comforting. However, the falsity of the technical assumptions
does raise an unsettling conceptual problem. It is no longer clear what we are estimating! If the (α̂?j , Bj(α))
pairs are not IID, it is false that B1 = B2 = ... = Bn. If it is false that B1 = B2 = ... = Bn, it follows that
B0, as we have defined it, does not exist. This is disturbing, since the goal of the functional approach is to
estimate B0.

Is there a better way to define B0? Ideally, B0 would satisfy three criteria. Firstly, we would like
that B0(α?j) approximately equal Bj(α?j) with high probability. Secondly, we want B0 to exist even when
Bj 6= Bj′ . Finally, we would like B0 to have some relatively simple, real-world interpretation. Unfortunately,
we are unable to provide any such definition of B0. For example, suppose we try defining B0 as the average
of the Bj . This definition of B0 would satisfy the second criterion, but not the first. To see this, suppose
that α is fixed. In this case, each Bj is simply a constant function. Specifically, Bj(α̂) = Wα?j . Thus, the
average of the Bj is also just a constant function. Alternatively, suppose we try defining B0 as E [BJ(α)|α̂?J ]
where J is a random variable distributed uniformly on {1, 2, ..., n}. This may satisfy the first two criteria,
but it is not clear to us what the real-world interpretation of this function might be.

Fortunately, from a purely practical point of view, it does not necessarily matter if σ2
j = σ2

0 , or if the α?j

are IID, or even if B0 exists. What matters is whether the (α̂?j , Bj(α)) are well described by the function B̂0

that we have fit to the (α̂?jc , (bY X)jc). This is still possible even if the technical assumptions are violated.

When can we expect the (α̂?j , Bj(α)) to be well described by B̂0? There is no simple answer. However, for
guidance, we now present two important “practical assumptions” of the functional approach. The practical
assumptions are relatively informal, and we do not attempt to treat them rigorously. Nonetheless, these
assumptions warrant serious consideration, and are critical to the success of the functional approach. The
first assumption is that genes with similar α̂?j experience similar biases. In other words,

α̂?j ≈ α̂?j′ → Bj(α) ≈ Bj′(α). (200)

The second is that the control genes are representative of the other genes. In particular, the (realized)
distribution of the α̂?jc must be roughly the same as the distribution of the α̂?jc̄ . Moreover, the biases of
the control genes must not differ systematically from those of the non-control genes.

These are strong assumptions, and have important implications for selecting an appropriate set of control
genes. As a concrete example, consider spike-in controls (see Gagnon-Bartsch and Speed (2012) for a discus-
sion of spike-in controls). These controls likely exhibit unwanted variation related to their own preparation.
Other genes do not. The biases of the spike-in controls are therefore likely to differ systematically from the
biases of non-control genes. Spike-in controls may be a poor choice for the functional approach.

The importance of the “practical assumptions” is not limited to the selection of control genes. These
two assumptions may also be used as an informal — but relatively realistic — justification of the functional
approach. If we assume (200) and that the control genes are representative, it follows that we may very
roughly approximate the bias of gene j by the (bY X)jc of the nearest control gene. In other words, we may
very roughly approximate Bj(α) by (bY X)c(j) where

c(j) = argmin
jc

d(α̂?j , α̂?jc)

and where d is some appropriate distance measure. Of course, we may get a better estimate of Bj(α) by
taking the average of the (bY X)jc of several nearby control genes instead of just the single closest, and may
get a still better estimate by fitting some curve to the (bY X)jc of all the control genes. In this way, we are
led back to the functional approach. Although informal, we might consider this to be the most appropriate
justification for the functional approach. For better or worse, the approach is intrinsically ad hoc.

To conclude this section, we consider the utility of the technical assumptions. We have argued at several
points that the technical assumptions are neither plausible nor necessary for the success of the functional
approach. However, we do not wish to imply that the technical assumptions are useless. Consideration of the
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technical assumptions can be very helpful in alerting us to potential problems. If the technical assumptions
were true, they would justify the use of the functional approach. Thus, by considering the ways in which the
assumptions are false, we are led to consider ways in which the functional approach might fail. An example
is our discussion regarding the violation of the assumption that σ2

j = σ2
0 . We ultimately concluded that the

consequences of a violation of this assumption were not severe. However, we arrived at this conclusion only
after investigating the matter in A.3 of the SM. Finally, note that most off-the-shelf prediction algorithms
effectively assume the (α̂?j , Bj(α)) to be IID. Some algorithms may be more sensitive to violations of this
assumption than others.

3.8.4 RUV-4 as RUV-fun

We noted in Section 3.8.2 that RUV-4 may be interpreted as a special case of RUV-fun. More specifically, we
may interpret RUV-4 as a parametric version of RUV-fun in which we constrain B̂0 to be a linear function
that passes through the origin, and in which we fit B̂0 by least squares. In this section we explore more fully
the interpretation of RUV-4 as a special case of RUV-fun.

We consider first the rationale for constraining B̂0 to be a linear function that passes through the origin.
In the derivation of RUV-4 in Section 3.3 we do not address this issue explicitly. Implicitly, however, we
rationalize constraining B̂0 to be a linear function that passes through the origin on the grounds that B is
a linear function that passes through the origin. As the example of Section 3.8.1 shows, however, linearity
of B does not imply linearity of B̂0. If we assume that α?j ∼ N(0,Σ) for all j, it follows that B0 is a linear

function that passes through the origin. This would justify the constraint on B̂0. However, as noted in
Section 3.5.4, we find this assumption implausible.

In the RUV-fun framework, the rationale for constraining B̂0 to be a linear function that passes through
the origin is primarily empirical. It is of secondary importance whether the α?j are actually distributed as
N(0,Σ), or whether α is even random. Of primary importance is whether the (α̂?j , Bj(α)) pairs are well

described by B̂0. The best justification for constraining B̂0 to be a linear function that passes through the
origin is that, in practice, it does seem that the (α̂?j , Bj(α)) pairs are well described by such a function. See
Section 5 for evidence.

We now revisit the discussion of Section 3.4. In Section 3.4 we observed that RUV-2 seems to provide a
better estimate of W than RUV-4, but RUV-4 nonetheless provides a better estimate of β. By viewing RUV-
4 as a special case of RUV-fun we may gain perspective on this curious fact. In the RUV-fun framework,
what matters is that the (α̂?j , Bj(α)) are well described by a linear function B̂0 that passes through the

origin. Unlike with RUV-4, with RUV-fun we do not care whether the coefficients of the linear function B̂0

provide a good approximation of bWX . If we view RUV-4 simply as RUV-fun in disguise, we really don’t
care about Ŵ at all. Ŵ is at best a means to an ends, at worst a distraction. Said another way, Ŵ does not
determine β̂; β̂ determines Ŵ .

An example of this “abuse of Ŵ” can be seen in (190) – (192). In (191) we write Bj(α̂) as the product
of three terms: bWX , a shrinkage factor ψ2/

(
ψ2 + σ2

j

)
, and α̂j . Conceptually, the shrinkage factor is best

understood as something having to do with αj and α̂j . In particular,

E [αj |α̂j ] =

(
ψ2

ψ2 + σ2
j

)
α̂j . (201)

However, in RUV-4, we effectively incorporate the shrinkage factor into our estimate of bWX . Recall that

E
[
b̂WX

]
= bWX

(
ψ2

ψ2 + σ2
j

)
. (202)

If we wanted to more faithfully follow the general strategy of RUV-4 as it was presented in Section 3.3,
we would first want to find an unbiased, or nearly unbiased, estimate of bWX . We could then construct a
more proper estimate of W . Finally, instead of estimating αj by α̂j , we would instead estimate α by some

estimate of E [αj |α̂j ], e.g.
[
ψ̂2/

(
ψ̂2 + σ̂2

j

)]
α̂j , where ψ̂2 is some estimate of ψ2.
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3.8.5 The Functional Approach, Part II

Until now we have retained the modeling assumptions of Section 3.1. In Section 3.8.1 we considered an
“unusual” distribution of α, but we did not depart from the model of Section 3.1. In Section 3.8.2 we
introduced the assumption that the (α̂?j , Bj(α)) pairs are IID. This assumption added to, but did not
modify or replace, the assumptions of Section 3.1.

We have retained the modeling assumptions of Section 3.1 until now so that we could discuss the functional
approach in a familiar setting. In Section 3.8.1 we demonstrated that the functional approach could be used
to develop better methods to estimate β. In Section 3.8.3 we discussed the nature of the assumptions of the
functional approach. In Section 3.8.4 we demonstrated that the functional approach could be used to better
understand RUV-4. All of this was possible in the familiar setting of the model of Section 3.1.

However, the functional approach is most powerful when we abandon the model of Section 3.1. We now
present a new model. Define m, n, X, and Y as we have previously. Let P be a K × n matrix of observed
predictors. Let S ≡ X ′Y = bY X denote the observed “signal of interest.” Let β be an unobserved 1 × n
parameter of interest. Let f denote some unknown function. We model Sj as

Sj = βj + f(P?j) + δj . (203)

We assume that P ⊥⊥ δ and that the (P?j , δj) are IID. We do not assume here any constraints on the function
f , nor do we assume here anything about the distribution of δ. However, in any given application of the
functional approach, we will need to make assumptions regarding the form of f and the distribution of δ.
Note that the interpretation of β here is similar, though not identical, to its interpretation in Section 3.1.
By abuse of notation, we use the same symbol. Likewise, the interpretation of K here is similar, but not
identical, to its former interpretation. Note that δ here is not related in any way to the δ of Section 3.7.4.
We assume that βc = 0. To estimate f we note that Sjc = f(P?jc) + δjc and fit f̂ using any method of our
choosing. We estimate β as the difference between the observed signal and the predicted signal:

β̂
(RUV−fun)
j ≡ Sj − f̂(P?j). (204)

The most important feature of our new model is that we place no restrictions on what we may include
in P. To be sure, we will often wish to fill m − 1 rows of P with X ′⊥Y . (Note that by setting P = X ′⊥Y ,

constraining f̂ to be a linear function that passes through the origin, and fitting f̂ by least squares, we
recover β̂(RUV−inv)). However, we may also include any other variables of our choosing. We may include
non-linear features of the data. For example, we may include an initial estimate of σ2. We may also
include “outside” sources of information. For example, we may wish to include the GC content of the genes.
Including information on GC content may be particularly useful when applying RUV-fun to RNA-seq data.

3.9 Variations and Extensions

In this section we consider four unrelated enhancements to the basic RUV methods. The first, the ridged
inverse method, is useful when nc is small. The second, RUV-1, is primarily of theoretical interest. The
third, empirical controls, is useful when no control genes are available but β is known to be sparse. The
fourth, rescaled and empirical variances, improves control of the type 1 error rate.

3.9.1 The Ridged Inverse Method (RUV-rinv)

In Section 3.6.4 we noted that setting K too large may substantially increase the variance of β̂ if nc is not
large. This is a problem, since β̂(RUV−inv) = β̂(RUV−4) with K = m− 1. If nc is only slightly larger than m,
β̂(RUV−inv) will not be a good estimator of β. This is particularly easy to see in the context of the functional
approach. Let P = X ′⊥Y , constrain f̂ to be a linear function that passes through the origin, and fit f̂ by

least squares; i.e. let f̂(u) = ScP ′c(PcP ′c)−1u. The resulting estimate of β is S − ScP ′c(PcP ′c)−1P and is

identical to β̂(RUV−inv). (It may be helpful to note that S − ScP ′c(PcP ′c)−1P is a combination of (29) and

(37), expressed in the formalism of the functional approach.) Now, the quality of β̂(RUV−inv) as an estimator
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of β depends on the quality of f̂ as an estimator of f . If nc is only slightly larger than m, f̂ will be noisy,
and β̂(RUV−inv) will be too.

One possible solution is to use ridge regression. (Readers unfamiliar with ridge regression may wish to
consult, e.g. Friedman et al. (2009).) The ridge regression estimate of f(u) is

f̂(u) = ScP ′c(PcP ′c + λI)−1u (205)

where λ ≥ 0 is a tuning parameter. The hope is that, for a suitable choice of λ, the ridge regression estimate
of f will be substantially less noisy than the non-ridged estimate, and only a little bit more biased.

We define the “ridged inverse” estimator of β as

β̂(RUV−rinv)(λ) = S − ScP ′c(PcP ′c + λI)−1P. (206)

We drop the superscript when it is clear from context. We also drop the explicit dependence on λ.
Let us now provide an expression for β̂(RUV−rinv) in terms of more familiar quantities. Note that in the

notation of Section 3.7,

β̂ = X ′Y −X ′YcY ′cX⊥(X ′⊥YcY
′
cX⊥ + λI)−1X ′⊥Y. (207)

Note also that X ′(λI)X⊥ = 0 because X ′X⊥ = 0, and that X ′⊥(λI)X⊥ = λI because X ′⊥X⊥ = I. Thus

β̂ = X ′Y −X ′ (YcY ′c + λI)X⊥ [X ′⊥ (YcY
′
c + λI)X⊥]

−1
X ′⊥Y. (208)

Using an argument analogous to that in (118)-(125), we conclude

β̂ =
[
X ′ (YcY

′
c + λI)

−1
X
]−1

X ′ (YcY
′
c + λI)

−1
Y. (209)

This is an appealing result. As with β̂(RUV−inv), we see that β̂(RUV−rinv) can be interpreted as a GLS-like
estimator. The only difference is that we have ridged our (presumably noisy) estimate of Σj , and now set

Σ̂j = YcY
′
c + λI instead of Σ̂j = YcY

′
c .

A few practical matters remain: how do we estimate σ2, and how do we choose a value for λ? The first
is easy. To estimate σ2 we simply use the inverse method. The results of Section 3.7.5 carry over, with YcY

′
c

replaced by YcY
′
c + λI.

We now consider λ. We do not feel there is any one “best” way to choose λ. We present here one
method we have found to work reasonably well in practice. We begin with the observation that, under the
assumptions of Section 3.7.4,

E [YcY
′
c ] = nc

(
Σ + σ̄2

cI
)
. (210)

Thus, given our assumption that Σ is rank k < m, the smallest eigenvalue of E [YcY
′
c ] is ncσ̄

2
c . However, the

smallest eigenvalue of YcY
′
c may be considerably smaller. Indeed, the smallest eigenvalue of YcY

′
c may even

be 0 if we consider the case nc < m. We might therefore wish to set λ equal to

λ0 = ncσ̄
2
c (211)

=
∑
jc

σ2
jc . (212)

This would ensure that every eigenvalue of YcY
′
c +λI is at least as big as the smallest eigenvalue of E [YcY

′
c ],

and thus that none of our eigenvalues are “too small.”
Of course, σ2 is unknown and so is λ0. However, we can estimate λ0 if we have an estimate of σ2. This

raises a tricky problem: we can estimate σ2 once we have a value for λ, but our desired value of λ requires
an estimate of σ2. Our solution to this problem is to estimate σ2 using some other version of RUV. Which
version of RUV is best for this purpose? RUV-inv is a poor choice. As mentioned in Section 3.6.6, when
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nc is only slightly larger than m, b̂WX is overfitted to the control genes, and the variance of β̂jc is less than

σ2
jc

(
1 + b̂WX b̂

′
WX

)
. As a result, the RUV-inv estimate of σ2

c tends to be too small. Instead, we use the

RUV-4 estimate, with K = k̂. This estimate tends to be of the right size. We define

λ̂0 =
∑
jc

(
σ̂2
jc

)(k̂)
. (213)

This is the value of λ we use in all of the applications of RUV-rinv in this paper.
Again, note that λ̂0 is not necessarily the “best” value of λ. Other values of λ may provide better results.

For example, it may be better to use cross validation to find an optimal value for λ. We do not pursue
alternative strategies for selecting λ in this paper. We find that λ̂0 generally provides satisfactory results
(see Sections 4 and 5). Moreover, computing λ̂0 is relatively computationally efficient, particularly when
compared to methods such as cross validation.

We conclude this section with a discussion. We find the ridged inverse estimator of β to be of theoretical
interest. The inspiration for the estimator originated in the framework of the functional approach. In this
context, the estimator derives from an application of ridge regression. But we have shown that the estimator
can also be viewed as a GLS-like estimator, with a ridged estimate of the covariance matrix. In both cases,
ridging is used to stabilize a noisy estimator. This link between the methods makes their equivalence seem
quite natural. Nonetheless, we do not view this equivalence as entirely trivial or obvious. It is interesting to
note, for example, that the matrices that are ridged — PcP ′c in the case of the ridge regression, and YcY

′
c in

the case of the GLS regression — are not even the same dimension.
Of course, ridge regression is not the only potential solution when nc is only slightly larger (or possibly

even less) than m. Other dimensionality reduction strategies are possible as well. For example, principal
components regression (PCR) is a common alternative (Friedman et al., 2009). We have shown that ridge
regression leads to a GLS-like estimator. Does PCR lead to some other interesting estimator? Indeed it
does — RUV-4! Strictly speaking, the equivalence is not exact, but it is close, especially in spirit. Let
P = X ′⊥Y . To estimate f by principal components regression, we take Pc and throw away all by the first K

right singular vectors of Pc to form a dimensionally-reduced set of predictors P(K)
c . We then regress Sc on

P(K)
c to estimate f , i.e. f̂(u) = ScP(K)′

c (P(K)
c P(K)′

c )−1u. With RUV-4, the basic idea is the same, except
that we first calculate the first K right singular vectors of P (instead of just Pc) and only then restrict
ourselves to the control genes.

Is there any reason to prefer ridge regression to PCR (or RUV-4 proper)? Arguably there is. We may
prefer ridge regression to PCR for two reasons. The first reason is statistical in nature, and is that the
dimensionality reduction of ridge regression is “softer” than that of PCR. See, e.g. Friedman et al. (2009)
for further discussion. The second reason is computational. With ridge regression we are able to apply the
inverse method for estimating variances and get an analytic solution for σ̂2 that is computationally efficient
to compute. With PCR (or RUV-4 proper) we are still able to apply the inverse method, but we would need

to do it numerically. We would need to generate a lot of random X and calculate the resulting β̂? for each
one. Each iteration would require computing a new singular value decomposition.

3.9.2 RUV-1

In Section 3.9.1 we found inspiration in the functional approach to develop RUV-rinv. Here we develop
another technique inspired by the functional approach. Recall that RUV-4 (or RUV-inv) can be considered

as a special case of the functional approach. We set P equal to Ŵ ′0Y (or X ′⊥Y for RUV-inv), constrain f̂
to be a linear function that passes through the origin, and fit by least squares. In Section 3.9.1 we modified
this slightly to arrive at RUV-rinv; instead of fitting by least squares we fit by ridge regression. Here we
make a different modification. We supplement P with additional predictors. We continue to constrain f̂ to
be a linear function that passes through the origin and fit by least squares.

Suppose η is some o × n matrix of predictors, where o ≤ nc −m + p (ideally, o � nc). The rows of η
may contain, for example, information on the GC content of genes, the physical location of probes on the
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microarray, etc. We set

P =

(
A
η

)
where A denotes the original set of predictors, i.e. Ŵ ′0Y in the case of RUV-4 or X ′⊥Y in the case of RUV-inv.
We then estimate β as

β̂ = S − ScP ′c(PcP ′c)−1P. (214)

Let us reformulate this estimator. Note that ScP ′c(PcP ′c)−1 is a regression of Sc on Pc. More specifically,
it is a regression of Sc on Ac and ηc. We now use the fact that this is equivalent to a regression of Sc adjusted
for ηc on Ac adjusted for ηc. We define

S̃ ≡ S − Scη′c(ηcη′c)−1η (215)

Ã ≡ A −Acη′c(ηcη′c)−1η. (216)

We may now rewrite β̂ as

β̂ = S̃ − S̃cÃ′c(ÃcÃ′c)−1Ã. (217)

Now consider the case that A = X ′⊥Y . Then

Ã = X ′⊥Y −X ′⊥Ycη′c(ηcη′c)−1η (218)

Ã = X ′⊥
[
Y − Ycη′c(ηcη′c)−1η

]
(219)

Ã = X ′⊥Ỹ (220)

and

S̃ = X ′Y −X ′Ycη′c(ηcη′c)−1η (221)

S̃ = X ′
[
Y − Ycη′c(ηcη′c)−1η

]
(222)

S̃ = X ′Ỹ (223)

where

Ỹ ≡ Y − Ycη′c(ηcη′c)−1η. (224)

We have arrived at the key result of this section. The functional approach estimate of β, constraining f̂
to be a linear function that passes through the origin and fitting by least squares, and setting

P =

(
X ′⊥Y
η

)
is equivalent to the RUV-inv estimate of β using the adjusted dataset Ỹ . This strongly suggests that
adjusting Y for η to get Ỹ is a reasonable thing to do in and of itself. It may be regarded as a preprocessing
step. We refer to this single step as RUV-1.

Let us examine RUV-1. Expression (224) resembles a residual operator. Indeed, if we limit our attention
to the control genes, we see that

Ỹc = Yc − Ycη′c(ηcη′c)−1ηc (225)

= YcRη′c (226)

where Rη′c is the nc × nc residual operator of η′c. Note that Rη′c is unlike other residual operators we have
encountered so far. It is nc × nc instead of m×m, and we use it to do projections on rows, not columns. In
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words, we remove any patterns of gene-to-gene expression from the negative controls that resemble the rows
of ηc.

Now define the matrix c as the n× nc matrix whose (i, j)th entry is 1 if i is the index of the jth control
gene and 0 otherwise. Thus Yc = Y c, βc = βc, etc. We may rewrite (224) as

Ỹ ≡ Y − Y cη′c(ηcη′c)−1η (227)

= Y
[
I − cη′c(ηcη′c)−1η

]
(228)

and we refer to
[
I − cη′c(ηcη′c)−1η

]
as the RUV-1 operator. We find it helpful to think of the RUV-1 operator

as an “extrapolated residual operator.” For each sample i, a linear combination of ηc is subtracted off from
Yic so that Ỹic is orthogonal to ηc. This same linear combination is then applied to η as a whole, and
subtracted off of the other genes as well.

Let us now consider RUV-1 in the context of a model similar to that of Section 3.1. We model Y as

Y = Xβ + Zγ +Wα+ Tη + ε (229)

where T is unobserved but η is observed. Suppose we apply RUV-1. Then

Ỹ = (Xβ + Zγ +Wα+ Tη + ε)
[
I − cη′c(ηcη′c)−1η

]
. (230)

But

Tη
[
I − cη′c(ηcη′c)−1η

]
= 0 (231)

and, assuming βcη
′
c = 0,

Xβ
[
I − cη′c(ηcη′c)−1η

]
= Xβ (232)

so (230) simplifies to

Ỹ = Xβ + (Zγ +Wα+ ε)
[
I − cη′c(ηcη′c)−1η

]
. (233)

If we then premultiply by Z ′⊥ as in Section 3.6.2, we are left with

Z ′⊥Ỹ = Z ′⊥Xβ + Z ′⊥Wα
[
I − cη′c(ηcη′c)−1η

]
+ ε− εcη′c(ηcη′c)−1η. (234)

Note that ε′c is approximately orthogonal to η′c and εcη
′
c(ηcη

′
c)
−1 ≈ 0 with high probability, so we may

disregard the last term. Thus, we are back in a very familiar setting. The only thing new is that α has been
replaced with α

[
I − cη′c(ηcη′c)−1η

]
. Since α is unobserved to begin with, this hardly changes things from a

practical point of view. Having applied RUV-1, we may now proceed with any of our other analyses just as
before.

We do not actually apply RUV-1 in any of the examples of this paper. To do so we would need to identify
good variables to include in η, and we have not yet had the opportunity to research this fully. We have
included the discussion in this section mainly out of theoretical interest, and because we believe RUV-1 will
indeed prove useful with some forms of high dimensional data (though perhaps not microarray data).

We conclude with a discussion of a special case of RUV-1. Let η = 1, where 1 ≡ 11×n is a row vector of
ones. The RUV-1 operator simplifies to

I − c1′c1

nc

and RUV-1 amounts to setting
Ỹi? = Yi? − Ȳic1.

In words, we subtract off from each sample the average value of the control genes for that sample.
The idea of subtracting off the mean of each sample’s control genes is simple and appealing. It is also the

starting point for other ideas. For example, in addition to mean-shifting each sample so that the controls

48



have mean 0, we might also wish to rescale each sample so that the standard deviation of the control genes
is equal to 1 (or some other number). Taking this idea even further, we might wish to warp the observed
distribution of each sample so that the distribution of the negative controls remains fixed. We do not pursue
this line of thought any further, but the interested reader may wish to consult Wu and Aryee (2010).

Finally, we consider the case η = 1 in the context of the functional approach. In the context of the
functional approach, setting η = 1 is equivalent to allowing f̂ to have an intercept. Is there any advantage
to allowing f̂ to have an intercept? Once again, we consider an example in which m = 2 and k = 1, as in
Section 3.4. Once again, the αj are independent and normally distributed. However, now the expectation
of αj is non-zero. This example is plotted in Figure 9. The orange line is forced through the origin. The red
line is allowed to have an intercept. We prefer the red line to the orange line.

Might we expect to encounter αj with non-zero expectation in practice? Yes and no. Intuitively, we would
certainly expect such αj to exist. Consider scanner sensitivity as a possible source of unwanted variation.
A more sensitive scanner would presumably raise the observed expression level of every gene. Every αj
would be positive. However, with microarray data, this is almost never an issue in practice. The reason
is preprocessing. Quantile normalization effectively fixes the mean of each array to be identical. In most
cases, this fixes the mean of the control genes of each array to be nearly identical as well. For all practical
purposes, it is as if RUV-1 with η = 1 has already been applied. Thus, in the microarray world, RUV-1 with
η = 1 is of limited utility. Nonetheless, we suspect there are examples with other types of high dimensional
data where RUV-1 with η = 1 is useful.

Figure 9: An example in which the expectation of αj is non-zero.

3.9.3 Empirical Controls

In many cases, a researcher will know a priori that βj = 0 for many j, but not know the specific j for which
βj = 0. The researcher would like to discover the j for which βj = 0. She may then use these genes as
“empirical” control genes. Discovering empirical controls is often feasible, but may require some care. In
this section we comment briefly on the strategy of empirical controls.
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There is no single method for discovering empirical controls. This is why we refer simply to the “strategy”
of empirical controls. Nonetheless, we might describe a typical application of the strategy of empirical controls
as follows: First, a researcher designates an initial set of control genes. She then applies an initial analysis,
such as RUV-4. Finally, she notes which genes are found to be significantly associated with X at some
false discovery rate (FDR) and designates all other (insignificant) genes as empirical negative controls. The
initial set of negative controls and the initial method of analysis are left to the discretion of the researcher.
However, even this “typical application” is not set in stone. For example, a researcher may fear that her p-
values are biased (either systematically inflated or deflated) and not trust the FDR. However, if she believes,
for example, that no more than 100 entries of β are non-zero, she may simply rank the genes by p-value and
designate all but the top 100 as empirical negative controls.

The strategy of empirical controls can be iterated. For example, a researcher may begin with an initial
set of control genes, generate a set of empirical controls, and then use this set of empirical controls to produce
a refined set of empirical controls. A related point is that the initial (non-empirical) set of control genes
need not be a “perfect” set of control genes. RUV-4 is relatively insensitive to violations of the control gene
assumption, and it is often OK to include a few genes j such that βj 6= 0 in the initial set of control genes.
For example, if β is known to be sparse, it is often satisfactory to use all genes as an initial set of control
genes. This fact is particularly useful when it is known that β is sparse, but nothing at all is known about
which entries of β are non-zero.

Note that the strategy of empirical controls is much “safer” with RUV-4 than it is with RUV-2. The
reason is that RUV-4 is less sensitive to violations of the control gene assumption. Consider a typical
application of the strategy of empirical controls as described above. It is very unlikely that the initial
analysis will properly identify all differentially expressed genes. The resulting set of empirical controls will
very likely contain genes j such that βj 6= 0. With RUV-2, this may be a serious problem. With RUV-4 it
often is not.

Nonetheless, we recommend that a researcher who chooses to pursue the strategy of empirical controls
do so with particular care. We are unaware of any argument that would guarantee that the strategy of
empirical controls will always lead to better results. We therefore recommend that a researcher pause to
inspect her set of empirical controls, and ensure that they seem reasonable. If a researcher chooses to iterate
the strategy of empirical controls, we recommend that she pause and inspect her empirical controls after each
iteration. Presumably only a very small number if iterations will be required; if the set of empirical controls
keeps changing substantially with each iteration, this may be a sign that something is wrong. Similarly,
we recommend that the researcher evaluate the quality of the initial analysis itself. Gene rankings, p-value
histograms, and projection plots (see Section 5) are all helpful.

The initial analysis does not need to be perfect. The goal of the initial analysis is only to produce a
set of empirical controls that is better than the set of initial controls. This has implications for the choice
of method (and tuning parameters) in the initial analysis. Consider a simple example. Suppose that β is
known to be sparse, but nothing is known about which elements of β are non-zero. A researcher may choose
to include all genes in the set of initial controls. Suppose that some of the non-zero elements of β are quite
large. Even though RUV-4 is relatively insensitive to violations of the control gene assumption, including
genes with large βj in the set of control genes may cause serious problems, particularly when K is large. The
researcher may therefore choose to avoid RUV-inv, stick to RUV-4, and choose an appropriate, relatively
small K “by hand,” i.e. choose K based on p-value histograms, projection plots, etc. Using this approach,
the very large entries of β can be reliably identified and discarded from the set of control genes. It may then
be safe to pursue a second iteration of the strategy of empirical controls. In the second iteration, a larger
value of K, or even RUV-inv may be appropriate.

Finally, note that the “typical” application of the strategy of empirical controls described above relies
on an accurate estimation of the FDR. For this reason, it is important that the method used for the initial
analysis exhibit good control of the type 1 error rate. If the method is too conservative, some genes that are
actually differentially expressed will not appear to be differentially expressed. These genes will be improperly
included in the set of empirical controls. If the method is anti-conservative, many genes that are not actually
differentially expressed will appear to be differentially expressed. These genes will be improperly excluded
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from the set of empirical controls. The ability of a method to properly control the type 1 error rate is
therefore an important consideration to keep in mind when selecting the method to be used in the initial
analysis. In Sections 4 and 5 we see that RUV-rinv is often a suitable choice. Another possibility is to use
either the method of rescaled variances or the method of empirical variances. These methods are the subject
of the next section.

3.9.4 Rescaled and Empirical Variances

In Section 3.6.1 we define

V̂ar
[
β̂jc̄

∣∣∣α?jc̄] ≡
(

1 + b̂WX b̂
′
WX

)
σ̂2
jc̄ . (235)

In other words, conditional on b̂WX , we estimate the conditional variance of β̂jc̄ by multiplying σ̂2
jc̄

by a

fixed constant. In Section 3.6.5 we note that, given a poor choice of K, the σ̂2
j may be either systematically

too large or too small. As a result, the type 1 error rate may be wrong. We now propose a different estimate

of Var
[
β̂jc̄

∣∣∣α?jc̄]. Let

V̂ar
(rs)
[
β̂jc̄

∣∣∣α?jc̄] ≡

 1

nc

∑
jc

β̂2
jc

σ̂2
jc

 σ̂2
jc̄ . (236)

We name this the “rescaled” estimate of the variance. Just as in (235), we estimate the conditional variance

of β̂jc̄ by multiplying σ̂2
jc̄

by a fixed constant. However, in (236) we ignore the theory and simply use the
control genes to figure out what the constant “should” be.

Note that V̂ar
[
β̂jc̄

]
and V̂ar

(rs)
[
β̂jc̄

∣∣∣α?jc̄] differ only by a fixed constant factor. Thus, t-statistics calcu-

lated using rescaled variances will also differ from standard t-statistics only by a fixed constant factor. In
particular, the ordering of the t-statistics will be unaffected, as will the ordering of the p-values.

More generally, we might consider estimates of the form

V̂ar
(emp)

[
β̂jc̄

∣∣∣α?jc̄] ≡ ĝ
(
σ̂2
jc̄

)
(237)

for some function ĝ. If we set ĝ(u) =
(

1 + b̂WX b̂
′
WX

)
u we recover (235); if we set ĝ(u) =

(
1
nc

∑
jc
β̂2
jc
/σ̂2

jc

)
u

we recover (236). In general, however, we need not restrict ĝ to be a linear, or even parametric, function. If a
large proportion of genes are control genes (e.g. empirical controls) it may be possible to fit a nonparametric

function ĝ to the
(
σ̂2
jc
, β̂2
jc

)
pairs. Alternatively, if we do not have many control genes but believe that β

is sparse, it may be possible to fit a nonparametric function ĝ to the pairs
(
σ̂2
j , β̂

2
j

)
using some form of

robust regression that ignores outliers. We refer to such methods generically as “the method of empirical
variances.” We will now discuss one such method in particular.

We begin by re-indexing the genes. We re-order the genes in order of increasing σ̂2 and then bin the
genes into B bins of size S (the final bin may be smaller than S; we ignore this minor complication and
assume n = B × S). We then index genes by bin and number within bin, so that σ̂2

b,s is the sth gene in bin

b. Note that σ̂2
b,s ≤ σ̂2

b′,s′ if b < b′ and that σ̂2
b,s ≤ σ̂2

b,s′ if s < s′.
Let

s?(b) ≡ argmax
s

β̂2
b,s (238)

For each b, remove the (b, s?(b))
th

gene from the dataset. We may view the removal of these genes as the
removal of potential outliers. Alternatively, we may think of the remaining B(S − 1) genes as a set of

empirical controls. Now use some form of non-parametric regression to fit a function ĝ0 to the (σ̂2
b,s, β̂

2
b,s)

pairs of the remaining B(S − 1) genes.
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We do not want to set ĝ = ĝ0. ĝ0 is too small, because we have systematically removed from the dataset
the genes with the largest values of β̂2

b,s. To fix this problem we set

ĝ = νĝ0 (239)

for some value of ν. We choose to set

ν−1 = E

 1

S − 1

∑
t 6=t?

χ2
t

 (240)

where t ranges from 1 to S, the χ2
t are IID and follow a χ2 distribution with 1 degree of freedom, and

t? = argmaxχ2
t .

In all of the examples of this paper we set S = 10. This is arbitrary. Other values of S may perform
better. In particular, one may wish to choose S based on the degree of sparsity of β. For the non-parametric
regression, we choose to use the minimum lower sets algorithm (Wright, 1978; Barlow et al., 1972). This
method restricts ĝ0 to be a non-decreasing function, but otherwise imposes few constraints on ĝ0. We choose
this method for its relative simplicity; one nice feature of the minimum lower sets algorithm is that it does
not require us to set a bandwidth parameter. Other non-parametric regression methods may perform better.

4 Simulation Results

In this section we use simulated data to explore the performance of the various RUV methods. In Section 4.1
we outline the process we use to simulate the data. In Section 4.2 we compare the performance of RUV-2,
RUV-4, and “vanilla” RUV-inv. We find that RUV-4 generally outperforms RUV-2, and that RUV-inv
generally performs as well as RUV-4 at the optimal value of K. In Section 4.3 we compare the several
variants of RUV-inv, both to one another and to SVA, LEAPP, and ICE.3

4.1 The Simulated Data

In all simulations we set m = 50 and n = 10000. We designate nc genes as control genes. The value of nc is
specified separately for each simulation. In some simulations, the control genes are true negative controls,
i.e. βc = 0. In others, the “control genes” have been misspecified and βc 6= 0. Note that when we refer
to “control genes,” we refer to these genes that have been designated as negative controls, whether or not
βc = 0. Conversely, we refer to a gene j as a “true negative control” if βj = 0, whether or not we have
designated gene j to be used as control gene.

We generate the simulation data as follows:

• X is chosen uniformly at random from the unit m− 1 sphere.

• Each column of W0 is chosen uniformly at random from the unit m− 2 sphere lying in the orthogonal
complement of R(X). Each column of W0 is chosen independently of the others, and thus the columns
of W0 are not exactly orthogonal. W is then set equal to W0 +XbWX . bWX is specified separately for
each simulation.

• Some entries of β are set equal to 0. Which entries of β are set equal to 0 is specified separately for
each simulation. Non-zero entries of β are IID standard normal.

• The entries of α are independent and normally distributed with mean 0. The variance of αij depends
only on the row i. Denote the variance of row i by σ2

α,i and denote σα ≡ (σα,1, ..., σα,k). Note that σα
specifies the square roots of the variances, not the variances themselves.

3Note that we do not include comparisons with LMM-EH (Listgarten et al., 2010), since no R package is currently available.
However, we suspect that the performance of LMM-EH would be similar to that of ICE, although LMM-EH may exhibit
somewhat better control of the type 1 error rate. Note Figure 2 of Listgarten et al. (2010); the ROC curve of LMM-EH and
ICE are nearly identical.
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• The individual gene variances σ2
j (not to be confused with the σ2

α,i) are IID and distributed as (0.025S+

.025)2, where S ∼ Exp(1). This distribution roughly approximates empirical distributions of σ2
j that

we have observed in real data.

• The εij are independent and normally distributed with mean 0 and variance σ2
j .

• Finally, we set Y = Xβ +Wα+ ε.

Note that the key parameters that vary from one simulation to the next are: k, bWX , σα, which entries of
β equal 0, and which genes are designated as controls.

4.2 RUV-2 vs. RUV-4 vs. RUV-inv

In this section we run 12 simulations and compare the relative performance of RUV-2, RUV-4, and RUV-inv.
First we discuss the details of the simulations. Then we discuss the results of one of the 12 simulations in
detail. Finally we discuss briefly the results of the remaining 11 simulations.

4.2.1 Simulation Details

In each simulation we set nc = 1000. In six of the simulations (“good controls”), β1j = 0 for every control
gene. In the other six simulations (“bad controls”), β1j = 0 for only 900 of the 1000 control genes.

In the first four simulations k = 20 and

σα = (1.1, 1.0, 0.8, 0.5, 0.4, 0.4, 0.3, 0.3, 0.2, 0.2, .16, .16, .15, .15, .14, .13, .13, .12, .12, .11). (241)

This value of σα is similar to what we observe empirically in the gender dataset. In the first two simulations
(“lightly correlated”) bWX = (.1, ..., .1) and in the second two simulations (“moderately correlated”) bWX =
(.4, .4, .4, .2, ..., .2). Note that in the “moderately correlated” case the columns of W that are most highly
correlated with X correspond to the rows of α with the largest σα,i. In other words, the biggest unwanted
factors are also the most correlated with X.

The next four simulations are “harder.” In these simulations (“moderate decay”) k = 70 and σα =
(1, 1/2, ..., 1/70) . Note in particular that k = 70 > m = 50. In two of the simulations (“lightly correlated”)
bWX = (.1, ..., .1) as before. In the other two simulations (“highly correlated”) the elements of bWX are
chosen uniformly at random from (-1, 1). The final four simulations (“slow decay”) are “harder” still. These
simulations are identical to the previous four, but now σα = (1, 1/

√
2, ..., 1/

√
70).

For all 12 simulations we generate 1000 datasets. We fit each dataset by RUV-2, RUV-4, and RUV-inv.
In the case of RUV-2 and RUV-4, we fit with each value of K from 1 to 47. We also fit each dataset using
a standard linear model that contained only an X term (the “unadjusted” case). All of our models include
an intercept, i.e. a Z = 1m×1 term. We fit all models both with and without Limma (Smyth, 2004).

For every model fit we record the following six quality metrics: (1) the fraction of the 100 genes with
the largest values of β2

1j/σ
2
j that end up being ranked as one of the top 100 most significantly DE genes

(“top ranked fraction”), (2) the fraction of genes with β1j = 0 to have a p-value less than 0.05 (“type 1
error rate”), (3) the fraction of genes with β1j 6= 0 to have a p-value less than 0.05 (“average power”),

(4) the RMSE of β̂ (“beta hat RMSE”), (5) the log of the mean value of σ̂2
j /σ

2
j (“sigma hat scale”), (6)

the IQR of log
(
σ̂2
j /σ

2
j

)
(“rescaled sigma hat IQR”). Of these six quality metrics, the first is arguably the

most important. In practice, the goal of a DE study is usually to produce a list of genes that are “most
interesting” and warrant further study. We will refer to the ability of a method to properly rank top genes
as “discriminative power.”

4.2.2 Results of “k = 20, moderately correlated, good controls”

We plotted the average value (over the 1000 datasets) of each of the six quality metrics. See Figure 10 and
Figures 15-26 in the SM. The results for RUV-2 (brown) and RUV-4 (orange) are shown as a function of K.
The results for RUV-inv (blue) and the unadjusted case (black) are shown by horizontal lines. Solid lines are
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for “standard” estimates of σ2 and dashed lines are for estimates using Limma. The light dotted lines show
95% nominal confidence intervals; these are not always visible as the confidence intervals are quite small.
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Figure 10: Moderately correlated, good controls.

In this section we focus on Figure 10 (“k = 20, moderately correlated, good controls”). The first thing
to notice is that RUV-inv performs very well. In terms of discriminative power, RUV-inv performs about as
well as RUV-2 and RUV-4 at the optimal value of K. The type 1 error rate for RUV-inv is very close to 0.05
(see also Tables 4, 5, 6 in the SM). By comparison, RUV-2 is anti-conservative when K < 20 and RUV-4 is
anti-conservative for all K.

RUV-inv also performs well in terms of its estimation of β and σ2. As expected, the RMSE of β̂
is effectively nonincreasing in K for RUV-4 but not RUV-2. RUV-inv essentially achieves the minimum
RMSE. Also as expected, both RUV-2 and RUV-4 have seriously inflated estimates of σ2 when K < 20.
When K > 20 RUV-4 has slightly deflated estimates of σ2, but RUV-2 is nearly spot-on. RUV-inv has
slightly inflated estimates of σ2. The average value of σ̂2

j /σ
2
j is about 1.16 (see also Tables 4, 5, 6 in the

SM). Nonetheless, these slightly inflated estimates of σ2 do not cause an unreasonable loss in power.

Indeed, the slightly inflated RUV-inv estimates of σ2 are both expected and desirable. Recall that β̂ is
slightly biased. Recall also that σ2 is estimated under the assumption that β̂? is unbiased. Therefore it
is reasonable to expect that σ̂2 will be slightly inflated due to the biases of β̂?. The end result is that we
essentially fold the small biases of β̂? into the estimate σ̂2, and thereby keep the type 1 error rate in check.
Of course, there is no guarantee that the type 1 error rate will equal 0.05 in all situations. Nonetheless, the
inflated estimates of σ2 are often a useful feature in practice. Finally, note that RUV-inv achieves a nearly
optimal value of IQR

[
log
(
σ̂2
j /σ

2
j

)]
, suggesting that RUV-inv makes good use of all the degrees of freedom

that are available to estimate σ2.
An interesting conclusion of Figure 10 seems to be that the primary determinant of the discriminative
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power is the quality of the estimate of σ2, and not the quality of the estimate of β. We arrive at this
conclusion by noting several facts. First, note that although the RMSE(β̂) curves for RUV-2 and RUV-4
diverge substantially for K > 20, the curves for the discriminative power of RUV-2 and RUV-4 without
Limma (solid lines) follow each other very closely. This suggests that the quality of β̂ is not the main
determinant of the discriminative power. Secondly, note that the discriminative power is substantially
higher when we use Limma (dashed lines). This suggests that the quality of σ̂2 is important. Moreover, the
improvement in discriminative power offered by Limma is largest when K is large, where the quality of σ̂2 is
poorest. Even more tellingly, the curves for the discriminative power of RUV-2 and RUV-4 with Limma do
diverge for large K; once the problem of the poor estimates of σ2 at large K has been “solved” by Limma,
it becomes possible to see the difference between the performance of β̂(RUV−2) and β̂(RUV−4). Finally, we
observe that the the “kinks” in the discriminative power curves at K = 20 are very similar to the kinks in
the curves of the IQR of log

(
σ̂2
j /σ

2
j

)
. Indeed, the entire discriminative power curve is visually similar to the

IQR
[
log
(
σ̂2
j /σ

2
j

)]
curve, just upside down.

4.2.3 Results of the Remaining Simulations

Turning now to the other 11 simulations (see Figures 15-26 in the SM), we see that many, but not all, of the
conclusions of Figure 10 are true more generally. In terms of discriminative power, RUV-4 performs almost
uniformly better than RUV-2, and RUV-inv performs about as well as RUV-4 at the optimal value for K.
The RMSE of β̂ falls then rises again for RUV-2, but is essentially nonincreasing for RUV-4. RUV-4 is often
anti-conservative, sometimes substantially. With RUV-2, the type 1 error rate is good for large K, but this
is a moot point because the discriminative power of RUV-2 is poor at large K. For small K, the type 1 error
rate can exhibit strange behavior in both RUV-2 and RUV-4. RUV-inv generally exhibits better control
of the type 1 error rate than RUV-4, but is not perfect. RUV-inv tends to be anti-conservative when the
unwanted factors are strongly correlated with factor of interest, and, to a lesser extent, when the control
genes are misspecified. RUV-inv does a fairly good job of estimating σ2 when k = 20. Not surprisingly, no
method does a particularly good job of estimating σ2 when k = 70 > m.

We also see in the other simulations the effects of misspecified control genes. To a large extent, the
“bad controls” do not affect RUV-4 or RUV-inv. RUV-2, by contrast, is very sensitive to the control gene
assumption. The performance of β̂(RUV−2) deteriorates considerably when the control genes are misspecified.
This has serious consequences for both the discriminative power and type 1 error rate. Moreover, the
consequences are not entirely predictable. Both the discriminative power and type 1 error rate may be
complicated functions of K. See, for example, Figures 16 and 18.

4.3 A Comparison of Methods

In this Section we run 24 simulations to compare the relative performance of SVA, LEAPP, ICE, RUV-4, and
RUV-(r)inv and their variants (empirical controls, rescaled variances, empirical variances). First we discuss
the details of the simulations. Then we discuss the results of one of the 24 simulations in detail. Finally we
discuss briefly the results of the remaining 23 simulations.

4.3.1 Simulation Details

The simulations of this section are similar to those of Section 4.2. In 12 of the simulations, k = 20 and σα
is set as in (241). In the other 12 simulations k = 70 and σα is set as in “moderate decay.” In 12 of the
simulations bWX is set as in “lightly correlated” and in the other 12 as in “highly correlated.” In all of the
simulations all of the control genes are good controls, but in 12 of the simulations nc = 1000 and in the other
12 simulations nc = 60.

Unlike Section 4.2, here we also vary the sparsity of β. In eight of the simulations (“very sparse”), only
100 elements of β are non-zero. In another eight simulations (“sparse”) only 500 elements of β are non-zero.
In the remaining eight simulations (“not sparse”) 5000 elements of β are non-zero. There are a few other
minor differences as well. We generated only 100 datasets per simulation instead of 1000. We did not fit
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with Limma. We report the mean value of σ̂2
j /σ

2
j directly (instead of the log). We report only the results of

RUV-4 for k̂ and not all values of K. In some of the methods we make use of empirical controls. We define
empirical controls to be all genes whose RUV-rinv FDR-adjusted p-values is greater that 0.5.

Note that we do not report the results of RMSE(β̂), AVG(σ̂2
j /σ

2
j ), or IQR[log(σ̂2

j /σ
2
j )] for the rescaled

variances or empirical variances methods, since these results are identical to those of the standard method.
We also do not report AVG(σ̂2

j /σ
2
j ) or IQR[log(σ̂2

j /σ
2
j )] for ICE, since ICE, which is based on a random

effects model, does not return an estimate of the equivalent of the σ2 that exists in our model.

4.3.2 k = 20, moderately correlated, nc = 60, sparse

As in the Section 4.2, we discuss the results of just one of the simulations in detail. We present the results
of the other simulations in the Supplementary Material. The simulation we discuss in detail is “k = 20,
moderately correlated, nc = 60, sparse”. The results of this simulation are given in Table 2.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.52 (4× 10−3) 0.47 (5× 10−4) 0.66 (2× 10−3) 0.707 (5× 10−4) 53.02 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.72 (4× 10−3) 0.10 (5× 10−3) 0.78 (2× 10−3) 0.170 (3× 10−3) 6.08 (7× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.72 (4× 10−3) 0.11 (5× 10−3) 0.80 (2× 10−3) 0.163 (3× 10−3) 6.03 (7× 10−2) 1.05 (4× 10−3)
LEAPP 0.72 (4× 10−3) 0.26 (8× 10−3) 0.86 (2× 10−3) 0.133 (2× 10−3) 5.22 (7× 10−2) 1.06 (3× 10−3)
ICE 0.80 (2× 10−3) 0.00 (4× 10−5) 0.72 (2× 10−3) 0.091 (6× 10−4)
RUV-4 0.78 (1× 10−2) 0.12 (3× 10−3) 0.80 (7× 10−3) 0.151 (3× 10−3) 0.96 (1× 10−3) 0.73 (3× 10−2)
RUV-inv 0.72 (4× 10−3) 0.02 (1× 10−3) 0.62 (1× 10−2) 0.209 (5× 10−3) 1.57 (1× 10−2) 1.01 (1× 10−2)
RUV-rinv 0.82 (3× 10−3) 0.06 (2× 10−3) 0.84 (2× 10−3) 0.110 (1× 10−3) 1.98 (1× 10−2) 0.62 (3× 10−3)
RUV-inv (Ectl) 0.90 (2× 10−3) 0.05 (8× 10−4) 0.87 (2× 10−3) 0.090 (6× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.89 (2× 10−3) 0.06 (1× 10−3) 0.87 (2× 10−3) 0.092 (7× 10−4) 1.35 (1× 10−3) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.90 (2× 10−3) 0.05 (2× 10−3) 0.87 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.89 (2× 10−3) 0.05 (2× 10−3) 0.86 (3× 10−3)
RUV-inv-evar (Ectl) 0.83 (4× 10−3) 0.01 (2× 10−4) 0.82 (2× 10−3)
RUV-rinv-evar (Ectl) 0.83 (3× 10−3) 0.01 (3× 10−4) 0.82 (2× 10−3)

Table 2: k = 20, moderately correlated, nc = 60, sparse.

First we discuss RMSE(β̂). All of the methods show a substantial improvement over “unadjusted,” but
the best performance comes from ICE and RUV-(r)inv with empirical controls. Without empirical controls,
RUV-inv performs considerably worse. This is as expected, since nc = 60 is only a little larger than m = 50,
and b̂WX suffers from over-fitting. Compared to RUV-inv without empirical controls, RUV-rinv without
empirical controls performs much better — nearly as well as RUV-(r)inv with empirical controls. The
ridging clearly helps. The remaining methods, all of which rely on an estimate of k, perform moderately
well.

Next we discuss σ̂2. All of the methods show improvement over “unadjusted.” The best overall perfor-
mance comes from RUV-inv with empirical controls. RUV-rinv with empirical controls also performs quite
well. RUV-4 performs exceptionally well in terms of AVG(σ̂2

j /σ
2
j ), but less so in terms of IQR[log(σ̂2

j /σ
2
j )];

RUV-4 gets the overall “scale” of σ2 right, but does not do as good of a job at estimating the individual
σ2
j . Both RUV-inv and RUV-rinv without empirical controls suffer from the fact that nc is only 60, but

in different ways. RUV-rinv performs worse than RUV-inv in terms of AVG(σ̂2
j /σ

2
j ) but better in terms of

IQR[log(σ̂2
j /σ

2
j )]. The remaining methods, which rely on an estimate of k, do not perform as well as the

inverse method and its variants.
Now we discuss the discriminative power. Given our discussions of RMSE(β̂) and σ̂2, our findings

regarding discriminative power are no surprise. All of the methods offer an improvement over “unadjusted.”
RUV-4 performs moderately well. RUV-inv suffers from the fact that nc is small and performs worse
than RUV-4. RUV-rinv overcomes the problem of a small nc and outperforms both RUV-4 and RUV-inv.
However, RUV-(r)inv with empirical controls performs the best. Empirical controls are the best way to
handle the small nc. Finally, note that out of SVA, LEAPP, and ICE, ICE performs the best.

There is considerable variation between the methods in terms of their control of the type 1 error rate.
SVA, LEAPP, and RUV-4 are all notably anti-conservative. ICE is excessively conservative. RUV-inv is also
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too conservative. RUV-rinv, and both RUV-inv and RUV-rinv with empirical controls, demonstrate quite
good control of the type 1 error rate. Using rescaled variances in this case works, but is not needed. On
the other hand, using empirical variances actually makes things worse. The problem is that even though
only 500 of the 10,000 elements of β are non-zero, this is still not sparse enough for the method of empirical
variances. As a result, both the type 1 error rate and the discriminative power are adversely affected.

4.3.3 Results of the Remaining Simulations

We turn now to the other simulations. We begin with a comparison of RUV-4, RUV-inv, and RUV-rinv.
The relative performance of these methods depends on whether nc = 1000 or nc = 60. When nc = 1000,
RUV-inv performs best. When nc = 60, RUV-rinv performs best.

When nc = 1000, all three methods generally perform well in terms of discriminative power. RUV-inv
performs the best. RUV-rinv is a close second. RUV-4 performs a little worse, particularly when X is
highly correlated with W . The differences between the methods are more pronounced in terms of the type
1 error rate. In terms of the type 1 error rate, RUV-inv clearly performs the best. RUV-inv exhibits good
control of the type 1 error rate in most cases, but is notably anti-conservative when k = 70 and X is highly
correlated with W . RUV-rinv is more anti-conservative than RUV-inv in all cases, and RUV-4 is even
more anti-conservative than RUV-rinv. The differences between RUV-inv, RUV-rinv, and RUV-4 are most
pronounced when k = 70 or when X is highly correlated with W .

When nc = 60, the story is much different. RUV-rinv performs the best by far, and RUV-inv performs the
worst. RUV-inv is overly conservative and exhibits poor discriminative power. RUV-rinv is anti-conservative,
but exhibits far more discriminative power. RUV-4 is more anti-conservative than RUV-rinv. The discrimi-
native power of RUV-4 is generally somewhere between that of RUV-inv and RUV-rinv.

We now consider the use of empirical controls. The empirical controls work as expected. Performance of
RUV-(r)inv with empirical controls is roughly the same as the performance of RUV-(r)inv without empirical
controls but with nc = 1000. RUV-inv does slightly better than RUV-rinv. Importantly, note that the
performance of the empirical controls is essentially the same whether the initial nc is equal to 1000 or 60. In
other words, if we begin with just 60 control genes, use RUV-rinv to generate empirical controls, and then
apply RUV-(r)inv, we get results just as good as if we had 1000 control genes to begin with.

Next we consider the use of rescaled and empirical variances. The rescaled variances work as expected.
The use of rescaled variances does not affect discriminative power in any way. The type 1 error rate is much
better with rescaled variances than without. Across all 24 simulations, the average type 1 error rate with
rescaled variances is never less than 0.04 nor greater than 0.08. Without rescaled variances, the range is 0.05
to 0.24. The empirical variances also work as expected. In all 8 “very sparse” simulations, the average type
1 error rate with empirical variances is 0.05. The discriminative power with empirical variances is equal to
or slightly better than the discriminative power without empirical variances. However, the usefulness of the
empirical variances is limited to the case that β is very sparse. In the 16 other simulations (“sparse” and
“not sparse”) the use of empirical controls leads to a serious decrease in performance.

Finally, we consider the performance of SVA, LEAPP, and ICE. Of these methods, ICE performs the
best in all cases except those in which k = 70 and β is not sparse. Note that ICE tends to be extremely
conservative, while SVA and LEAPP tend to be extremely anti-conservative. Finally, note that RUV-inv
with empirical controls and rescaled variances performs at least well as any other method. When β is very
sparse, ICE performs as well as RUV-inv with empirical controls and rescaled variances, but only in terms
of discriminative power (not type 1 error rate). SVA and LEAPP also perform reasonably well when β is
very sparse.

5 Data Results

In this section we apply the RUV methods to the datasets of Section 2. We analyze all 11 datasets the same
way. In Section 5.1 we describe the details of the analyses. In Sections 5.2 and 5.3 we describe two types of
plots we use to visualize the results of our analyses. In Section 5.4 we discuss the results of our analyses.
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5.1 Analysis Details

Let κ, κ1, and κ2 be index variables that range over the symbols {0, 1, 2, ...,m − 2, k, i, r}. Note that m,
in italics, is a variable that stands for the number of arrays; k, i, and r are not variables, but just letters.
Define estimates β̂(κ) as follows: when κ = 0, β̂(κ) is the OLS estimate of β in a regression of Y on X; when
κ ∈ {1, ...,m− 2}, β̂(κ) is the RUV-4 estimate of β with K = κ; when κ = k, β̂(κ) is the RUV-4 estimate of

β with K = k̂; when κ = i, β̂(κ) is the RUV-inv estimate of β; when κ = r, β̂(κ) is the RUV-rinv estimate of

β. Define (σ̂2)(κ), Ŵ (κ), b̂
(κ)
WX , etc. similarly; note that Ŵ (κ) and b̂

(κ)
WX are undefined when κ = 0.

Let v
(s,κ1,κ2)
j denote the “standard” estimate of the variance of β̂

(κ1)
j , given an estimate (σ̂2

j )(κ2) of σ2
j .

For example,

v
(s,2,r)
j =

(
σ̂2
j

)(r) [
1 +

(
b̂
(2)
WX

)′
b̂
(2)
WX

]
(242)

and

v
(s,i,4)
j =

(
σ̂2
j

)(4)
[
1 +

(
b̂
(i)
WX

)′
b̂
(i)
WX

]
. (243)

Let v
(e,κ1,κ2)
j denote the empirical estimate of the variance of β̂

(κ1)
j , given estimates (σ̂2

j )(κ2) of σ2
j .

Define the t statistic

t
(s,κ1,κ2)
j ≡

β̂
(κ1)
j√

v
(s,κ1,κ2)
j

(244)

and define t
(e,κ1,κ2)
j similarly. Define the p-value

p
(s,κ1,κ2)
j ≡ P

[
|t| >

∣∣∣t(s,κ1,κ2)
j

∣∣∣∣∣∣t(s,κ1,κ2)
j

]
(245)

where t follows a t distribution with an appropriate number of degrees of freedom (e.g. m − 1 degrees of

freedom if κ2 = 0, m − 6 degrees of freedom if κ2 = 5, or r̂ degrees of freedom if κ2 = i). Define p
(e,κ1,κ2)
j

similarly.

For fixed values of κ1 and κ2, consider the N ≤ n genes with the N smallest p-values p
(s,κ1,κ2)
j . Let

C(s,κ1,κ2,N) denote the number of these top-ranked genes that are located on the X or Y chromosomes (we
choose “C” for “top rank Count”). C(s,κ1,κ2,N) is one of the most important statistics we use to compare
the effectiveness of the various methods. Next define the statistic

T (s,κ1,κ2) ≡ log

medianj

∣∣∣t(s,κ1,κ2)
j

∣∣∣
T0

 . (246)

Here T0 is the 50th percentile of |t|, where t follows a t distribution with an appropriate number of degrees

of freedom. Assuming β is sparse, T (s,κ1,κ2) is a good measure of whether the t-statistics t
(s,κ1,κ2)
j are too

big or too small. Now, consider all genes that do not come from the X or Y chromosomes. Let E(s,κ1,κ2)

denote the fraction of these genes whose p-value p
(s,κ1,κ2)
j is less than 0.05. We use E(s,κ1,κ2) as an effective

type 1 error rate.4 Finally, define C(e,κ1,κ2,N), T (e,κ1,κ2), and E(e,κ1,κ2) similarly to C(s,κ1,κ2,N), T (s,κ1,κ2),
and E(s,κ1,κ2).

4It is worth noting that in the course of our analyses we have been unable to produce any convincing evidence that there are
any autosomal genes that are differentially expressed between the brains of men and women. To be sure, in each of the datasets
we examine, there are a few autosomal genes with small FDR-adjusted p-values. However, none of these genes are consistently
“significant” across multiple datasets.
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Our analyses proceed as follows. First we define three sets of control genes. The first set is the set of
housekeeping genes. The second set includes all genes. The third set is a set of empirical controls. Then,
for each set of control genes, for each possible pair (κ1, κ2), and for each value of N in {20, 40, 60, 80, 100},
we calculate C(s,κ1,κ2,N), T (s,κ1,κ2), C(e,κ1,κ2,N), and T (e,κ1,κ2). We also calculate E(s,κ,κ) and E(e,κ,κ) for
κ ∈ {k, i, r}.

Some notes: All of our models include a Z = 1m×1 term. This is not reflected in the notation above.
All of our estimates of σ2 are unadjusted; we do not use Limma. To generate the empirical controls, we
simply regress Y on X, compute FDR-adjusted p-values, and designate all genes with FDR-adjusted p-values
greater than 0.5 as empirical controls. This is a very crude application of the strategy of empirical controls.
The rationale for this choice of empirical controls is to demonstrate that even a crude application of the
strategy will often be effective. Still, we encourage researchers to be cautious in their own applications of
the strategy.

In addition to the analysis just described, we also analyze each dataset by SVA, LEAPP, and ICE. For
each of these methods, we rank genes by p-value, and count the number of genes in the top 20 / 40 / 60 /
80 / 100 that are on the X or Y chromosomes. We also calculate an “effective type 1 error rate” analogous
to the one described above.

5.2 Summary Plots

We need a way to visualize our results. We accomplish this with “summary plots.” An example summary
plot is given in Figure 11. Summary plots are rather complex. The purpose of this section is to describe
them.

Ignoring the color scales on the far left, each summary plot can be divided into 4 identically “shaped”
divisions. On the top are two divisions with colors ranging from black to red to green to blue. On the bottom
are two divisions with colors ranging from red to white to blue. Each division can be further divided into
nine subdivisions. These subdivisions do not all have the same shape. The top left subdivision is a single
colored square; the middle subdivision is a giant multi-colored square with many rows and columns; etc.

We now describe the top left division. The top left division is a plot of C(s,κ1,κ2,N) for all values of (κ1, κ2).
Each row of the plot represents a different value of κ1; each column of the plot represents a different value
of κ2. The value of C(s,κ1,κ2,N) is given by the color. An example: The top left corner of the bottom right
subdivision is a light greenish yellow color. Referring to the color scale on the far left, we see that this color
corresponds to a value of 24. Thus C(s,k,k,40) = 24. In other words, if we run RUV-4 with K = k̂ and
rank genes by p-value, we will find that 24 of the top 40 genes are on the X or Y chromosomes. A second
example: In the middle column of the middle-right subdivision, the 11th square from the top is a light green
color. Referring to the color scale on the far left, we see that this color corresponds to a value of 25. Thus
C(s,11,i,40) = 25. In other words, if we run RUV-4 with K = 11 to get our estimate of β, but estimate σ2

using RUV-inv, we will find that 25 of the resulting top 40 genes are on the X or Y chromosomes. Note the
black lines in the 16th row and 16th column of the middle subdivision. These black lines represent k̂; k̂ in
this example is equal to 16. Note that the color at the intersection of these lines is the same as the color in
the top left square of the bottom right subdivision.

The other divisions are analogous to the top left division. The top right division is a plot of C(e,κ1,κ2,N)

instead of C(s,κ1,κ2,N). The bottom left division is a plot of T (s,κ1,κ2). The bottom right division is a plot
of T (e,κ1,κ2). Note that in the case of the bottom divisions, shades of red correspond to t-values that are
generally “too small.” p-vales are therefore “too big” and the method is conservative. Conversely, shades
of blue correspond to t-values that are generally “too big,” p-vales that are “too small,” and the method is
anti-conservative. White is just right.

We have described the mechanics of reading the summary plots. We now give a few brief examples of how
the summary plots can be used to learn something. First note that the upper right division is “greener” than
the upper left division. From this we learn that using empirical variances increases the discriminative power
(on this dataset). Next observe that the lower right division is “whiter” than the lower left division. From
this we learn that using empirical variances leads to better control of the type 1 error rate. Now consider
just the middle subdivision of the upper left division. Note that as we move downwards through the rows,
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Figure 11: Example Summary Plots. Alzheimer’s (Preprocessed) dataset, HK controls. X/Y gene counts
are out of the top 40 genes.

the rows are roughly non-decreasing in green-ness. This tells us that the quality of β̂ as an estimator of β is
roughly non-decreasing in K. Conversely, moving from left to right, the columns first get greener, and then
fall to black. This tells us that σ̂2 is only a good estimator of σ2 when K is somewhere between 6 and 17.

5.3 Projection Plots

In Sections 3.4 and 3.8 we considered examples in which m = 2. We were able to plot each gene as a point
in 2-dimensional space. These plots were very helpful for visualizing and understanding RUV-4. We would
like to produce similar plots for m > 2. Such plots would be a very useful diagnostic tool when applying
RUV-4 to real data.

When m = 2 and K = 1 the column space of Ŵ can be represented as a line passing through the origin.
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The slope of the line is b̂WX . When m > 2 and K > 1 this is no longer possible. The column space of Ŵ is
a hyperplane and cannot be graphed in two dimensions. Still, it is possible to produce similar, helpful plots.

One possibility is to produce one plot for each factor. Recall that in the figures of Section 3.4, the vertical
axis represents bY X = X ′Y and the horizontal axis represents α̂. When m > 2, K will generally be greater
than 1 and α̂ will have more than one row. So, we might want to make a collection of K plots, one for each
row of α̂. More specifically, for each i, 1 ≤ i ≤ K, we could plot bY X vs. α̂i?. Examples of such plots can
be found in Figure 12, A and B. Here, i = 1, 4. In these plots the vertical position of the jth dot represents
X ′Y?j and the horizontal position of the dot represents α̂ij = (Ŵ0)′?iY?j . In other words, each dot represents

a projection of Y?j into the 2-dimensional subspace spanned by X and the ith column of Ŵ0. We therefore

refer to these plots as projection plots. The black line is a cross section of the hyperplane spanned by Ŵ .
This line passes through the origin and its slope is the ith entry of b̂WX .

Projection plots allow us to see visually how the observed signal of the factor of interest (i.e., bY X) varies
with the observed signal of the ith unwanted factor (i.e., α̂i?). These projection plots are useful diagnostic
tools. For example, we may use them to see whether the “practical assumptions” of Section 3.8.3 seem
plausible. We may use the projection plots to visually inspect whether the negative controls seem to be
well described by a linear function function that passes through the origin. We may use the projection
plots to visually inspect whether the negative controls seem “representative.” More generally, we can use
projection plots to learn interesting features of the data, such as outliers, that may not be immediately
apparent otherwise.

One problem with these plots is that, unlike in Section 3.4, the vertical distance from a dot to the black
line does not represent β̂j . If it were possible to construct a (K+1)-dimensional graph in which the “vertical”
axis represented bY X and the K “horizontal” axes represented the K rows of α̂, and we drew a hyperplane
that spanned the space of Ŵ , then β̂j would be represented by the vertical distance from the jth dot to the
hyperplane. But of course the height of the hyperplane may vary along each of the K horizontal axes, and
this is not something that we are able to capture in our projection plots. Instead, our black line is only a
single cross-section of the hyperplane.

One way to deal with this issue is to “adjust” for the other factors. Instead of plotting bY X on the vertical
axis, we may plot an “adjusted” bY X . More specifically, suppose we are creating a plot for factor i, and as
before we plot α̂i? on the horizontal axis. Instead of plotting bY X on the vertical axis we may wish to plot

bY X − b̂(−i)WX α̂
(−i), where b̂

(−i)
WX is b̂WX with the ith entry removed and α̂(−i) is α̂ with the ith row removed.

(It may be helpful at this point to recall equation (37). It may also be helpful to note that the quantity to

which we refer could also be written as b̂Y X.W (−i) .) Examples of such plots are given in Figure 12, C and D.

We still draw a black line that passes through the origin and whose slope is the ith entry of b̂WX . In these
plots, it is indeed the case that β̂j is the vertical distance from the jth dot to the black line. Unfortunately,
however, these plots lose their interpretation as “projection plots.” The points are no longer (orthogonal)
projections into the space spanned by X and the ith column of Ŵ0. Despite this, we will refer to these plots
somewhat inappropriately as “adjusted projection plots.”

As with the unadjusted projection plots, what the adjusted projection plots show us is how the observed
signal of the factor of interest varies with the observed signal of the ith unwanted factor — but after
adjustment for the other K − 1 unwanted factors. This adjustment allows us to see more clearly the joint
variation between the observed signal of the factor of interest and the observed signal of the ith unwanted
factor. In Figure 12, compare C to A and D to B. The dots in C and D are more tightly clustered around
the black line than the dots in A and B. For the green dots this is simple mathematical fact; the hyperplane,
after all, is fit to the negative controls. Increasing K will result in an even tighter fit. For the other dots,
however, the tighter fit is an indication that the adjustment is effectively removing unwanted variation. Note
that adjusted projection plots, because they give some sense of the quality of the adjustment, are a useful
tool in choosing an appropriate K.

We now consider a final variant of projection plot. Recall that for a (unadjusted) projection plot, we
project Y into the 2-dimensional subspace spanned by X and the ith column of Ŵ0. More formally, we may
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define the projection operator

P̃ (i) ≡
(

(Ŵ0)?i

∣∣∣X)′ . (247)

A projection plot of factor i is simply a plot of

Ỹ (i) ≡ P̃ (i)Y. (248)

Ỹ (i) is a 2×n matrix. Each column of Ỹ (i) corresponds to one point on the projection plot; the entry in the
first row gives the horizontal component, and the entry in the second row gives the vertical component.

Note in particular that these projection plots are defined in terms of the individual columns of Ŵ0. There
is one projection plot for the first column of Ŵ0, another projection plot for the second column of Ŵ0, etc.
However, we need not restrict ourselves to individual columns. We may also wish to consider projection
plots that are defined in terms of linear combinations of the columns of Ŵ0. More formally, let q be some
arbitrary K × 1 vector of unit length. We may wish to consider projections of the form

P̃ (q) ≡
(
Ŵ0q

∣∣∣X)′ . (249)

Each choice of q gives us a different perspective of the data. Is there some value of q that is particularly
illuminating? Indeed there is:

b̂′WX∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣ .
This is the gradient direction of the hyperplane. We define P̃ (without a superscript) as

P̃ ≡

Ŵ0b̂
′
WX∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣
∣∣∣∣∣∣X
′ (250)

and let Ỹ ≡ P̃ Y . We refer to
Ŵ0b̂

′
WX∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣
as the “gradient factor” and to a plot of Ỹ as a “gradient factor projection plot.” For an example, see Figure
12, E. As before the black line is a cross section of the hyperplane. This line passes through the origin and

has slope
∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣.
The gradient factor projection plot combines the two main advantages of unadjusted and adjusted pro-

jection plots: it is a true projection plot and the vertical distance of the jth dot to the black line is equal to
β̂j . Indeed, the 2-dimensional subspace spanned by X and the gradient factor is a uniquely special subspace.

The value of β̂j is determined entirely by the projection of Y?j into this subspace, i.e. by Ỹ?j . Components

of Y?j orthogonal to both X and the gradient factor play no role in the determination of β̂j . Observe:

β̂ = bY X − b̂WX α̂ (251)

= X ′Y − b̂WXŴ
′
0Y (252)

= Ỹ2? −
∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣ Ỹ1?. (253)

So β̂j is determined by Ỹ2,j and Ỹ1,j . Components of Y?j orthogonal to both X and the gradient factor do

not matter. More specifically, we see that β̂j is given by the vertical distance from the jth dot to the line.

Note that Ỹ2,j is the height of the jth dot and
∣∣∣∣∣∣b̂′WX

∣∣∣∣∣∣ Ỹ1,j is the height of the line directly below the jth

dot.
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Gradient factor projection plots can be easily generalized to RUV-2. Although Ŵ0 does not play the same
central role in RUV-2 that it does in RUV-4, RUV-2 still produces an estimate of W , and the columnspace
of Ŵ defines a hyperplane. This hyperplane has a gradient, and we can produce a gradient factor projection
plot. For an example, see Figure 12, F.

The gradient factor projection plot is arguably the single most useful projection plot. The other projection
plots are also very helpful and we encourage their use, but it can be overwhelming to present all of them (for
the various values of i) in a research paper. In what follows we therefore limit ourselves to gradient factor
projection plots, and refer to these plots simply as “projection plots.”
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A: Factor 1, unadjusted B: Factor 4, unadjusted

C: Factor 1, adjusted D: Factor 4, adjusted

E: Gradient factor (RUV-4) F: Gradient factor (RUV-2)

Figure 12: Projection Plots for the Gender dataset. HK controls. See text for details. Coloring scheme:
negative controls, green; X-genes, pink; Y-genes, blue; X/Y-genes, purple; all other genes, gray. Note that
we plot the gray dots first, followed by the green, the pink, the blue, and the purple. Thus many of the green
and gray points are hidden behind the pink.
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5.4 Results

We now discuss the results of our analyses. A complete set of summary plots is provided in Section C of
the SM. Section C also provides projection plots for RUV-2, RUV-4, RUV-inv, and RUV-rinv. Section D
provides a complete set of tables listing the values of top-ranked gender gene counts and effective type 1
error rates for Combat(where applicable), SVA, LEAPP, ICE, RUV-4, RUV-inv, RUV-rinv.

5.4.1 The Practical Assumptions

We begin our discussion by inspecting the projection plots. In Section 3.8 we noted that the success of RUV-4
depends critically on two “practical assumptions.” The first is that the (α̂?j , Bj(α)) pairs are well described
by a linear function passing through the origin. The second is that the control genes are “representative” of
the other genes. We would like to check that these assumptions are plausible.

Now, B(α) is unobservable. However, in our model, bY X = β +B(α) + ζ. Thus, if βj = 0 it follows that
(bY X)j ≈ Bj(α). Moreover, we do not expect gender to affect the expression levels of more than a handful
of genes, and we therefore expect that βj = 0 for the vast majority of the genes; we believe that β is very
sparse. Thus, if it is true that the (α̂?j , Bj(α)) pairs are well described by a linear function passing through
the origin, it should also be the case that the vast majority of the (α̂?j , (bY X)j) pairs are well described by
a linear function passing through the origin. An examination of the projection plots suggests that this is
indeed the case. See, for example, Figures 12 and 13.

An examination of the projection plots also suggests that the control genes are “representative” of the
rest of the genes. See, for example, Figure 12. The green dots are more or less representative of the gray
dots. The housekeeping genes in the TCGA datasets appear to be an exception. See, for example, the top
left plot of Figure 13. However, the problem evident in Figure 13 is less an issue of the housekeeping genes
being “unrepresentative” than it is an issue of RUV-inv overfitting to the housekeeping genes. The problem
goes away when we use RUV-rinv instead.

5.4.2 RUV-2 vs RUV-4

We very briefly compare the performance of RUV-2 to that of RUV-4. Our analysis of RUV-2 is limited
to projection plots. In many cases RUV-2 appears to perform fairly well. See, for example the RUV-2
projection plots of the TCGA datasets with housekeeping or empirical controls (Section C of the SM). In
many other cases, however, RUV-2 suffers from the problems outlined in Section 3.4. See, for example,
Figure 12; RUV-4 is clearly preferable.

Many of the examples in Section C of the SM are far more dramatic than Figure 12. This is particularly
true when the control genes are misspecified. In the case of the Alzheimer’s and Gender datasets, RUV-4
performs just fine even when all genes are used as control genes. RUV-2, however, performs horribly. In the
case of the TCGA data, both RUV-2 and RUV-4 are adversely affected by misspecification of the control
genes. However, RUV-2 performs far worse.

Finally, note that the comparison here between RUV-2 and RUV-4 is not entirely fair. RUV-2 is more
sensitive to the choice of K than RUV-4. In their discussion of RUV-2, Gagnon-Bartsch and Speed (2012)
emphasize the importance of exercising judgment when selecting K, and using quality measures such as RLE
plots, p-value histograms, and gene rankings to guide the choice of K. We did not do that here. Had we
been more careful in our selection of K, the performance of RUV-2 may have been considerably better.

5.4.3 Choice of K

We now examine the choice of K on the performance of RUV-4. Our first observation is that, in many
cases, setting K to be very large does not notably hurt the performance of β̂. See, for example, Figure
11. However, there are exceptions. One exception is when K is large relative to nc. This occurs in the
TCGA examples when we use housekeeping genes as controls. See Figures 31, 32, and 33 in the SM. The
summary plots show that the quality of β̂ decreases for large K; the projection plots (RUV-inv) show that
the reason is overfitting to the control genes. A second exception is when the control genes are misspecified.
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RUV-inv (Housekeeping) RUV-inv (Full)

RUV-rinv (Housekeeping) RUV-inv (Empirical)

Figure 13: Projection Plots of TCGA HG-U133A.

Misspecification of the control genes is not necessarily a problem in and of itself, but becomes a problem
when K is very large. This can be seen in the TCGA examples. When we use all genes as control genes, the
quality of β̂ is poor when K is greater than 100 or so. See Figures 31, 32, and 33 in the SM. The summary
plots show that the quality of β̂ decreases for large K; the projection plots (RUV-4 and especially RUV-inv)
show that the reason is misspecification of the control genes.

Our second observation is that σ̂2 performs poorly both when K is too small and when K is too large.
See, for example, Figure 11. The discriminative power is poor both when K is small and when K is large.
Moreover, the plot of T (s,κ1,κ2) suggests that σ̂2 is generally too large when K is small and σ̂2 is too small
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when K is large. However, there is good news as well. In many cases, the discriminative power is only hurt
by a poor estimate of σ̂2 when the value of K is relatively extreme. See, for example, Figures 31, 32, and 33
in the SM. As long as K is not so small that σ̂2 is severely biased by unwanted variation that has not been
properly adjusted for, and as long as K is not so large that σ̂2 must be estimated using only a few degrees
of freedom, σ̂2 is “good enough” from the point of view of discriminative power. Of course, the overall scale
of σ̂2 (i.e. σ̇2) remains an issue. The plots of T (s,κ1,κ2) suggest that σ̇2 — and thus the type 1 error rate —
is fairly sensitive to the choice of K. Fortunately, we can solve this problem by using empirical variances.

Our final observation is that k̂ is a decent, but not great, choice of K. Although k̂ may be informative, we
do not advise relying solely on k̂ when selecting K in practice. Gene rankings, p-value histograms, projection
plots, etc. should be considered as well. Perhaps more importantly, we observe that in most of the examples,
there is no single “best” choice for K. A value of K that is good for β̂ is not necessarily good for σ̂2, and
vice versa. It may be better to select two values of K; one value, K1, could be used when estimating β, and
another, K2, could be used when estimating σ̂2. Note, however, that even if we allow ourselves to use two
separate Ks, it is still not necessarily the case that a choice of (K1,K2) that provides good discriminative
power will also provide a good type 1 error rate. The problem of selecting K is indeed very difficult.

5.4.4 Choice of Control Genes

We now consider the choice of control genes. As we noted in the previous section, all three sets of control
genes work fairly well when m (and therefore K) is relatively small. When K is fairly small, there is no
problem of overfitting to the control genes, nor are there any problems due to misspecification of the control
genes. Indeed, all three sets of control genes work fairly well for the Alzheimer’s and Gender datasets.

The story is very different with the TCGA datasets. With housekeeping genes, nc is too small. This is
not necessarily a problem for all methods. RUV-rinv continues to perform well. RUV-4 with K = k̂ performs
moderately well. RUV-inv, however, overfits to the control genes and performs horribly. Both β̂ and σ̂2

are adversely affected. With all genes as control genes the situation is even worse. RUV-inv continues to
perform horribly. RUV-4 and RUV-rinv now perform poorly as well. Unlike with the housekeeping genes,
however, only β̂ is adversely affected. See the summary plots for evidence. With the empirical controls, the
situation is much better. With empirical controls, RUV-4, RUV-inv, and RUV-rinv all perform very well.
Moreover, RUV-4 performs well for a very wide range of K. In the examples of this paper, empirical controls
are an unequivocal success.

5.4.5 Use of Empirical Variances

We now consider the use of empirical variances. In the simulations of Section 4.3 we found that empirical
variances are only effective when β is very sparse. Fortunately, we believe that β is in fact very sparse in
the examples of this section. Indeed, we find empirical variances to be very helpful. Comparing plots of
T (s,κ1,κ2) to plots of T (e,κ1,κ2) suggests that the use of empirical variances helps control the type 1 error rate.
The tables in Section D in the SM confirm this directly.

The benefits of using empirical variances are not limited to better control of the type 1 error rate.
In the case of the Alzheimer’s dataset, the use of empirical variances also increases discriminative power.
Presumably, the reason the use of empirical variances improves discriminative power in the Alzheimer’s
dataset is that m is fairly small, and estimates of σ2 are therefore somewhat noisy. The method of empirical
variances shrinks estimates of the variances to the mean. In this sense, the method of empirical variances
plays a role similar to the role more commonly played by Limma. Note that in the other datasets, the
use of empirical variances neither notably increases nor notably decreases discriminative power. The use of
empirical variances seems suitable for general use whenever β is known to be very sparse.

5.4.6 A Comparison of Methods

We now compare the performance of Combat, SVA, LEAPP, ICE, and the variants of RUV. We begin with
the variants of RUV. A quick glance at the summary plots of Section C in the SM confirms that RUV-inv
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works largely as intended. By setting K = m − 1 and estimating σ2 with the inverse method we avoid the
problem of estimating k but get results nearly as good as if we had chosen an optimal value of K. The usual
caveats apply — RUV-inv will fail if m is large and nc is small or the control genes are misspecified. However,
these issues can be overcome by using either RUV-rinv, empirical controls, or both. Indeed, somewhat closer
inspection reveals that RUV-rinv is generally preferable to RUV-inv. There are several examples in which
RUV-rinv clearly outperforms RUV-inv. However, there are no examples in which RUV-inv substantially
outperforms RUV-rinv. Thus, when in doubt, we find it is generally advisable to use RUV-rinv. We also
advise using empirical controls whenever β is known to be sparse, and empirical variances whenever whenever
β is known to be very sparse.

We now consider the results of SVA, LEAPP, and ICE as well. In the simulations of Section 4.3 we found
that all of these methods perform reasonably well when β is sparse and X is not strongly correlated with W .
See Tables 4 and 16 in the SM. In our example datasets, β is sparse and X does not appear to be strongly
correlated with W (see, for example, the projection plots; the slopes are not steep). We therefore expect
all of the methods to do reasonably well. Indeed they do. Table 3 provides a brief summary of results for
SVA, LEAPP, ICE, RUV-4, RUV-inv, RUV-rinv. Results for Combat are also included for datasets with
known batches — lab and platform in the case of the Gender dataset, and platform in the case of the TCGA
Combined dataset. Section D in the SM provides a more complete set of results. As we see in Table 3, the
performance of the RUV methods compares well with that of Combat, SVA, LEAPP, and ICE.

Particularly encouraging is the ability of these methods to effectively combine the TCGA datasets.
Consider the TCGA Combined dataset. Without any adjustment, results are poor. Only 16 of the top 60
genes are on the X or Y chromosome. Now consider any of the three datasets that make up the TCGA
Combined dataset (i.e. the three “subset” datasets). In each case, without any adjustment, 18 of the top
60 genes are on the X or Y chromosome. Thus, despite the fact we triple our sample size, combining these
three datasets into one without performing any adjustment actually hurts performance. Now suppose we
adjust. If we stick to a single “subset” dataset, we might find up to 23 genes out of the top 60 are on the
X or Y chromosome. However, if we combine the three subset datasets to make the Combined dataset, we
might find up to 27 genes out of the top 60 that are on the X or Y chromosome. Thus, when we adjust, it
is no longer the case that combining datasets hurts us; it now helps us.

Finally, we draw attention to the special cases of the Alzheimer’s and Gender datasets without prepro-
cessing. Without preprocessing, these datasets are extremely noisy. Nonetheless, the RUV methods perform
exceedingly well. Indeed, the results without preprocessing are about as good as the results with prepro-
cessing. This may not be enormously helpful to the world of microarrays — microarray data is routinely
preprocessed. Nonetheless, we find these results very encouraging. We feel these results suggest that the
RUV methods are relatively robust. We are therefore hopeful that the basic RUV methodology will prove
useful to many different types of high dimensional data.
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Alzheimer’s (Preprocessed) Alzheimer’s (Not Preprocessed)
Top 20 Top 40 Top 60 Top 80 Top 100 Type I

unadjusted 15 19 23 25 26 0.02
SVA 16 21 22 24 26 0.06
LEAPP 16 24 24 26 27 0.13
ICE 20 27 29 31 31 0.04
RUV-4 (HK) 18 24 27 29 31 0.09
RUV-rinv (HK) 20 26 30 32 33 0.05
RUV-rinv-ev (E) 20 26 29 32 33 0.05

Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 8 9 9 13 15 0.3
SVA 15 18 23 23 23 0.07
LEAPP 17 23 24 26 26 0.13
ICE 13 16 17 17 21 0.23
RUV-4 (HK) 17 20 23 28 29 0.08
RUV-rinv (HK) 18 21 26 28 31 0.05
RUV-rinv-ev (E) 17 24 26 28 29 0.05

Gender (Preprocessed) Gender (Not Preprocessed)
Top 20 Top 40 Top 60 Top 80 Top 100 Type I

unadjusted 11 13 15 17 19 0.01
Combat 12 17 19 20 20 0.05
SVA 17 20 22 26 27 0.08
LEAPP 18 20 22 25 26 0.12
ICE 16 23 26 27 28 0.04
RUV-4 (HK) 14 19 21 24 28 0.1
RUV-rinv (HK) 16 20 22 26 28 0.08
RUV-rinv-ev (E) 16 21 26 27 28 0.06

Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 7 7 7 8 10 0
Combat 11 14 16 19 19 0
SVA 10 14 15 17 19 0.01
LEAPP 11 16 18 19 19 0.01
ICE 8 11 13 14 17 0
RUV-4 (HK) 13 20 22 26 29 0.12
RUV-rinv (HK) 14 22 24 26 28 0.08
RUV-rinv-ev (E) 16 24 27 29 32 0.06

TCGA (Exon) TCGA (Exon) — Subset
Top 20 Top 40 Top 60 Top 80 Top 100 Type I

unadjusted 17 30 33 35 35 0.08
SVA 17 33 34 35 37 0.09
LEAPP 17 33 34 35 36 0.12
ICE 17 33 35 35 36 0.01
RUV-4 (HK) 17 33 34 38 39 0.13
RUV-rinv (HK) 17 34 37 39 40 0.07
RUV-rinv-ev (E) 17 33 35 38 39 0.05

Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 13 17 18 18 18 0.08
SVA 15 18 19 19 23 0.07
LEAPP 16 20 24 25 26 0.12
ICE 17 22 22 24 24 0.03
RUV-4 (HK) 15 18 21 24 25 0.12
RUV-rinv (HK) 17 21 22 23 24 0.07
RUV-rinv-ev (E) 16 22 22 23 23 0.05

TCGA (U133A) TCGA (U133A) — Subset
Top 20 Top 40 Top 60 Top 80 Top 100 Type I

unadjusted 16 22 22 24 25 0.12
SVA 17 27 31 31 32 0.08
LEAPP 17 29 32 32 34 0.11
ICE 17 28 31 32 32 0.02
RUV-4 (HK) 17 24 26 29 32 0.14
RUV-rinv (HK) 17 29 32 32 32 0.08
RUV-rinv-ev (E) 17 29 34 35 35 0.05

Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 15 17 18 19 19 0.05
SVA 14 18 19 19 21 0.06
LEAPP 15 18 19 22 22 0.12
ICE 17 21 21 22 22 0.03
RUV-4 (HK) 16 19 20 22 26 0.1
RUV-rinv (HK) 16 19 21 23 23 0.05
RUV-rinv-ev (E) 16 21 23 23 24 0.05

TCGA (Agilent) TCGA (Agilent) — Subset
Top 20 Top 40 Top 60 Top 80 Top 100 Type I

unadjusted 17 30 36 38 40 0.07
SVA 17 33 37 38 38 0.08
LEAPP 17 33 37 38 43 0.12
ICE 17 33 34 37 41 0.01
RUV-4 (HK) 17 33 34 37 40 0.13
RUV-rinv (HK) 17 33 38 39 41 0.08
RUV-rinv-ev (E) 18 33 40 42 46 0.05

Top 20 Top 40 Top 60 Top 80 Top 100 Type I
unadjusted 11 14 18 18 19 0.05
SVA 13 18 20 21 23 0.05
LEAPP 13 16 18 19 21 0.1
ICE 17 22 22 23 23 0.03
RUV-4 (HK) 15 17 19 19 19 0.1
RUV-rinv (HK) 16 19 22 22 23 0.04
RUV-rinv-ev (E) 16 21 23 23 23 0.05

TCGA (Combined)
Top 20 Top 40 Top 60 Top 80 Top 100 Type I

unadjusted 12 14 16 17 17 0.02
Combat 17 18 21 23 23 0.06
SVA 17 23 24 25 26 0.08
LEAPP 17 22 23 23 25 0.1
ICE 17 24 25 27 27 0.01
RUV-4 (HK) 17 22 24 25 25 0.16
RUV-rinv (HK) 17 24 27 28 28 0.06
RUV-rinv-ev (E) 17 25 27 28 29 0.05

Table 3: Comparison of the number of top-ranked X/Y genes and the effective type 1 error rates for Combat,
SVA, LEAPP, ICE, and RUV. The 2-step variant of SVA was used. The IRW variant exited with an error.
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6 Discussion

We now provide some final commentary. We begin by reconsidering the differences between RUV-2 and
RUV-4. In Section 3.4 we discussed the differences between RUV-2 and RUV-4 extensively. For one, we
found that RUV-4 is less sensitive than RUV-2 to the choice of K. For another, we found that RUV-4 is less
sensitive to violations of the control gene assumption. This second observation, however, is only part of a
larger point, which is that RUV-2 and RUV-4 use control genes differently. In some sense, both RUV-2 and
RUV-4 use control genes as a reference point for a comparison. The variation present in the control genes is
assumed to be unwanted variation. The negative control genes tell us what the unwanted variation “looks
like.” When we look at variation in non-control genes, the question we must answer is, “is this variation
of interest?” To answer this question, we compare the variation we observe in the non-control genes to the
variation we observe in the control genes. If the variation we observe in a non-control gene looks like the
variation we observe in the negative controls, we conclude that there is no interesting variation present in
that gene. However, if the variation in the non-control gene does not look like the variation present in the
negative controls, we conclude that that there is indeed some interesting variation in that gene, i.e. that the
gene is differentially expressed with respect to the factor of interest.

The difference between RUV-2 and RUV-4 is that the comparison between the non-control genes and
the control genes is more “direct” with RUV-4 than it is with RUV-2. In Section 3.5.3, we found that the
RUV-4 estimate of β might outperform even the (hypothetical) OLS estimate of β (if W were somehow
known). In the discussion of Section 3.5.4, we noted that this enhanced performance of RUV-4 relies on
the assumption that the α?jc are representative of the α?jc̄ . In our discussion of the functional approach,
we took this a step further. The assumption that the control genes are representative takes on a central
role. From the functional point of view, the role of control genes in RUV-4 is to provide an estimate of
the background signal, against which the signal of the non-control genes may be compared. To determine
whether a non-control gene jc̄ is differentially expressed, we first compute its observed signal (bY X)jc̄ . We
then calculate α̂?jc̄ to see how this gene has been affected by the unwanted factors. Next we check to see
how much signal we observe from control genes that have been similarly affected by the unwanted factors,
i.e. have similar values of α̂. Finally, we compare the observed signal of gene jc̄ to the observed signal of the
comparable control genes (those that have similar values of α̂). If the observed signal of gene jc̄ is about the
same as that of the comparable control genes, we conclude that the observed signal of gene jc̄ is just due to
unwanted variation and that gene jc̄ is not differentially expressed. If, however, the observed signal of gene
jc̄ is substantially different from the observed signal of the comparable control genes, we conclude that gene
jc̄ is differentially expressed.

With RUV-2, the comparison between the non-control genes and control genes is less direct. The com-
parison is more strongly intermediated by the linear model. With RUV-2 it is not necessary that the values
of α for the control genes are in any way representative of the values of α for the non-control genes. All that
matters is that the control genes are affected by the same unwanted factors as the non-control genes, and
that the linear model holds. With RUV-2 we use the control genes simply to identify the linear subspace in
which the unwanted variation resides (Recall the RUV-2 estimate of W is better than the RUV-4 estimate
of W , even if the RUV-4 estimate of β is better than the RUV-2 estimate of β. Indeed, unlike the RUV-4
estimate of W , it can be shown that under suitable conditions the RUV-2 estimate of W is consistent.).
We then completely remove any and all variation within this subspace. Whether the patterns of variation
within this subspace are similar between the control genes and the non-control genes is a moot point; all of
the variation in this subspace is removed.

This difference between RUV-2 and RUV-4 has important practical implications. We have made a strong
case in this paper for the use of RUV-4. However, RUV-4 is not necessarily preferable to RUV-2 in all
circumstances. Consider a case in which only a small number of genes are differentially expressed with
respect to the factor of interest X. Suppose that these genes are also strongly affected by an unknown,
unwanted factor W . Suppose also, however, that the unwanted factor W affects only a small number of the
control genes. Then the values of α for the control genes will not be representative of the values of α for the
genes that are differentially expressed. The values of α for the genes that are differentially expressed will be
large (these genes are strongly affected by W ) but the values of the α for the control genes will be mostly 0
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(most control genes are unaffected by W ).
As a concrete example, suppose there is a genetic disease and it is known that the disease is somehow

caused by a gene or genes on the X chromosome. A researcher wants to perform a differential expression
analysis to find the gene(s) associated with the disease. Suppose that both men and women are in the study.
Gender will be an important source of unwanted biological variation. Suppose, however, that information
on the gender of the people in the study is missing. The researcher therefore decides to use genes from
the Y chromosome as negative controls. Since the researcher would also like to get a good estimate of
any unwanted technical factors, and since there are not many genes on the Y chromosome, the researcher
includes housekeeping genes in the set of negative controls as well. Now, most of the control genes will be
housekeeping genes and unaffected by gender. Thus, the α?jc will not be representative of the α?jc̄ of the
genes on the X chromosome. RUV-4 may fail to properly adjust for gender. On the other hand, as long as
K is chosen large enough, gender should find its way into RUV-2’s estimate of W , and RUV-2 may succeed
in adjusting for gender.

Of course, with RUV-2, a relatively large K may lead to problems of its own. In practice, the best option
may sometimes be a hybrid of RUV-2 and RUV-4. For example, the researcher might choose to perform factor
analysis on just the genes of the Y chromosome and keep only the first few factors. Assuming that gender
is captured in these first few factors, the researcher might then choose to include these factors as covariates
in RUV-4. Although these factors are estimated from negative controls (specifically, Y-chromosome genes),
they could be incorporated into RUV-4 in exactly the same way known covariates are incorporated into
RUV-4. In other words, the W from RUV-2 (with Y-chromosome genes as controls) would now play the role
of Z in RUV-4 (with housekeeping genes as controls).

Of course, RUV-2 is not the only other method with which RUV-4 shares an interesting connection. As
noted in the introduction, RUV-4 is of theoretical interest precisely because it shares similarities both with
methods such as SVA and LEAPP, in which unwanted factors are estimated from the data and then included
in the design matrix of a regression model, and with methods such as ICE and LMM-EH, in which unwanted
variation is modeled as part of a complicated error term.

Consider first a comparison of RUV-4, SVA, and LEAPP. All model unwanted variation as arising from
unobserved latent variables (our W ), and assume that the number of latent variables (our k) is less than
the number of samples (our m). Each of these methods requires an estimate of k. We estimate k using the
method of Section 3.6.6, while both SVA and LEAPP estimate k using the method of Buja and Eyuboglu
(1992). Each of the methods allows every gene to have its own variance (our σ2

j ), and estimates these
variances in the “standard” way (from the residuals). Where these methods differ is in the exact method
by which they estimate the latent factors. Even here, however, there are similarities — each of the methods
begins by projecting away the factor of interest (with LEAPP, this is formulated as a rotation) in order to
make sure that the factor of interest is not accidentally picked up with the unwanted factors. After this
first step, though, the methods differ. RUV-4 relies on control genes to estimate bWX . LEAPP proceeds
somewhat similarly, and also estimates bWX as an intermediate step. Instead of relying on control genes,
however, LEAPP assumes that β is sparse, and then applies the outlier-detection algorithm Θ-IPOD (She
and Owen, 2011). SVA attempts to isolate genes that are primarily influenced by the unwanted factors but
not influenced by the factor of interest, and then proceeds to estimate the unwanted factors by focusing the
factor analysis on just those genes.

Consider now a comparison of RUV-inv (which is simply RUV-4 with K = m − p − q) and the mixed
model methods ICE and LMM-EH. All model the unwanted variation as part of a random error term with
a complicated covariance structure. In each of these methods, the covariance matrix is assumed to be of the
form τ2

j Σ + σ2
j I, where Σ is the same for all genes. For the purposes of estimating β, RUV-inv effectively

assumes that τ2
j and σ2

j are constant across genes (see Section 3.7.4 and the discussion in Section A.3), but

ICE and LMM-EH allow τ2
j and σ2

j to vary by gene. For the purposes of estimating Var(β̂), however, all

three methods allow σ2
j to vary by gene. The real difference between the methods is in the way the model is

fit. Both ICE and LMM-EH fit all of the parameters of the model simultaneously using maximum likelihood
methods. With RUV-inv, however, the covariance matrix is estimated using the control genes, β is estimated
using GLS, and σ2

j is estimated using the inverse method. It is the inverse method that is arguably the most
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important difference between RUV-inv and other mixed model methods.
The inverse method for estimating variances is quite different from the methods that ICE and LMM-EH

use to estimate variances. Indeed, the inverse method is unlike any other method of which we are aware.
Some readers may find the inverse method reminiscent of randomization tests. Both randomization tests

and the inverse method make use of “random factors of interest.” We too see similarities, and we have found
the analogy with randomization tests to be helpful in developing intuition for what the inverse method is
doing. Of course, there are also serious differences, perhaps the most obvious of which is that randomization
tests are generally used with non-parametric models, whereas the inverse method is used in the context of a
parametric model.

On an intuitive level, the inverse method may perhaps be best understood as a hybrid between traditional
randomization tests and traditional parametric methods. This hybrid loses some of the nicer conceptual
properties of randomization tests, but retains some of the practical benefits. The p-values produced by
randomization tests (properly applied) have a very clear, believable interpretation. The p-values produced
by the inverse method do not; inverse method p-values are computed using artificial modeling assumptions.
On the other hand, like randomization tests, the inverse method does appear to maintain fairly good control
of the type-1 error rate.

We conclude this paper with some suggestions for future research. One direction for improvement would
be to allow σ2 to vary not just by gene, but by sample. This would have immediate applications when
combining data from different microarray platforms (e.g. Affymetrix arrays and Agilent arrays); the variance
of the measured expression level of a gene can be quite different from one platform to another. By allowing
σ2 to vary from one batch to another, it may be possible to achieve an increase in power.

The method of empirical variances presents a second possibility for future improvements. Our devel-
opment of the method of empirical variances in this paper has been mainly proof of principle. It seems
very likely that improvements could be made. For example, other methods of non-linear regression may
out-perform the minimum lower sets algorithm. Moreover, our implementation of the method of empirical
variances relies on the assumption that β is sparse, and ignoring outliers. Instead of assuming sparsity and
ignoring outliers, however, it may be better to simply limit the non-linear regression to control genes. We
did not pursue this approach because the function fit by the minimum lower sets algorithm is very flexible,
and some of our datasets contained only a few hundred negative controls. The estimated regression function
would be far too noisy. This problem could be solved, however, by either increasing the number of controls
(e.g. empirical controls), or replacing the minimum lower sets algorithm with a less flexible alternative.

Additional possibilities for future research lay in the estimation of k. Our method for estimating k relies
on comparing the scale of the variation seen in β̂c to the scale of the variation seen in α̂c. Thus, since β̂ is
a function of X, our estimate of k is also a function of X. However, factor analysis has many applications
outside the removal of unwanted variation in differential expression analyses, and in many applications of
factor analysis there is no factor of interest to play the role of our X. However, there may still be a need
to know the number of factors. In such situations, a researcher could simply choose many X? at random
and produce many different estimates of k. A final estimate of k could then be produced, for example,
by taking the median. Note, moreover, that with a random X?, we might wish to regard every gene (or
more generally, “feature”) as a control gene, on the grounds that no gene should be “truly” differentially
expressed with respect to a random X?. Thus, if we estimate k via random X?, it is not even necessary to
have any negative controls. Such a method may therefore present a novel and widely applicable solution to
the number-of-factors problem.

Finally, we would like to reiterate our belief that significant advances may be made by fully exploiting the
functional approach. In particular, the possibility of incorporating “outside” information, such as a gene’s
GC content, seems to hold great promise.
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Supplementary Material to Removing Unwanted Variation

from High Dimensional Data with Negative Controls

Johann A. Gagnon-Bartsch∗ Laurent Jacob∗ Terence P. Speed∗†

A Miscellaneous Derivations and Discussions

A.1 The Parameterization of Ŵ0 Does Not Matter

Recall that the parameterization of Ŵ does not matter. If W̃ is a reparameterization of Ŵ in the sense that
R(W̃ ) = R(Ŵ ), then the resulting β̂ will be the same whether we use W̃ or Ŵ . The point of this section
is to show that the parameterization of Ŵ0 does not matter either. More formally, we wish to show that if
R(W̃0) = R(Ŵ0) and if W̃ and Ŵ are the corresponding estimates of W computed using Step 3 of RUV-4,
then R(W̃ ) = R(Ŵ ).

Let W̃0 = Ŵ0Q where Q is any k × k invertible matrix. Then

α̃c ≡
[
(Ŵ0Q)′Ŵ0Q

]−1

Q′Ŵ ′0Yc (254)

= Q−1
(
Ŵ ′0Ŵ0

)−1

Ŵ ′0Yc (255)

= Q−1α̂c (256)

and

b̃WX ≡ bYcX α̃
′
c (α̃cα̃

′
c)
−1

(257)

= bYcX α̂
′
c(Q
−1)′

[
Q−1α̂cα̂

′
c(Q
−1)′

]−1
(258)

= bYcX α̂
′
c (α̂cα̂

′
c)
−1
Q (259)

= b̂WXQ (260)

so

W̃ ≡ W̃0 +Xb̃WX (261)

= Ŵ0Q+Xb̂WXQ (262)

= ŴQ. (263)

A.2 Reformulation of the OLS Variance

Assume that X has unit length and that the columns of W0 are orthogonal and have unit length. Let

β̂(OLS) be the OLS estimate of β (ignore for the moment that W is unknown). The variance of β̂
(OLS)
j is

the (1, 1) entry of the matrix σ2
j

[
(X|W )

′
(X|W )

]−1
. The goal of this section is to show that this is equal to

σ2
j (1 + bWXb

′
WX).

∗Department of Statistics, University of California at Berkeley, Berkeley, CA 94720
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Begin with the observation that

[
(X|W )

′
(X|W )

]−1
=

(
X ′X X ′W
W ′X W ′W

)−1

. (264)

We can invert this matrix block-wise. The (1, 1) entry is equal to[
X ′X −X ′W (W ′W )

−1
W ′X

]−1

.

Now, X ′X = 1, X ′W = bWX , W ′X = b′WX , and W ′W = I + b′WXbWX , so

Var
[
β̂

(OLS)
j

]
= σ2

j

[
1− bWX (I + b′WXbWX)

−1
b′WX

]−1

(265)

= σ2
j

{
1− bWX

[
I − b′WX (I + bWXb

′
WX)

−1
bWX

]
b′WX

}−1

(266)

= σ2
j

[
1− bWXb

′
WX + bWXb

′
WX (1 + bWXb

′
WX)

−1
bWXb

′
WX

]−1

(267)

= σ2
j

[
1− x+ x (1 + x)

−1
x
]−1

(268)

= σ2
j

(
1− x2

1 + x
+

x2

1 + x

)−1

(269)

= σ2
j (1 + x) (270)

= σ2
j (1 + bWXb

′
WX) (271)

where x ≡ bWXb
′
WX .

A.3 Estimating Σj as 1
nc

(YcY
′
c ) +

(
σ̂2
j − σ̇2

c

)
I

In Section 3.7.4 we made the observation that

E
[

1

nc
(YcY

′
c )

]
= Σ + σ̄2

cI (272)

6= Σ + σ̄2
j I (273)

= Σj . (274)

1
nc

(YcY
′
c ) is a biased estimator of Σj . In this section we will consider alternative estimators of Σj . Specifically,

we will consider estimators of the form

Σ̂j =
1

nc
YcY

′
c + λI. (275)

For a given estimator Σ̂j it can be shown that

Var
[
β̂j

∣∣∣Σ̂j] =
(
X ′Σ̂−1

j X
)−1

X ′Σ̂−1
j ΣjΣ̂

−1
j X

(
X ′Σ̂−1

j X
)−1

. (276)

For our purposes, a good estimator of Σ̂j is one such that

E
{

Var
[
β̂j

∣∣∣Σ̂j]} (277)

is small.
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Let

Σ̂j(λ) ≡ 1

nc
YcY

′
c + λI (278)

β̂j(Σ̂j) ≡
(
X ′Σ̂−1

j X
)−1

X ′Σ̂−1
j Y?j (279)

λ∗ ≡ argmin
λ

Var
[
β̂j

(
Σ̂j(λ)

)∣∣∣Σ̂j(λ)
]
. (280)

We will consider 5 “estimators.”

Σ̂
(1)
j = Σ + σ2

j I (281)

Σ̂
(2)
j =

1

nc
YcY

′
c + λ∗I (282)

Σ̂
(3)
j =

1

nc
YcY

′
c +

(
σ2
j − σ̄2

c

)
I (283)

Σ̂
(4)
j =

1

nc
YcY

′
c + 0.2

(
σ2
j − σ̄2

c

)
I (284)

Σ̂
(5)
j =

1

nc
YcY

′
c (285)

Note that only Σ̂
(5)
j is a real estimator that can be computed from data. Σ̂

(1)
j = Σj is the true parameter.

Σ̂
(2)
j is the optimal estimator of the form 1

nc
YcY

′
c + λI. To compute it requires knowledge of Σj . Σ̂

(3)
j is

an idealization of the estimator briefly mentioned in Section 3.7.4. Here we have substituted the parameter(
σ2
j − σ̄2

c

)
for the estimate

(
σ̂2
j − σ̇2

c

)
. Σ̂

(4)
j is a modified version of Σ̂

(3)
j . The choice of 0.2 is arbitrary.

We want to compare the performance of the Σ̂
(i)
j . This is difficult to accomplish analytically. Instead we

will use simulations. Define

β̂
(i)
j ≡ β̂j

(
Σ̂

(i)
j

)
. (286)

Let

vi(σ
2
j ) ≡ E

{
Var

[
β̂j

(
Σ̂

(i)
j

)∣∣∣Σ̂(i)
j

]}
(287)

denote the expected variance when σ2
j is the true parameter. Note that vi should be indexed by j and should

also be a function of Σ, σ2
c and X but we suppress this in the notation. We consider three quantities of

interest:
√
vi(σ2

j ),
√
vi(σ2

j )/v1(σ2
j ), and

√
vi(σ2

j )/v2(σ2
j ). The first is the RMSE of β̂j

(
Σ̂

(i)
j

)
. The second

is the RMSE of β̂j

(
Σ̂

(i)
j

)
as a fraction of the RMSE of the ideal estimator β̂j (Σ). The third is the RMSE

of β̂j

(
Σ̂

(i)
j

)
as a fraction of the RMSE of the “best possible” estimator Σ̂

(2)
j . Of course, in practice, Σ̂

(2)
j is

not actually a possible estimator. Simulation results are given in Figure 14.
A quick glance at Figure 14 reveals that the performance does vary from one estimator to the next, but not

always by very much. The one exception is β̂
(3)
j , which performs horribly when σ2

j /σ̄
2
c < 1. Therefore, even if

unbiased estimates σ̂2
j of σ2

j and σ̇2
c of σ̄2

c are available, and 1
nc

(YcY
′
c ) +

(
σ̂2
j − σ̇2

c

)
I is therefore an unbiased

estimator of Σj , this estimator should not be used! This result is perhaps to be anticipated. The smallest
eigenvalue of 1

nc
(YcY

′
c ) will often be considerably smaller than σ2

j . As a result 1
nc

(YcY
′
c ) +

(
σ2
j − σ̄2

c

)
I may

have tiny — or even negative — eigenvalues.

β̂
(4)
j improves on β̂

(3)
j by “shrinking” the ridge-adjustment term

(
σ2
j − σ̄2

c

)
I. Indeed, β̂

(4)
j performs quite

well. However, the shrinkage factor of 0.2 is arbitrary; we chose 0.2 simply because it gave good results.
Implementing this “shrunken ridge adjustment” strategy in practice would require a method for choosing a
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Figure 14: Plots of
√
vi(σ2

j ),
√
vi(σ2

j )/v1(σ2
j ), and

√
vi(σ2

j )/v2(σ2
j ) as σ2

j is varied from 0.1σ̄2
c to 10σ̄2

c . The

vertical axis is the quantity of interest, e.g.
√
vi(σ2

j ), and the horizontal axis is log10(σ2
j /σ̄

2
c ). The coloring

scheme is as follows: i = 1, thick black line; i = 2, thin black line; i = 3, red; i = 4, violet; i = 5, blue.
The simulation parameters are the same as those of the simulations presented in Section 4. nc = 1000.
We show the results for three separate simulations (“Lightly Correlated,” “Moderately Correlated,” “Highly
Correlated.”). i = 3 is omitted from the left column because it behaves too erratically.

good shrinkage factor. This would presumably depend on Σ, nc, the distribution of σ2, etc. In practice we
would also need to account for the fact that σ2

j and σ̄2
c are not known, but estimated.
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Figure 14 suggests an alternative strategy. Set

β̂
(6)
j ≡

{
β̂

(5)
j if σ2

j < σ̄2
c

β̂
(3)
j if σ2

j ≥ σ̄2
c

. (288)

In the simulations of Figure 14, β̂
(6)
j performs quite well. We have not investigated whether this strategy

works well more generally. In practice, of course, we would need to replace σ2
j with σ̂2

j and σ̄2
c with σ̇2

c . If

these estimates are very noisy, β̂
(6)
j may no longer perform well.

Finally, we note that in the big picture, the performance of β̂
(5)
j is adequate. In the lightly and moderately

correlated examples, the RMSE of β̂
(5)
j is only larger than the “best possible” RMSE by about 5%. In the

figures and tables of Section B we see that a 5-10% increase in the RMSE of β̂ is relatively minor compared
to the choice of K, the choice of method, the choice of controls, etc. Perhaps more importantly, in Section
4.2 of the main text we argue that the primary determinant of the discriminative power is the performance

of σ̂2, not the performance of β̂. It is for these reasons that we feel that β̂
(5)
j is generally adequate.

B Additional Simulation Results
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Figure 15: k = 20, lightly correlated, good controls.
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Figure 16: k = 20, lightly correlated, bad controls.
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Figure 17: k = 20, moderately correlated, good controls.
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Figure 18: k = 20, moderately correlated, bad controls.
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Figure 19: Moderate decay, lightly correlated, good controls.
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Figure 20: Moderate decay, lightly correlated, bad controls.
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Figure 21: Moderate decay, highly correlated, good controls.

84



0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

K

to
p 

ra
nk

ed
 fr

ac
tio

n

0 10 20 30 40

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

K

ty
pe

 I 
er

ro
r 

ra
te

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

K

av
er

ag
e 

po
w

er

0 10 20 30 40

0
2

4
6

8
10

12

K

be
ta

 h
at

 R
M

S
E

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

K

si
gm

a 
ha

t s
ca

le

0 10 20 30 40

0.
5

1.
0

1.
5

2.
0

2.
5

K

re
sc

al
ed

 s
ig

m
a 

ha
t I

Q
R

Figure 22: Moderate decay, highly correlated, bad controls.
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Figure 23: Slow decay, lightly correlated, good controls.
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Figure 24: Slow decay, lightly correlated, bad controls.
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Figure 25: Slow decay, highly correlated, good controls.
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Figure 26: Slow decay, highly correlated, bad controls.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.27 (5× 10−3) 0.47 (5× 10−4) 0.66 (5× 10−3) 0.707 (5× 10−4) 53.08 (6× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.66 (6× 10−3) 0.09 (5× 10−3) 0.79 (4× 10−3) 0.164 (2× 10−3) 6.15 (7× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.66 (6× 10−3) 0.11 (5× 10−3) 0.80 (4× 10−3) 0.168 (3× 10−3) 6.12 (7× 10−2) 1.06 (3× 10−3)
LEAPP 0.66 (6× 10−3) 0.28 (7× 10−3) 0.86 (4× 10−3) 0.102 (2× 10−3) 5.28 (6× 10−2) 1.06 (3× 10−3)
ICE 0.79 (4× 10−3) 0.01 (2× 10−4) 0.82 (4× 10−3) 0.090 (7× 10−4)
RUV-4 0.78 (4× 10−3) 0.07 (1× 10−3) 0.88 (3× 10−3) 0.092 (8× 10−4) 1.00 (3× 10−4) 0.37 (7× 10−4)
RUV-inv 0.78 (5× 10−3) 0.05 (8× 10−4) 0.86 (4× 10−3) 0.094 (8× 10−4) 1.15 (1× 10−3) 0.39 (5× 10−4)
RUV-rinv 0.78 (5× 10−3) 0.06 (2× 10−3) 0.86 (4× 10−3) 0.094 (8× 10−4) 1.40 (2× 10−3) 0.42 (8× 10−4)
RUV-inv (Ectl) 0.79 (4× 10−3) 0.05 (8× 10−4) 0.87 (4× 10−3) 0.090 (7× 10−4) 1.13 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.78 (5× 10−3) 0.06 (2× 10−3) 0.87 (4× 10−3) 0.092 (8× 10−4) 1.37 (8× 10−4) 0.40 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.79 (4× 10−3) 0.04 (5× 10−4) 0.87 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.78 (5× 10−3) 0.04 (5× 10−4) 0.86 (4× 10−3)
RUV-inv-evar (Ectl) 0.79 (4× 10−3) 0.05 (3× 10−4) 0.87 (4× 10−3)
RUV-rinv-evar (Ectl) 0.79 (5× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)

Table 4: k = 20, moderately correlated, nc = 1000, very sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.52 (5× 10−3) 0.47 (6× 10−4) 0.66 (2× 10−3) 0.707 (5× 10−4) 53.13 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.71 (3× 10−3) 0.11 (5× 10−3) 0.79 (2× 10−3) 0.172 (3× 10−3) 5.99 (6× 10−2) 1.05 (3× 10−3)
SVA (2-step) 0.71 (3× 10−3) 0.11 (6× 10−3) 0.79 (2× 10−3) 0.165 (3× 10−3) 5.97 (6× 10−2) 1.05 (3× 10−3)
LEAPP 0.71 (3× 10−3) 0.27 (8× 10−3) 0.86 (2× 10−3) 0.134 (2× 10−3) 5.13 (6× 10−2) 1.05 (3× 10−3)
ICE 0.80 (3× 10−3) 0.00 (4× 10−5) 0.72 (2× 10−3) 0.091 (6× 10−4)
RUV-4 0.89 (2× 10−3) 0.08 (1× 10−3) 0.88 (2× 10−3) 0.092 (6× 10−4) 1.00 (3× 10−4) 0.37 (7× 10−4)
RUV-inv 0.88 (2× 10−3) 0.05 (8× 10−4) 0.86 (2× 10−3) 0.094 (6× 10−4) 1.16 (1× 10−3) 0.39 (6× 10−4)
RUV-rinv 0.87 (2× 10−3) 0.06 (1× 10−3) 0.87 (2× 10−3) 0.094 (7× 10−4) 1.40 (2× 10−3) 0.42 (9× 10−4)
RUV-inv (Ectl) 0.89 (2× 10−3) 0.05 (7× 10−4) 0.87 (2× 10−3) 0.091 (6× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.88 (2× 10−3) 0.06 (1× 10−3) 0.87 (2× 10−3) 0.093 (7× 10−4) 1.37 (9× 10−4) 0.40 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.89 (2× 10−3) 0.04 (5× 10−4) 0.86 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.88 (2× 10−3) 0.04 (4× 10−4) 0.86 (2× 10−3)
RUV-inv-evar (Ectl) 0.83 (4× 10−3) 0.01 (2× 10−4) 0.82 (2× 10−3)
RUV-rinv-evar (Ectl) 0.81 (3× 10−3) 0.01 (3× 10−4) 0.81 (2× 10−3)

Table 5: k = 20, moderately correlated, nc = 1000, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.27 (4× 10−3) 0.47 (6× 10−4) 0.66 (8× 10−4) 0.708 (4× 10−4) 53.07 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.22 (1× 10−2) 0.70 (1× 10−2) 0.82 (5× 10−3) 1.082 (6× 10−2) 6.06 (6× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.42 (6× 10−3) 0.32 (7× 10−3) 0.78 (2× 10−3) 0.359 (6× 10−2) 5.99 (6× 10−2) 1.05 (3× 10−3)
LEAPP 0.46 (4× 10−3) 0.27 (7× 10−3) 0.86 (8× 10−4) 0.169 (2× 10−3) 5.12 (6× 10−2) 1.05 (3× 10−3)
ICE 0.59 (4× 10−3) 0.00 (9× 10−6) 0.32 (5× 10−4) 0.130 (6× 10−4)
RUV-4 0.73 (4× 10−3) 0.07 (1× 10−3) 0.88 (8× 10−4) 0.092 (5× 10−4) 1.00 (3× 10−4) 0.37 (1× 10−3)
RUV-inv 0.73 (3× 10−3) 0.05 (7× 10−4) 0.86 (8× 10−4) 0.094 (5× 10−4) 1.16 (1× 10−3) 0.39 (5× 10−4)
RUV-rinv 0.73 (4× 10−3) 0.06 (1× 10−3) 0.86 (8× 10−4) 0.093 (5× 10−4) 1.40 (2× 10−3) 0.42 (8× 10−4)
RUV-inv (Ectl) 0.75 (3× 10−3) 0.06 (1× 10−3) 0.87 (8× 10−4) 0.095 (5× 10−4) 1.14 (4× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.74 (3× 10−3) 0.07 (2× 10−3) 0.87 (7× 10−4) 0.095 (6× 10−4) 1.38 (8× 10−4) 0.40 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.75 (3× 10−3) 0.04 (4× 10−4) 0.85 (1× 10−3)
RUV-rinv-rsvar (Ectl) 0.74 (3× 10−3) 0.04 (5× 10−4) 0.85 (1× 10−3)
RUV-inv-evar (Ectl) 0.49 (4× 10−3) 0.00 (0) 0.24 (3× 10−4)
RUV-rinv-evar (Ectl) 0.49 (4× 10−3) 0.00 (0) 0.24 (3× 10−4)

Table 6: k = 20, moderately correlated, nc = 1000, not sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.28 (5× 10−3) 0.47 (5× 10−4) 0.67 (4× 10−3) 0.707 (5× 10−4) 53.10 (6× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.66 (6× 10−3) 0.09 (5× 10−3) 0.79 (4× 10−3) 0.159 (2× 10−3) 6.12 (6× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.66 (6× 10−3) 0.11 (6× 10−3) 0.80 (4× 10−3) 0.164 (2× 10−3) 6.16 (6× 10−2) 1.06 (3× 10−3)
LEAPP 0.66 (6× 10−3) 0.26 (7× 10−3) 0.86 (4× 10−3) 0.099 (2× 10−3) 5.26 (6× 10−2) 1.06 (3× 10−3)
ICE 0.78 (4× 10−3) 0.01 (2× 10−4) 0.82 (4× 10−3) 0.090 (6× 10−4)
RUV-4 0.56 (1× 10−2) 0.12 (3× 10−3) 0.80 (8× 10−3) 0.154 (3× 10−3) 0.96 (2× 10−3) 0.76 (3× 10−2)
RUV-inv 0.57 (6× 10−3) 0.02 (1× 10−3) 0.64 (9× 10−3) 0.200 (4× 10−3) 1.57 (1× 10−2) 1.00 (1× 10−2)
RUV-rinv 0.74 (4× 10−3) 0.06 (2× 10−3) 0.84 (4× 10−3) 0.111 (1× 10−3) 2.00 (1× 10−2) 0.62 (3× 10−3)
RUV-inv (Ectl) 0.79 (4× 10−3) 0.05 (7× 10−4) 0.87 (4× 10−3) 0.090 (7× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.79 (4× 10−3) 0.06 (1× 10−3) 0.87 (4× 10−3) 0.092 (7× 10−4) 1.35 (9× 10−4) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.79 (4× 10−3) 0.05 (2× 10−3) 0.87 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.79 (4× 10−3) 0.05 (2× 10−3) 0.87 (4× 10−3)
RUV-inv-evar (Ectl) 0.79 (4× 10−3) 0.05 (4× 10−4) 0.87 (4× 10−3)
RUV-rinv-evar (Ectl) 0.79 (4× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)

Table 7: k = 20, moderately correlated, nc = 60, very sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.52 (4× 10−3) 0.47 (5× 10−4) 0.66 (2× 10−3) 0.707 (5× 10−4) 53.02 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.72 (4× 10−3) 0.10 (5× 10−3) 0.78 (2× 10−3) 0.170 (3× 10−3) 6.08 (7× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.72 (4× 10−3) 0.11 (5× 10−3) 0.80 (2× 10−3) 0.163 (3× 10−3) 6.03 (7× 10−2) 1.05 (4× 10−3)
LEAPP 0.72 (4× 10−3) 0.26 (8× 10−3) 0.86 (2× 10−3) 0.133 (2× 10−3) 5.22 (7× 10−2) 1.06 (3× 10−3)
ICE 0.80 (2× 10−3) 0.00 (4× 10−5) 0.72 (2× 10−3) 0.091 (6× 10−4)
RUV-4 0.78 (1× 10−2) 0.12 (3× 10−3) 0.80 (7× 10−3) 0.151 (3× 10−3) 0.96 (1× 10−3) 0.73 (3× 10−2)
RUV-inv 0.72 (4× 10−3) 0.02 (1× 10−3) 0.62 (1× 10−2) 0.209 (5× 10−3) 1.57 (1× 10−2) 1.01 (1× 10−2)
RUV-rinv 0.82 (3× 10−3) 0.06 (2× 10−3) 0.84 (2× 10−3) 0.110 (1× 10−3) 1.98 (1× 10−2) 0.62 (3× 10−3)
RUV-inv (Ectl) 0.90 (2× 10−3) 0.05 (8× 10−4) 0.87 (2× 10−3) 0.090 (6× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.89 (2× 10−3) 0.06 (1× 10−3) 0.87 (2× 10−3) 0.092 (7× 10−4) 1.35 (1× 10−3) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.90 (2× 10−3) 0.05 (2× 10−3) 0.87 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.89 (2× 10−3) 0.05 (2× 10−3) 0.86 (3× 10−3)
RUV-inv-evar (Ectl) 0.83 (4× 10−3) 0.01 (2× 10−4) 0.82 (2× 10−3)
RUV-rinv-evar (Ectl) 0.83 (3× 10−3) 0.01 (3× 10−4) 0.82 (2× 10−3)

Table 8: k = 20, moderately correlated, nc = 60, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.28 (4× 10−3) 0.47 (7× 10−4) 0.66 (6× 10−4) 0.708 (5× 10−4) 53.13 (6× 10−2) 1.40 (2× 10−3)
SVA (IRW) 0.21 (1× 10−2) 0.72 (1× 10−2) 0.83 (5× 10−3) 1.173 (6× 10−2) 6.12 (7× 10−2) 1.06 (3× 10−3)
SVA (2-step) 0.42 (4× 10−3) 0.32 (6× 10−3) 0.78 (1× 10−3) 0.295 (7× 10−3) 6.02 (6× 10−2) 1.06 (3× 10−3)
LEAPP 0.45 (4× 10−3) 0.28 (8× 10−3) 0.86 (9× 10−4) 0.173 (2× 10−3) 5.17 (6× 10−2) 1.05 (3× 10−3)
ICE 0.59 (4× 10−3) 0.00 (6× 10−6) 0.32 (5× 10−4) 0.129 (7× 10−4)
RUV-4 0.52 (2× 10−2) 0.12 (3× 10−3) 0.80 (6× 10−3) 0.151 (2× 10−3) 0.96 (1× 10−3) 0.74 (3× 10−2)
RUV-inv 0.43 (5× 10−3) 0.02 (9× 10−4) 0.64 (7× 10−3) 0.197 (4× 10−3) 1.60 (1× 10−2) 1.00 (1× 10−2)
RUV-rinv 0.61 (4× 10−3) 0.06 (2× 10−3) 0.84 (1× 10−3) 0.111 (1× 10−3) 2.00 (1× 10−2) 0.63 (3× 10−3)
RUV-inv (Ectl) 0.75 (4× 10−3) 0.07 (1× 10−3) 0.86 (9× 10−4) 0.097 (7× 10−4) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.74 (4× 10−3) 0.07 (2× 10−3) 0.87 (8× 10−4) 0.097 (8× 10−4) 1.35 (1× 10−3) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.75 (4× 10−3) 0.08 (3× 10−3) 0.87 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.74 (4× 10−3) 0.07 (3× 10−3) 0.86 (2× 10−3)
RUV-inv-evar (Ectl) 0.49 (5× 10−3) 0.00 (2× 10−6) 0.24 (4× 10−4)
RUV-rinv-evar (Ectl) 0.48 (5× 10−3) 0.00 (0) 0.24 (4× 10−4)

Table 9: k = 20, moderately correlated, nc = 60, not sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.12 (4× 10−3) 0.62 (9× 10−3) 0.73 (6× 10−3) 1.091 (2× 10−2) 52.98 (5× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.29 (1× 10−2) 0.60 (3× 10−2) 0.79 (9× 10−3) 0.892 (5× 10−2) 8.81 (0.3) 1.18 (1× 10−2)
SVA (2-step) 0.36 (8× 10−3) 0.36 (1× 10−2) 0.73 (6× 10−3) 0.400 (8× 10−3) 6.09 (7× 10−2) 1.06 (3× 10−3)
LEAPP 0.36 (7× 10−3) 0.64 (6× 10−3) 0.86 (4× 10−3) 0.304 (7× 10−3) 5.16 (6× 10−2) 1.06 (3× 10−3)
ICE 0.63 (6× 10−3) 0.02 (4× 10−4) 0.72 (5× 10−3) 0.173 (2× 10−3)
RUV-4 0.57 (1× 10−2) 0.17 (1× 10−2) 0.78 (5× 10−3) 0.211 (7× 10−3) 1.36 (6× 10−2) 0.45 (1× 10−2)
RUV-inv 0.62 (6× 10−3) 0.06 (1× 10−3) 0.75 (5× 10−3) 0.182 (2× 10−3) 1.16 (1× 10−3) 0.39 (5× 10−4)
RUV-rinv 0.61 (6× 10−3) 0.11 (4× 10−3) 0.77 (5× 10−3) 0.187 (3× 10−3) 1.45 (8× 10−3) 0.43 (2× 10−3)
RUV-inv (Ectl) 0.63 (6× 10−3) 0.07 (1× 10−3) 0.76 (5× 10−3) 0.175 (2× 10−3) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.61 (6× 10−3) 0.11 (4× 10−3) 0.77 (5× 10−3) 0.184 (3× 10−3) 1.42 (7× 10−3) 0.41 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.63 (6× 10−3) 0.04 (5× 10−4) 0.74 (6× 10−3)
RUV-rinv-rsvar (Ectl) 0.61 (6× 10−3) 0.04 (5× 10−4) 0.71 (6× 10−3)
RUV-inv-evar (Ectl) 0.64 (6× 10−3) 0.05 (2× 10−4) 0.75 (5× 10−3)
RUV-rinv-evar (Ectl) 0.62 (6× 10−3) 0.05 (2× 10−4) 0.73 (6× 10−3)

Table 10: k = 20, highly correlated, nc = 1000, very sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.27 (7× 10−3) 0.64 (7× 10−3) 0.73 (4× 10−3) 1.136 (2× 10−2) 53.04 (6× 10−2) 1.40 (2× 10−3)
SVA (IRW) 0.53 (1× 10−2) 0.67 (2× 10−2) 0.81 (9× 10−3) 1.070 (5× 10−2) 9.32 (0.3) 1.20 (1× 10−2)
SVA (2-step) 0.64 (7× 10−3) 0.36 (1× 10−2) 0.73 (5× 10−3) 0.433 (2× 10−2) 6.20 (0.1) 1.06 (5× 10−3)
LEAPP 0.65 (5× 10−3) 0.64 (7× 10−3) 0.87 (2× 10−3) 0.321 (7× 10−3) 5.15 (6× 10−2) 1.05 (3× 10−3)
ICE 0.80 (3× 10−3) 0.01 (3× 10−4) 0.64 (3× 10−3) 0.177 (2× 10−3)
RUV-4 0.83 (5× 10−3) 0.17 (1× 10−2) 0.78 (3× 10−3) 0.210 (6× 10−3) 1.32 (4× 10−2) 0.45 (1× 10−2)
RUV-inv 0.86 (2× 10−3) 0.06 (1× 10−3) 0.75 (3× 10−3) 0.184 (2× 10−3) 1.16 (1× 10−3) 0.39 (5× 10−4)
RUV-rinv 0.85 (3× 10−3) 0.11 (3× 10−3) 0.77 (3× 10−3) 0.188 (3× 10−3) 1.44 (5× 10−3) 0.43 (2× 10−3)
RUV-inv (Ectl) 0.87 (2× 10−3) 0.07 (1× 10−3) 0.76 (3× 10−3) 0.177 (2× 10−3) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.85 (3× 10−3) 0.11 (4× 10−3) 0.77 (3× 10−3) 0.186 (3× 10−3) 1.41 (5× 10−3) 0.41 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.87 (2× 10−3) 0.04 (5× 10−4) 0.74 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.85 (3× 10−3) 0.04 (5× 10−4) 0.71 (5× 10−3)
RUV-inv-evar (Ectl) 0.84 (3× 10−3) 0.02 (4× 10−4) 0.71 (4× 10−3)
RUV-rinv-evar (Ectl) 0.80 (3× 10−3) 0.03 (4× 10−4) 0.70 (4× 10−3)

Table 11: k = 20, highly correlated, nc = 1000, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.22 (4× 10−3) 0.63 (1× 10−2) 0.72 (4× 10−3) 1.124 (3× 10−2) 53.06 (5× 10−2) 1.40 (2× 10−3)
SVA (IRW) 0.18 (6× 10−3) 0.86 (7× 10−3) 0.88 (4× 10−3) 1.708 (4× 10−2) 6.89 (0.1) 1.10 (5× 10−3)
SVA (2-step) 0.27 (1× 10−2) 0.59 (2× 10−2) 0.75 (1× 10−2) 1.254 (0.1) 7.08 (0.2) 1.10 (9× 10−3)
LEAPP 0.42 (5× 10−3) 0.65 (7× 10−3) 0.87 (9× 10−4) 0.366 (7× 10−3) 5.20 (6× 10−2) 1.05 (3× 10−3)
ICE 0.57 (4× 10−3) 0.00 (2× 10−5) 0.30 (9× 10−4) 0.232 (3× 10−3)
RUV-4 0.67 (8× 10−3) 0.17 (1× 10−2) 0.78 (3× 10−3) 0.207 (6× 10−3) 1.34 (6× 10−2) 0.45 (1× 10−2)
RUV-inv 0.72 (4× 10−3) 0.06 (1× 10−3) 0.75 (3× 10−3) 0.181 (2× 10−3) 1.16 (1× 10−3) 0.39 (6× 10−4)
RUV-rinv 0.70 (4× 10−3) 0.11 (4× 10−3) 0.77 (2× 10−3) 0.185 (3× 10−3) 1.45 (8× 10−3) 0.43 (2× 10−3)
RUV-inv (Ectl) 0.74 (4× 10−3) 0.08 (2× 10−3) 0.77 (2× 10−3) 0.178 (2× 10−3) 1.14 (6× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.71 (4× 10−3) 0.13 (4× 10−3) 0.78 (2× 10−3) 0.188 (3× 10−3) 1.42 (7× 10−3) 0.41 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.74 (4× 10−3) 0.04 (5× 10−4) 0.73 (3× 10−3)
RUV-rinv-rsvar (Ectl) 0.71 (4× 10−3) 0.04 (5× 10−4) 0.71 (4× 10−3)
RUV-inv-evar (Ectl) 0.51 (5× 10−3) 0.00 (5× 10−6) 0.23 (5× 10−4)
RUV-rinv-evar (Ectl) 0.50 (5× 10−3) 0.00 (4× 10−6) 0.22 (5× 10−4)

Table 12: k = 20, highly correlated, nc = 1000, not sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.11 (4× 10−3) 0.62 (9× 10−3) 0.72 (6× 10−3) 1.084 (2× 10−2) 53.01 (6× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.30 (1× 10−2) 0.56 (3× 10−2) 0.78 (9× 10−3) 0.834 (5× 10−2) 8.44 (0.3) 1.16 (1× 10−2)
SVA (2-step) 0.35 (9× 10−3) 0.39 (1× 10−2) 0.74 (6× 10−3) 0.438 (2× 10−2) 6.26 (8× 10−2) 1.07 (4× 10−3)
LEAPP 0.36 (8× 10−3) 0.65 (7× 10−3) 0.86 (4× 10−3) 0.314 (8× 10−3) 5.22 (6× 10−2) 1.06 (3× 10−3)
ICE 0.62 (6× 10−3) 0.02 (5× 10−4) 0.71 (6× 10−3) 0.172 (2× 10−3)
RUV-4 0.42 (1× 10−2) 0.14 (4× 10−3) 0.68 (9× 10−3) 0.275 (5× 10−3) 0.97 (3× 10−3) 0.58 (2× 10−2)
RUV-inv 0.34 (8× 10−3) 0.02 (1× 10−3) 0.40 (1× 10−2) 0.397 (9× 10−3) 1.58 (1× 10−2) 1.02 (1× 10−2)
RUV-rinv 0.55 (7× 10−3) 0.09 (4× 10−3) 0.72 (6× 10−3) 0.219 (3× 10−3) 2.02 (2× 10−2) 0.63 (4× 10−3)
RUV-inv (Ectl) 0.63 (7× 10−3) 0.07 (1× 10−3) 0.76 (6× 10−3) 0.174 (2× 10−3) 1.14 (5× 10−4) 0.35 (5× 10−4)
RUV-rinv (Ectl) 0.61 (7× 10−3) 0.10 (2× 10−3) 0.77 (6× 10−3) 0.180 (3× 10−3) 1.36 (1× 10−3) 0.39 (6× 10−4)
RUV-inv-rsvar (Ectl) 0.63 (7× 10−3) 0.05 (2× 10−3) 0.74 (6× 10−3)
RUV-rinv-rsvar (Ectl) 0.61 (7× 10−3) 0.05 (2× 10−3) 0.73 (7× 10−3)
RUV-inv-evar (Ectl) 0.63 (7× 10−3) 0.05 (2× 10−4) 0.75 (6× 10−3)
RUV-rinv-evar (Ectl) 0.62 (7× 10−3) 0.05 (2× 10−4) 0.74 (7× 10−3)

Table 13: k = 20, highly correlated, nc = 60, very sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.28 (8× 10−3) 0.64 (1× 10−2) 0.73 (4× 10−3) 1.135 (3× 10−2) 53.09 (6× 10−2) 1.40 (2× 10−3)
SVA (IRW) 0.55 (1× 10−2) 0.61 (3× 10−2) 0.79 (9× 10−3) 0.965 (6× 10−2) 8.86 (0.3) 1.18 (1× 10−2)
SVA (2-step) 0.63 (6× 10−3) 0.39 (1× 10−2) 0.74 (4× 10−3) 0.430 (1× 10−2) 6.13 (9× 10−2) 1.06 (4× 10−3)
LEAPP 0.64 (5× 10−3) 0.66 (6× 10−3) 0.87 (1× 10−3) 0.334 (7× 10−3) 5.20 (6× 10−2) 1.05 (3× 10−3)
ICE 0.80 (3× 10−3) 0.01 (3× 10−4) 0.64 (3× 10−3) 0.176 (2× 10−3)
RUV-4 0.77 (7× 10−3) 0.13 (4× 10−3) 0.68 (6× 10−3) 0.280 (5× 10−3) 0.97 (1× 10−3) 0.59 (2× 10−2)
RUV-inv 0.66 (6× 10−3) 0.02 (1× 10−3) 0.42 (9× 10−3) 0.390 (8× 10−3) 1.59 (1× 10−2) 0.99 (1× 10−2)
RUV-rinv 0.79 (3× 10−3) 0.10 (4× 10−3) 0.72 (4× 10−3) 0.223 (3× 10−3) 2.02 (2× 10−2) 0.63 (4× 10−3)
RUV-inv (Ectl) 0.87 (2× 10−3) 0.07 (1× 10−3) 0.77 (4× 10−3) 0.176 (2× 10−3) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.86 (2× 10−3) 0.10 (3× 10−3) 0.77 (3× 10−3) 0.182 (2× 10−3) 1.35 (1× 10−3) 0.39 (6× 10−4)
RUV-inv-rsvar (Ectl) 0.87 (2× 10−3) 0.05 (2× 10−3) 0.75 (5× 10−3)
RUV-rinv-rsvar (Ectl) 0.86 (2× 10−3) 0.05 (2× 10−3) 0.73 (5× 10−3)
RUV-inv-evar (Ectl) 0.84 (3× 10−3) 0.02 (4× 10−4) 0.72 (4× 10−3)
RUV-rinv-evar (Ectl) 0.81 (3× 10−3) 0.03 (4× 10−4) 0.70 (4× 10−3)

Table 14: k = 20, highly correlated, nc = 60, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.23 (4× 10−3) 0.63 (1× 10−2) 0.72 (4× 10−3) 1.110 (2× 10−2) 53.14 (6× 10−2) 1.41 (2× 10−3)
SVA (IRW) 0.19 (6× 10−3) 0.86 (7× 10−3) 0.88 (4× 10−3) 1.638 (3× 10−2) 7.06 (9× 10−2) 1.11 (4× 10−3)
SVA (2-step) 0.28 (1× 10−2) 0.59 (2× 10−2) 0.76 (1× 10−2) 1.159 (8× 10−2) 7.09 (0.2) 1.10 (7× 10−3)
LEAPP 0.42 (5× 10−3) 0.65 (6× 10−3) 0.86 (8× 10−4) 0.368 (7× 10−3) 5.32 (6× 10−2) 1.06 (3× 10−3)
ICE 0.58 (4× 10−3) 0.00 (3× 10−5) 0.30 (9× 10−4) 0.230 (3× 10−3)
RUV-4 0.56 (1× 10−2) 0.14 (5× 10−3) 0.68 (8× 10−3) 0.282 (6× 10−3) 0.97 (2× 10−3) 0.60 (2× 10−2)
RUV-inv 0.40 (5× 10−3) 0.02 (1× 10−3) 0.41 (9× 10−3) 0.395 (9× 10−3) 1.56 (1× 10−2) 0.99 (1× 10−2)
RUV-rinv 0.60 (5× 10−3) 0.10 (4× 10−3) 0.72 (3× 10−3) 0.221 (4× 10−3) 1.99 (1× 10−2) 0.62 (3× 10−3)
RUV-inv (Ectl) 0.74 (4× 10−3) 0.09 (2× 10−3) 0.77 (3× 10−3) 0.181 (3× 10−3) 1.14 (5× 10−4) 0.35 (4× 10−4)
RUV-rinv (Ectl) 0.72 (4× 10−3) 0.12 (3× 10−3) 0.78 (3× 10−3) 0.187 (3× 10−3) 1.36 (1× 10−3) 0.39 (5× 10−4)
RUV-inv-rsvar (Ectl) 0.74 (4× 10−3) 0.07 (2× 10−3) 0.75 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.72 (4× 10−3) 0.06 (2× 10−3) 0.73 (5× 10−3)
RUV-inv-evar (Ectl) 0.50 (4× 10−3) 0.00 (8× 10−6) 0.23 (5× 10−4)
RUV-rinv-evar (Ectl) 0.50 (5× 10−3) 0.00 (6× 10−6) 0.22 (6× 10−4)

Table 15: k = 20, highly correlated, nc = 60, not sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.44 (5× 10−3) 0.50 (6× 10−4) 0.76 (4× 10−3) 0.482 (3× 10−4) 22.97 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.73 (4× 10−3) 0.09 (3× 10−3) 0.84 (4× 10−3) 0.120 (1× 10−3) 3.36 (2× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.74 (4× 10−3) 0.09 (3× 10−3) 0.85 (4× 10−3) 0.118 (1× 10−3) 3.36 (2× 10−2) 0.84 (3× 10−3)
LEAPP 0.74 (4× 10−3) 0.22 (5× 10−3) 0.89 (3× 10−3) 0.079 (6× 10−4) 3.01 (2× 10−2) 0.83 (3× 10−3)
ICE 0.78 (4× 10−3) 0.02 (3× 10−4) 0.84 (4× 10−3) 0.092 (5× 10−4)
RUV-4 0.77 (4× 10−3) 0.10 (2× 10−3) 0.88 (3× 10−3) 0.096 (6× 10−4) 1.43 (9× 10−3) 0.46 (2× 10−3)
RUV-inv 0.78 (4× 10−3) 0.06 (1× 10−3) 0.87 (3× 10−3) 0.096 (5× 10−4) 1.59 (2× 10−3) 0.50 (7× 10−4)
RUV-rinv 0.78 (4× 10−3) 0.07 (1× 10−3) 0.87 (3× 10−3) 0.095 (5× 10−4) 1.89 (2× 10−3) 0.56 (8× 10−4)
RUV-inv (Ectl) 0.78 (4× 10−3) 0.07 (1× 10−3) 0.87 (3× 10−3) 0.093 (5× 10−4) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.78 (4× 10−3) 0.07 (1× 10−3) 0.88 (3× 10−3) 0.095 (5× 10−4) 1.87 (2× 10−3) 0.55 (7× 10−4)
RUV-inv-rsvar (Ectl) 0.78 (4× 10−3) 0.04 (5× 10−4) 0.86 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.78 (4× 10−3) 0.04 (5× 10−4) 0.86 (4× 10−3)
RUV-inv-evar (Ectl) 0.79 (4× 10−3) 0.05 (3× 10−4) 0.87 (4× 10−3)
RUV-rinv-evar (Ectl) 0.78 (4× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)

Table 16: k = 70, moderately correlated, nc = 1000, very sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.60 (4× 10−3) 0.50 (5× 10−4) 0.76 (2× 10−3) 0.482 (3× 10−4) 22.91 (3× 10−2) 1.46 (2× 10−3)
SVA (IRW) 0.76 (3× 10−3) 0.19 (7× 10−3) 0.82 (2× 10−3) 0.185 (5× 10−3) 3.41 (3× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.78 (4× 10−3) 0.10 (3× 10−3) 0.84 (2× 10−3) 0.123 (1× 10−3) 3.39 (3× 10−2) 0.84 (3× 10−3)
LEAPP 0.78 (3× 10−3) 0.22 (5× 10−3) 0.88 (2× 10−3) 0.107 (7× 10−4) 3.07 (3× 10−2) 0.84 (3× 10−3)
ICE 0.79 (3× 10−3) 0.00 (8× 10−5) 0.76 (2× 10−3) 0.093 (4× 10−4)
RUV-4 0.86 (2× 10−3) 0.10 (2× 10−3) 0.88 (2× 10−3) 0.096 (5× 10−4) 1.42 (9× 10−3) 0.46 (2× 10−3)
RUV-inv 0.86 (3× 10−3) 0.06 (9× 10−4) 0.86 (2× 10−3) 0.096 (4× 10−4) 1.59 (2× 10−3) 0.50 (8× 10−4)
RUV-rinv 0.85 (3× 10−3) 0.07 (1× 10−3) 0.87 (2× 10−3) 0.096 (5× 10−4) 1.89 (3× 10−3) 0.56 (9× 10−4)
RUV-inv (Ectl) 0.87 (2× 10−3) 0.06 (9× 10−4) 0.87 (2× 10−3) 0.093 (4× 10−4) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.85 (3× 10−3) 0.07 (1× 10−3) 0.87 (2× 10−3) 0.094 (4× 10−4) 1.87 (2× 10−3) 0.55 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.87 (2× 10−3) 0.04 (5× 10−4) 0.86 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.85 (3× 10−3) 0.04 (5× 10−4) 0.85 (2× 10−3)
RUV-inv-evar (Ectl) 0.81 (3× 10−3) 0.01 (2× 10−4) 0.81 (2× 10−3)
RUV-rinv-evar (Ectl) 0.80 (3× 10−3) 0.01 (3× 10−4) 0.81 (2× 10−3)

Table 17: k = 70, moderately correlated, nc = 1000, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.32 (4× 10−3) 0.50 (8× 10−4) 0.75 (7× 10−4) 0.482 (3× 10−4) 22.97 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.38 (5× 10−3) 0.72 (3× 10−3) 0.85 (7× 10−4) 0.585 (5× 10−3) 3.38 (2× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.45 (6× 10−3) 0.51 (7× 10−3) 0.80 (1× 10−3) 0.422 (1× 10−2) 3.38 (2× 10−2) 0.84 (3× 10−3)
LEAPP 0.55 (4× 10−3) 0.22 (5× 10−3) 0.88 (6× 10−4) 0.129 (1× 10−3) 3.04 (3× 10−2) 0.84 (3× 10−3)
ICE 0.50 (4× 10−3) 0.00 (2× 10−5) 0.40 (6× 10−4) 0.127 (5× 10−4)
RUV-4 0.68 (4× 10−3) 0.10 (1× 10−3) 0.88 (6× 10−4) 0.096 (5× 10−4) 1.42 (8× 10−3) 0.46 (2× 10−3)
RUV-inv 0.70 (4× 10−3) 0.06 (1× 10−3) 0.86 (7× 10−4) 0.096 (5× 10−4) 1.59 (2× 10−3) 0.50 (8× 10−4)
RUV-rinv 0.69 (4× 10−3) 0.07 (1× 10−3) 0.87 (6× 10−4) 0.096 (5× 10−4) 1.89 (3× 10−3) 0.56 (9× 10−4)
RUV-inv (Ectl) 0.71 (4× 10−3) 0.07 (1× 10−3) 0.86 (6× 10−4) 0.098 (4× 10−4) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.69 (4× 10−3) 0.08 (1× 10−3) 0.87 (6× 10−4) 0.097 (5× 10−4) 1.87 (2× 10−3) 0.55 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.71 (4× 10−3) 0.04 (4× 10−4) 0.85 (1× 10−3)
RUV-rinv-rsvar (Ectl) 0.69 (4× 10−3) 0.04 (4× 10−4) 0.85 (1× 10−3)
RUV-inv-evar (Ectl) 0.49 (5× 10−3) 0.00 (0) 0.24 (4× 10−4)
RUV-rinv-evar (Ectl) 0.48 (5× 10−3) 0.00 (0) 0.24 (4× 10−4)

Table 18: k = 70, moderately correlated, nc = 1000, not sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.44 (5× 10−3) 0.50 (6× 10−4) 0.75 (4× 10−3) 0.481 (3× 10−4) 22.94 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.72 (5× 10−3) 0.09 (3× 10−3) 0.84 (4× 10−3) 0.122 (1× 10−3) 3.42 (3× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.73 (4× 10−3) 0.10 (3× 10−3) 0.84 (4× 10−3) 0.121 (1× 10−3) 3.40 (3× 10−2) 0.84 (3× 10−3)
LEAPP 0.73 (4× 10−3) 0.22 (5× 10−3) 0.88 (3× 10−3) 0.080 (8× 10−4) 3.08 (3× 10−2) 0.84 (3× 10−3)
ICE 0.78 (4× 10−3) 0.02 (3× 10−4) 0.84 (4× 10−3) 0.093 (5× 10−4)
RUV-4 0.54 (1× 10−2) 0.13 (3× 10−3) 0.79 (9× 10−3) 0.159 (3× 10−3) 1.13 (6× 10−3) 0.77 (4× 10−2)
RUV-inv 0.55 (7× 10−3) 0.02 (1× 10−3) 0.62 (9× 10−3) 0.207 (4× 10−3) 1.90 (1× 10−2) 1.02 (8× 10−3)
RUV-rinv 0.74 (4× 10−3) 0.07 (2× 10−3) 0.84 (4× 10−3) 0.110 (8× 10−4) 2.24 (9× 10−3) 0.67 (2× 10−3)
RUV-inv (Ectl) 0.78 (4× 10−3) 0.07 (1× 10−3) 0.87 (4× 10−3) 0.093 (5× 10−4) 1.57 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.77 (4× 10−3) 0.07 (1× 10−3) 0.87 (3× 10−3) 0.095 (5× 10−4) 1.83 (2× 10−3) 0.54 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.78 (4× 10−3) 0.05 (2× 10−3) 0.86 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.77 (4× 10−3) 0.05 (2× 10−3) 0.86 (4× 10−3)
RUV-inv-evar (Ectl) 0.78 (4× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)
RUV-rinv-evar (Ectl) 0.78 (4× 10−3) 0.05 (3× 10−4) 0.86 (4× 10−3)

Table 19: k = 70, moderately correlated, nc = 60, very sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.59 (4× 10−3) 0.50 (6× 10−4) 0.75 (2× 10−3) 0.481 (4× 10−4) 22.95 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.76 (4× 10−3) 0.20 (7× 10−3) 0.81 (3× 10−3) 0.190 (5× 10−3) 3.38 (3× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.78 (3× 10−3) 0.10 (3× 10−3) 0.84 (2× 10−3) 0.123 (1× 10−3) 3.36 (3× 10−2) 0.84 (3× 10−3)
LEAPP 0.78 (3× 10−3) 0.22 (4× 10−3) 0.88 (1× 10−3) 0.106 (7× 10−4) 3.04 (3× 10−2) 0.84 (3× 10−3)
ICE 0.79 (3× 10−3) 0.00 (7× 10−5) 0.76 (2× 10−3) 0.093 (4× 10−4)
RUV-4 0.75 (1× 10−2) 0.13 (3× 10−3) 0.78 (8× 10−3) 0.159 (3× 10−3) 1.13 (8× 10−3) 0.77 (4× 10−2)
RUV-inv 0.71 (4× 10−3) 0.02 (1× 10−3) 0.62 (7× 10−3) 0.209 (4× 10−3) 1.90 (1× 10−2) 1.03 (9× 10−3)
RUV-rinv 0.81 (3× 10−3) 0.07 (1× 10−3) 0.84 (2× 10−3) 0.109 (7× 10−4) 2.25 (1× 10−2) 0.67 (2× 10−3)
RUV-inv (Ectl) 0.87 (2× 10−3) 0.06 (9× 10−4) 0.87 (2× 10−3) 0.092 (4× 10−4) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.85 (2× 10−3) 0.07 (1× 10−3) 0.87 (2× 10−3) 0.094 (5× 10−4) 1.83 (2× 10−3) 0.54 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.87 (2× 10−3) 0.05 (2× 10−3) 0.86 (3× 10−3)
RUV-rinv-rsvar (Ectl) 0.85 (2× 10−3) 0.05 (2× 10−3) 0.85 (3× 10−3)
RUV-inv-evar (Ectl) 0.81 (4× 10−3) 0.01 (3× 10−4) 0.81 (2× 10−3)
RUV-rinv-evar (Ectl) 0.80 (4× 10−3) 0.01 (3× 10−4) 0.81 (2× 10−3)

Table 20: k = 70, moderately correlated, nc = 60, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.31 (4× 10−3) 0.50 (7× 10−4) 0.75 (6× 10−4) 0.481 (4× 10−4) 22.91 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.37 (5× 10−3) 0.72 (3× 10−3) 0.86 (6× 10−4) 0.586 (6× 10−3) 3.36 (2× 10−2) 0.84 (3× 10−3)
SVA (2-step) 0.44 (8× 10−3) 0.51 (7× 10−3) 0.80 (1× 10−3) 0.421 (1× 10−2) 3.36 (2× 10−2) 0.84 (3× 10−3)
LEAPP 0.55 (4× 10−3) 0.24 (4× 10−3) 0.88 (6× 10−4) 0.131 (9× 10−4) 3.02 (3× 10−2) 0.84 (3× 10−3)
ICE 0.50 (4× 10−3) 0.00 (3× 10−5) 0.40 (5× 10−4) 0.127 (5× 10−4)
RUV-4 0.51 (2× 10−2) 0.14 (3× 10−3) 0.79 (9× 10−3) 0.158 (3× 10−3) 1.13 (6× 10−3) 0.76 (4× 10−2)
RUV-inv 0.40 (4× 10−3) 0.02 (1× 10−3) 0.61 (7× 10−3) 0.216 (5× 10−3) 1.93 (1× 10−2) 1.04 (9× 10−3)
RUV-rinv 0.60 (4× 10−3) 0.07 (2× 10−3) 0.84 (9× 10−4) 0.111 (7× 10−4) 2.27 (1× 10−2) 0.68 (2× 10−3)
RUV-inv (Ectl) 0.71 (3× 10−3) 0.08 (1× 10−3) 0.86 (7× 10−4) 0.100 (5× 10−4) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.69 (3× 10−3) 0.09 (2× 10−3) 0.87 (6× 10−4) 0.099 (5× 10−4) 1.83 (2× 10−3) 0.54 (8× 10−4)
RUV-inv-rsvar (Ectl) 0.71 (3× 10−3) 0.08 (3× 10−3) 0.86 (2× 10−3)
RUV-rinv-rsvar (Ectl) 0.69 (3× 10−3) 0.07 (3× 10−3) 0.86 (2× 10−3)
RUV-inv-evar (Ectl) 0.48 (5× 10−3) 0.00 (2× 10−6) 0.24 (3× 10−4)
RUV-rinv-evar (Ectl) 0.48 (5× 10−3) 0.00 (0) 0.24 (4× 10−4)

Table 21: k = 70, moderately correlated, nc = 60, not sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.26 (6× 10−3) 0.62 (1× 10−2) 0.78 (4× 10−3) 0.686 (2× 10−2) 22.91 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.42 (8× 10−3) 0.40 (2× 10−2) 0.79 (6× 10−3) 0.352 (1× 10−2) 3.59 (4× 10−2) 0.87 (4× 10−3)
SVA (2-step) 0.46 (7× 10−3) 0.36 (8× 10−3) 0.80 (5× 10−3) 0.276 (6× 10−3) 3.41 (3× 10−2) 0.84 (4× 10−3)
LEAPP 0.47 (6× 10−3) 0.59 (5× 10−3) 0.89 (3× 10−3) 0.204 (4× 10−3) 3.05 (3× 10−2) 0.84 (3× 10−3)
ICE 0.59 (6× 10−3) 0.05 (5× 10−4) 0.72 (5× 10−3) 0.183 (2× 10−3)
RUV-4 0.51 (6× 10−3) 0.31 (1× 10−2) 0.82 (5× 10−3) 0.230 (4× 10−3) 2.50 (6× 10−2) 0.69 (1× 10−2)
RUV-inv 0.58 (5× 10−3) 0.14 (2× 10−3) 0.77 (5× 10−3) 0.189 (2× 10−3) 1.59 (2× 10−3) 0.50 (7× 10−4)
RUV-rinv 0.56 (5× 10−3) 0.22 (4× 10−3) 0.81 (5× 10−3) 0.195 (2× 10−3) 2.00 (6× 10−3) 0.58 (2× 10−3)
RUV-inv (Ectl) 0.59 (5× 10−3) 0.15 (3× 10−3) 0.79 (5× 10−3) 0.183 (2× 10−3) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.56 (5× 10−3) 0.23 (4× 10−3) 0.81 (5× 10−3) 0.193 (2× 10−3) 1.97 (5× 10−3) 0.58 (1× 10−3)
RUV-inv-rsvar (Ectl) 0.59 (5× 10−3) 0.04 (5× 10−4) 0.70 (5× 10−3)
RUV-rinv-rsvar (Ectl) 0.56 (5× 10−3) 0.05 (4× 10−4) 0.69 (6× 10−3)
RUV-inv-evar (Ectl) 0.61 (5× 10−3) 0.05 (2× 10−4) 0.72 (5× 10−3)
RUV-rinv-evar (Ectl) 0.59 (5× 10−3) 0.05 (2× 10−4) 0.71 (6× 10−3)

Table 22: k = 70, highly correlated, nc = 1000, very sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.49 (5× 10−3) 0.64 (1× 10−2) 0.78 (3× 10−3) 0.723 (2× 10−2) 22.96 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.64 (7× 10−3) 0.55 (2× 10−2) 0.79 (6× 10−3) 0.506 (2× 10−2) 3.67 (4× 10−2) 0.87 (5× 10−3)
SVA (2-step) 0.73 (4× 10−3) 0.36 (9× 10−3) 0.80 (3× 10−3) 0.282 (4× 10−3) 3.33 (2× 10−2) 0.83 (3× 10−3)
LEAPP 0.74 (4× 10−3) 0.60 (5× 10−3) 0.89 (1× 10−3) 0.223 (3× 10−3) 2.98 (2× 10−2) 0.83 (3× 10−3)
ICE 0.77 (3× 10−3) 0.02 (5× 10−4) 0.67 (3× 10−3) 0.188 (2× 10−3)
RUV-4 0.78 (5× 10−3) 0.30 (1× 10−2) 0.81 (3× 10−3) 0.235 (4× 10−3) 2.47 (6× 10−2) 0.68 (1× 10−2)
RUV-inv 0.83 (3× 10−3) 0.13 (2× 10−3) 0.77 (3× 10−3) 0.192 (2× 10−3) 1.59 (2× 10−3) 0.50 (7× 10−4)
RUV-rinv 0.81 (3× 10−3) 0.22 (4× 10−3) 0.80 (2× 10−3) 0.197 (2× 10−3) 1.99 (6× 10−3) 0.58 (2× 10−3)
RUV-inv (Ectl) 0.84 (3× 10−3) 0.15 (3× 10−3) 0.78 (3× 10−3) 0.186 (2× 10−3) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.81 (3× 10−3) 0.23 (4× 10−3) 0.81 (3× 10−3) 0.197 (2× 10−3) 1.97 (6× 10−3) 0.57 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.84 (3× 10−3) 0.04 (5× 10−4) 0.70 (3× 10−3)
RUV-rinv-rsvar (Ectl) 0.81 (3× 10−3) 0.05 (5× 10−4) 0.68 (4× 10−3)
RUV-inv-evar (Ectl) 0.77 (3× 10−3) 0.03 (3× 10−4) 0.69 (3× 10−3)
RUV-rinv-evar (Ectl) 0.74 (4× 10−3) 0.03 (3× 10−4) 0.67 (3× 10−3)

Table 23: k = 70, highly correlated, nc = 1000, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.29 (5× 10−3) 0.63 (1× 10−2) 0.78 (3× 10−3) 0.716 (2× 10−2) 22.93 (2× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.26 (1× 10−2) 0.82 (8× 10−3) 0.89 (3× 10−3) 1.104 (5× 10−2) 3.44 (3× 10−2) 0.85 (4× 10−3)
SVA (2-step) 0.26 (1× 10−2) 0.74 (1× 10−2) 0.84 (4× 10−3) 1.308 (9× 10−2) 3.49 (3× 10−2) 0.85 (4× 10−3)
LEAPP 0.51 (5× 10−3) 0.59 (6× 10−3) 0.89 (6× 10−4) 0.256 (4× 10−3) 3.05 (3× 10−2) 0.84 (3× 10−3)
ICE 0.48 (4× 10−3) 0.00 (1× 10−4) 0.37 (1× 10−3) 0.236 (4× 10−3)
RUV-4 0.58 (7× 10−3) 0.30 (1× 10−2) 0.81 (3× 10−3) 0.234 (4× 10−3) 2.49 (7× 10−2) 0.69 (1× 10−2)
RUV-inv 0.67 (4× 10−3) 0.13 (2× 10−3) 0.77 (3× 10−3) 0.192 (2× 10−3) 1.59 (2× 10−3) 0.50 (7× 10−4)
RUV-rinv 0.65 (4× 10−3) 0.22 (5× 10−3) 0.81 (2× 10−3) 0.198 (2× 10−3) 1.99 (6× 10−3) 0.58 (2× 10−3)
RUV-inv (Ectl) 0.68 (4× 10−3) 0.17 (3× 10−3) 0.79 (2× 10−3) 0.190 (2× 10−3) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.65 (4× 10−3) 0.24 (5× 10−3) 0.81 (2× 10−3) 0.200 (2× 10−3) 1.98 (6× 10−3) 0.58 (2× 10−3)
RUV-inv-rsvar (Ectl) 0.68 (4× 10−3) 0.05 (4× 10−4) 0.70 (3× 10−3)
RUV-rinv-rsvar (Ectl) 0.65 (4× 10−3) 0.05 (5× 10−4) 0.68 (4× 10−3)
RUV-inv-evar (Ectl) 0.48 (4× 10−3) 0.00 (3× 10−6) 0.22 (5× 10−4)
RUV-rinv-evar (Ectl) 0.46 (5× 10−3) 0.00 (0) 0.22 (5× 10−4)

Table 24: k = 70, highly correlated, nc = 1000, not sparse.
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Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.23 (6× 10−3) 0.62 (1× 10−2) 0.78 (5× 10−3) 0.699 (2× 10−2) 22.95 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.40 (8× 10−3) 0.43 (2× 10−2) 0.80 (5× 10−3) 0.379 (2× 10−2) 3.65 (5× 10−2) 0.87 (6× 10−3)
SVA (2-step) 0.46 (7× 10−3) 0.36 (9× 10−3) 0.81 (5× 10−3) 0.274 (4× 10−3) 3.37 (2× 10−2) 0.84 (3× 10−3)
LEAPP 0.46 (7× 10−3) 0.59 (5× 10−3) 0.89 (3× 10−3) 0.205 (4× 10−3) 3.04 (3× 10−2) 0.84 (3× 10−3)
ICE 0.58 (5× 10−3) 0.05 (5× 10−4) 0.72 (5× 10−3) 0.185 (2× 10−3)
RUV-4 0.43 (6× 10−3) 0.22 (6× 10−3) 0.75 (6× 10−3) 0.257 (3× 10−3) 1.31 (2× 10−2) 0.50 (7× 10−3)
RUV-inv 0.31 (6× 10−3) 0.03 (1× 10−3) 0.39 (1× 10−2) 0.430 (9× 10−3) 1.93 (1× 10−2) 1.03 (9× 10−3)
RUV-rinv 0.51 (6× 10−3) 0.18 (5× 10−3) 0.77 (5× 10−3) 0.222 (2× 10−3) 2.27 (9× 10−3) 0.67 (2× 10−3)
RUV-inv (Ectl) 0.58 (6× 10−3) 0.14 (3× 10−3) 0.79 (5× 10−3) 0.185 (2× 10−3) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.56 (6× 10−3) 0.20 (4× 10−3) 0.81 (5× 10−3) 0.191 (2× 10−3) 1.86 (2× 10−3) 0.54 (9× 10−4)
RUV-inv-rsvar (Ectl) 0.58 (6× 10−3) 0.05 (2× 10−3) 0.71 (6× 10−3)
RUV-rinv-rsvar (Ectl) 0.56 (6× 10−3) 0.05 (2× 10−3) 0.70 (6× 10−3)
RUV-inv-evar (Ectl) 0.60 (6× 10−3) 0.05 (2× 10−4) 0.73 (5× 10−3)
RUV-rinv-evar (Ectl) 0.59 (5× 10−3) 0.05 (2× 10−4) 0.72 (5× 10−3)

Table 25: k = 70, highly correlated, nc = 60, very sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.50 (6× 10−3) 0.65 (1× 10−2) 0.79 (3× 10−3) 0.749 (2× 10−2) 22.97 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.65 (8× 10−3) 0.50 (2× 10−2) 0.78 (5× 10−3) 0.478 (2× 10−2) 3.66 (5× 10−2) 0.87 (5× 10−3)
SVA (2-step) 0.73 (4× 10−3) 0.34 (9× 10−3) 0.80 (3× 10−3) 0.274 (6× 10−3) 3.39 (3× 10−2) 0.84 (3× 10−3)
LEAPP 0.74 (4× 10−3) 0.58 (5× 10−3) 0.89 (1× 10−3) 0.216 (3× 10−3) 3.05 (3× 10−2) 0.84 (3× 10−3)
ICE 0.77 (3× 10−3) 0.02 (5× 10−4) 0.67 (3× 10−3) 0.186 (2× 10−3)
RUV-4 0.79 (5× 10−3) 0.22 (6× 10−3) 0.74 (6× 10−3) 0.262 (5× 10−3) 1.30 (2× 10−2) 0.50 (8× 10−3)
RUV-inv 0.63 (7× 10−3) 0.02 (1× 10−3) 0.39 (1× 10−2) 0.429 (1× 10−2) 1.94 (1× 10−2) 1.04 (1× 10−2)
RUV-rinv 0.79 (3× 10−3) 0.18 (4× 10−3) 0.77 (3× 10−3) 0.221 (2× 10−3) 2.28 (1× 10−2) 0.68 (2× 10−3)
RUV-inv (Ectl) 0.84 (3× 10−3) 0.15 (3× 10−3) 0.79 (3× 10−3) 0.184 (2× 10−3) 1.58 (1× 10−3) 0.47 (7× 10−4)
RUV-rinv (Ectl) 0.82 (3× 10−3) 0.20 (3× 10−3) 0.81 (3× 10−3) 0.190 (2× 10−3) 1.85 (3× 10−3) 0.55 (1× 10−3)
RUV-inv-rsvar (Ectl) 0.84 (3× 10−3) 0.06 (2× 10−3) 0.72 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.82 (3× 10−3) 0.06 (2× 10−3) 0.71 (5× 10−3)
RUV-inv-evar (Ectl) 0.77 (3× 10−3) 0.03 (3× 10−4) 0.70 (3× 10−3)
RUV-rinv-evar (Ectl) 0.75 (3× 10−3) 0.03 (3× 10−4) 0.69 (3× 10−3)

Table 26: k = 70, highly correlated, nc = 60, sparse.

Top Rank Frac. Type 1 Average Power RMSE(β̂) AVG(σ̂2
j /σ

2
j ) IQR[log(σ̂2

j /σ
2
j )]

Unadjusted 0.29 (5× 10−3) 0.64 (1× 10−2) 0.78 (3× 10−3) 0.731 (2× 10−2) 22.90 (3× 10−2) 1.45 (2× 10−3)
SVA (IRW) 0.25 (1× 10−2) 0.83 (8× 10−3) 0.89 (3× 10−3) 1.163 (5× 10−2) 3.45 (3× 10−2) 0.85 (3× 10−3)
SVA (2-step) 0.23 (1× 10−2) 0.76 (1× 10−2) 0.84 (5× 10−3) 1.423 (8× 10−2) 3.54 (3× 10−2) 0.86 (4× 10−3)
LEAPP 0.51 (5× 10−3) 0.59 (6× 10−3) 0.89 (5× 10−4) 0.257 (4× 10−3) 3.05 (3× 10−2) 0.84 (3× 10−3)
ICE 0.49 (4× 10−3) 0.00 (9× 10−5) 0.37 (1× 10−3) 0.240 (4× 10−3)
RUV-4 0.61 (5× 10−3) 0.22 (5× 10−3) 0.75 (6× 10−3) 0.260 (4× 10−3) 1.33 (2× 10−2) 0.49 (6× 10−3)
RUV-inv 0.38 (5× 10−3) 0.02 (1× 10−3) 0.38 (9× 10−3) 0.434 (8× 10−3) 1.92 (1× 10−2) 1.03 (9× 10−3)
RUV-rinv 0.58 (4× 10−3) 0.17 (4× 10−3) 0.76 (3× 10−3) 0.224 (2× 10−3) 2.29 (1× 10−2) 0.68 (2× 10−3)
RUV-inv (Ectl) 0.67 (4× 10−3) 0.17 (3× 10−3) 0.79 (3× 10−3) 0.193 (2× 10−3) 1.58 (1× 10−3) 0.47 (6× 10−4)
RUV-rinv (Ectl) 0.65 (4× 10−3) 0.22 (3× 10−3) 0.81 (2× 10−3) 0.199 (2× 10−3) 1.86 (3× 10−3) 0.55 (9× 10−4)
RUV-inv-rsvar (Ectl) 0.67 (4× 10−3) 0.07 (3× 10−3) 0.72 (4× 10−3)
RUV-rinv-rsvar (Ectl) 0.65 (4× 10−3) 0.06 (3× 10−3) 0.70 (4× 10−3)
RUV-inv-evar (Ectl) 0.49 (4× 10−3) 0.00 (3× 10−6) 0.22 (5× 10−4)
RUV-rinv-evar (Ectl) 0.48 (4× 10−3) 0.00 (2× 10−6) 0.22 (5× 10−4)

Table 27: k = 70, highly correlated, nc = 60, not sparse.
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C Data Results
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Figure 27: Alzheimer’s (Preprocessed). X/Y gene counts are out of the top 40 genes.
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Figure 28: Alzheimer’s (Not Preprocessed). X/Y gene counts are out of the top 40 genes.
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Figure 29: Gender (Preprocessed). X/Y gene counts are out of the top 40 genes.

98



H
o
u

se
ke

ep
in

g
G

en
es

RUV-2 RUV-4

RUV-inv RUV-ridge inverse

A
ll

G
en

es

RUV-2 RUV-4

RUV-inv RUV-ridge inverse

E
m

p
ir

ic
al

C
on

tr
ol

s

RUV-2 RUV-4

RUV-inv RUV-ridge inverse

Figure 30: Gender (Not Preprocessed). X/Y gene counts are out of the top 40 genes.
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Figure 31: TCGA Exon. X/Y gene counts are out of the top 80 genes.
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Figure 32: TCGA HG-U133A. X/Y gene counts are out of the top 80 genes.
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Figure 33: TCGA Agilent. X/Y gene counts are out of the top 80 genes.
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Figure 34: TCGA Combined Subsets. X/Y gene counts are out of the top 40 genes.

103



H
o
u

se
ke

ep
in

g
G

en
es

RUV-2 RUV-4

RUV-inv RUV-ridge inverse

A
ll

G
en

es

RUV-2 RUV-4

RUV-inv RUV-ridge inverse

E
m

p
ir

ic
al

C
on

tr
ol

s

RUV-2 RUV-4

RUV-inv RUV-ridge inverse

Figure 35: TCGA Exon (subset). X/Y gene counts are out of the top 40 genes.
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Figure 36: TCGA HG-133a (subset). X/Y gene counts are out of the top 40 genes.
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Figure 37: TCGA Agilent (subset). X/Y gene counts are out of the top 40 genes.
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D Data Results Tables

Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 15 19 23 25 26 0.002 0.02 0.38
SVA-TS 16 21 22 24 26 0.012 0.06 0.53
LEAPP 16 24 24 26 27 0.046 0.13 0.59
ICE 20 27 29 31 31 0.007 0.04 0.48
RUV-4 (HK) 18 24 27 29 31 0.022 0.09 0.56
RUV-inv (HK) 19 26 29 31 33 0.007 0.05 0.51
RUV-rinv (HK) 20 26 30 32 33 0.008 0.05 0.5
RUV-4-evar (HK) 19 24 29 30 31 0.016 0.05 0.49
RUV-inv-evar (HK) 19 26 29 30 35 0.014 0.05 0.5
RUV-rinv-evar (HK) 19 27 30 30 31 0.014 0.05 0.5
RUV-4 (Full) 19 23 28 30 30 0.021 0.09 0.57
RUV-inv (Full) 20 25 29 31 34 0.009 0.05 0.52
RUV-rinv (Full) 20 26 29 32 35 0.01 0.05 0.52
RUV-4-evar (Full) 19 25 28 29 31 0.014 0.06 0.5
RUV-inv-evar (Full) 20 26 29 31 35 0.012 0.05 0.49
RUV-rinv-evar (Full) 20 26 29 31 33 0.012 0.05 0.5
RUV-4 (Empi) 19 25 29 30 32 0.021 0.08 0.56
RUV-inv (Empi) 20 26 29 31 33 0.009 0.05 0.51
RUV-rinv (Empi) 20 26 29 32 35 0.01 0.05 0.51
RUV-4-evar (Empi) 20 26 28 29 32 0.014 0.06 0.5
RUV-inv-evar (Empi) 20 26 29 30 33 0.013 0.05 0.5
RUV-rinv-evar (Empi) 20 26 29 32 33 0.012 0.05 0.5

Table 28: Alzheimer’s (Preprocessed)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 8 9 9 13 15 0.024 0.3 0.97
SVA-TS 15 18 23 23 23 0.014 0.07 0.56
LEAPP 17 23 24 26 26 0.046 0.13 0.6
ICE 13 16 17 17 21 0.017 0.23 0.98
RUV-4 (HK) 17 20 23 28 29 0.02 0.08 0.54
RUV-inv (HK) 17 21 22 24 28 0.008 0.05 0.5
RUV-rinv (HK) 18 21 26 28 31 0.008 0.05 0.5
RUV-4-evar (HK) 19 24 25 28 30 0.017 0.06 0.49
RUV-inv-evar (HK) 20 23 27 28 30 0.013 0.06 0.49
RUV-rinv-evar (HK) 19 26 30 32 32 0.012 0.05 0.5
RUV-4 (Full) 16 21 23 26 26 0.018 0.08 0.55
RUV-inv (Full) 17 23 25 25 27 0.008 0.05 0.5
RUV-rinv (Full) 18 23 27 28 30 0.009 0.05 0.5
RUV-4-evar (Full) 19 23 26 28 29 0.017 0.06 0.49
RUV-inv-evar (Full) 19 24 25 29 30 0.013 0.05 0.49
RUV-rinv-evar (Full) 18 23 27 27 28 0.012 0.05 0.49
RUV-4 (Empi) 16 21 23 26 27 0.018 0.08 0.54
RUV-inv (Empi) 18 23 25 25 27 0.008 0.05 0.5
RUV-rinv (Empi) 18 23 27 27 30 0.009 0.05 0.5
RUV-4-evar (Empi) 19 23 25 29 30 0.017 0.06 0.49
RUV-inv-evar (Empi) 19 23 27 27 30 0.014 0.05 0.5
RUV-rinv-evar (Empi) 17 24 26 28 29 0.013 0.05 0.49

Table 29: Alzheimer’s (No Preprocessing)

Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 11 13 15 17 19 0.002 0.01 0.33
Combat 12 17 19 20 20 0.011 0.05 0.5
SVA-TS 17 20 22 26 27 0.028 0.08 0.53
LEAPP 18 20 22 25 26 0.045 0.12 0.58
ICE 16 23 26 27 28 0.01 0.04 0.45
RUV-4 (HK) 14 19 21 24 28 0.042 0.1 0.56
RUV-inv (HK) 13 18 20 21 22 0.027 0.08 0.55
RUV-rinv (HK) 16 20 22 26 28 0.029 0.08 0.54
RUV-4-evar (HK) 14 17 22 25 27 0.02 0.06 0.48
RUV-inv-evar (HK) 12 17 21 22 22 0.018 0.06 0.49
RUV-rinv-evar (HK) 15 20 23 27 28 0.019 0.06 0.49
RUV-4 (Full) 13 20 23 24 27 0.041 0.11 0.56
RUV-inv (Full) 14 20 21 23 27 0.021 0.07 0.53
RUV-rinv (Full) 15 21 25 27 28 0.027 0.09 0.54
RUV-4-evar (Full) 13 18 23 26 27 0.02 0.06 0.49
RUV-inv-evar (Full) 14 19 23 24 25 0.016 0.06 0.49
RUV-rinv-evar (Full) 16 22 26 27 28 0.017 0.06 0.49
RUV-4 (Empi) 13 20 21 24 26 0.05 0.12 0.57
RUV-inv (Empi) 15 19 23 25 28 0.03 0.09 0.55
RUV-rinv (Empi) 16 21 25 28 29 0.032 0.09 0.54
RUV-4-evar (Empi) 13 18 20 22 25 0.024 0.06 0.49
RUV-inv-evar (Empi) 15 20 24 26 27 0.019 0.06 0.49
RUV-rinv-evar (Empi) 16 21 26 27 28 0.019 0.06 0.49

Table 30: Gender (Preprocessed)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 7 7 7 8 10 0 0 0
Combat 11 14 16 19 19 0 0 0.72
SVA-TS 10 14 15 17 19 0.002 0.01 0.3
LEAPP 11 16 18 19 19 0.002 0.01 0.31
ICE 8 11 13 14 17 0 0 0
RUV-4 (HK) 13 20 22 26 29 0.049 0.12 0.58
RUV-inv (HK) 14 18 23 23 26 0.024 0.08 0.53
RUV-rinv (HK) 14 22 24 26 28 0.029 0.08 0.54
RUV-4-evar (HK) 12 20 25 26 27 0.019 0.06 0.48
RUV-inv-evar (HK) 12 19 22 24 26 0.017 0.06 0.49
RUV-rinv-evar (HK) 16 23 25 26 27 0.017 0.06 0.49
RUV-4 (Full) 12 20 23 24 29 0.042 0.11 0.57
RUV-inv (Full) 12 17 23 25 25 0.018 0.07 0.51
RUV-rinv (Full) 14 21 24 28 30 0.024 0.07 0.52
RUV-4-evar (Full) 14 18 24 28 28 0.017 0.06 0.49
RUV-inv-evar (Full) 14 18 19 22 24 0.015 0.06 0.49
RUV-rinv-evar (Full) 16 23 27 31 32 0.017 0.06 0.49
RUV-4 (Empi) 12 21 25 26 28 0.051 0.12 0.58
RUV-inv (Empi) 14 22 24 28 30 0.031 0.09 0.55
RUV-rinv (Empi) 15 23 25 28 30 0.034 0.1 0.55
RUV-4-evar (Empi) 12 21 24 26 28 0.019 0.06 0.48
RUV-inv-evar (Empi) 15 23 26 29 30 0.016 0.06 0.49
RUV-rinv-evar (Empi) 16 24 27 29 32 0.017 0.06 0.49

Table 31: Gender (No Preprocessing)

Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 17 30 33 35 35 0.017 0.08 0.57
SVA-TS 17 33 34 35 37 0.027 0.09 0.56
LEAPP 17 33 34 35 36 0.042 0.12 0.59
ICE 17 33 35 35 36 0.001 0.01 0.38
RUV-4 (HK) 17 33 34 38 39 0.048 0.13 0.59
RUV-inv (HK) 17 28 29 30 30 0.007 0.05 0.5
RUV-rinv (HK) 17 34 37 39 40 0.017 0.07 0.53
RUV-4-evar (HK) 17 33 35 38 38 0.012 0.05 0.5
RUV-inv-evar (HK) 17 27 30 30 31 0.011 0.05 0.5
RUV-rinv-evar (HK) 17 33 37 39 40 0.01 0.05 0.5
RUV-4 (Full) 17 31 32 33 34 0.044 0.13 0.59
RUV-inv (Full) 17 26 29 29 30 0.007 0.04 0.48
RUV-rinv (Full) 17 30 31 31 32 0.013 0.06 0.51
RUV-4-evar (Full) 17 30 31 33 34 0.012 0.05 0.49
RUV-inv-evar (Full) 17 26 29 29 30 0.01 0.05 0.5
RUV-rinv-evar (Full) 17 30 31 31 32 0.011 0.05 0.49
RUV-4 (Empi) 17 33 35 40 41 0.031 0.1 0.57
RUV-inv (Empi) 17 33 38 38 39 0.017 0.07 0.53
RUV-rinv (Empi) 17 33 36 39 41 0.019 0.08 0.54
RUV-4-evar (Empi) 17 33 35 40 40 0.011 0.05 0.5
RUV-inv-evar (Empi) 17 33 38 38 39 0.01 0.05 0.49
RUV-rinv-evar (Empi) 17 33 35 38 39 0.009 0.05 0.5

Table 32: TCGA (Exon)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 16 22 22 24 25 0.04 0.12 0.6
SVA-TS 17 27 31 31 32 0.021 0.08 0.54
LEAPP 17 29 32 32 34 0.039 0.11 0.57
ICE 17 28 31 32 32 0.001 0.02 0.4
RUV-4 (HK) 17 24 26 29 32 0.056 0.14 0.59
RUV-inv (HK) 10 13 16 16 18 0.002 0.03 0.49
RUV-rinv (HK) 17 29 32 32 32 0.022 0.08 0.54
RUV-4-evar (HK) 17 23 25 27 31 0.014 0.06 0.49
RUV-inv-evar (HK) 10 13 14 18 19 0.012 0.05 0.5
RUV-rinv-evar (HK) 16 29 31 32 33 0.011 0.05 0.5
RUV-4 (Full) 15 17 20 23 24 0.061 0.15 0.61
RUV-inv (Full) 9 10 12 14 15 0.008 0.04 0.46
RUV-rinv (Full) 13 16 19 22 23 0.023 0.08 0.54
RUV-4-evar (Full) 15 17 20 23 24 0.015 0.05 0.49
RUV-inv-evar (Full) 8 10 12 14 14 0.012 0.05 0.5
RUV-rinv-evar (Full) 13 16 20 23 25 0.013 0.05 0.5
RUV-4 (Empi) 17 29 34 36 39 0.037 0.11 0.58
RUV-inv (Empi) 17 30 31 33 34 0.018 0.08 0.54
RUV-rinv (Empi) 17 29 34 35 36 0.024 0.08 0.55
RUV-4-evar (Empi) 17 29 33 37 38 0.01 0.06 0.5
RUV-inv-evar (Empi) 17 28 29 32 33 0.01 0.05 0.49
RUV-rinv-evar (Empi) 17 29 34 35 35 0.011 0.05 0.5

Table 33: TCGA (HG U133A)

Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 17 30 36 38 40 0.015 0.07 0.55
SVA-TS 17 33 37 38 38 0.021 0.08 0.54
LEAPP 17 33 37 38 43 0.042 0.12 0.59
ICE 17 33 34 37 41 0.002 0.01 0.38
RUV-4 (HK) 17 33 34 37 40 0.048 0.13 0.59
RUV-inv (HK) 16 19 22 22 23 0.005 0.04 0.49
RUV-rinv (HK) 17 33 38 39 41 0.02 0.08 0.54
RUV-4-evar (HK) 16 33 35 37 40 0.013 0.05 0.49
RUV-inv-evar (HK) 16 18 19 22 23 0.012 0.05 0.5
RUV-rinv-evar (HK) 17 34 37 39 41 0.01 0.05 0.5
RUV-4 (Full) 17 32 36 38 39 0.055 0.15 0.62
RUV-inv (Full) 17 22 23 25 26 0.01 0.05 0.49
RUV-rinv (Full) 17 29 31 33 34 0.012 0.05 0.5
RUV-4-evar (Full) 17 32 35 38 38 0.011 0.05 0.5
RUV-inv-evar (Full) 16 22 23 23 26 0.012 0.05 0.5
RUV-rinv-evar (Full) 17 29 29 32 34 0.01 0.05 0.49
RUV-4 (Empi) 17 33 40 45 48 0.039 0.11 0.58
RUV-inv (Empi) 17 33 42 43 43 0.02 0.08 0.54
RUV-rinv (Empi) 17 33 40 43 46 0.022 0.08 0.54
RUV-4-evar (Empi) 17 33 40 45 47 0.012 0.05 0.5
RUV-inv-evar (Empi) 18 31 37 41 42 0.01 0.05 0.49
RUV-rinv-evar (Empi) 18 33 40 42 46 0.01 0.05 0.49

Table 34: TCGA (Agilent)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 12 14 16 17 17 0.004 0.02 0.35
Combat 17 18 21 23 23 0.012 0.06 0.52
SVA-TS 17 23 24 25 26 0.022 0.08 0.55
LEAPP 17 22 23 23 25 0.03 0.1 0.58
ICE 17 24 25 27 27 0.002 0.01 0.37
RUV-4 (HK) 17 22 24 25 25 0.069 0.16 0.61
RUV-inv (HK) 17 20 20 21 21 0.01 0.05 0.51
RUV-rinv (HK) 17 24 27 28 28 0.013 0.06 0.52
RUV-4-evar (HK) 17 23 25 25 27 0.013 0.05 0.49
RUV-inv-evar (HK) 17 20 20 20 21 0.011 0.05 0.49
RUV-rinv-evar (HK) 17 24 26 30 30 0.01 0.05 0.5
RUV-4 (Full) 13 16 18 22 23 0.034 0.1 0.57
RUV-inv (Full) 10 14 18 20 20 0.01 0.05 0.5
RUV-rinv (Full) 16 19 20 24 25 0.01 0.05 0.49
RUV-4-evar (Full) 13 16 18 20 21 0.011 0.05 0.49
RUV-inv-evar (Full) 10 13 17 20 20 0.011 0.05 0.5
RUV-rinv-evar (Full) 16 19 21 23 25 0.012 0.05 0.49
RUV-4 (Empi) 17 26 27 28 29 0.027 0.09 0.56
RUV-inv (Empi) 17 25 26 28 29 0.012 0.05 0.51
RUV-rinv (Empi) 17 25 27 28 31 0.012 0.06 0.51
RUV-4-evar (Empi) 17 26 28 28 29 0.01 0.05 0.49
RUV-inv-evar (Empi) 17 23 25 26 29 0.011 0.05 0.5
RUV-rinv-evar (Empi) 17 25 27 28 29 0.01 0.05 0.5

Table 35: TCGA (Combined)

Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 13 17 18 18 18 0.012 0.08 0.6
SVA-TS 15 18 19 19 23 0.015 0.07 0.53
LEAPP 16 20 24 25 26 0.043 0.12 0.58
ICE 17 22 22 24 24 0.005 0.03 0.45
RUV-4 (HK) 15 18 21 24 25 0.044 0.12 0.6
RUV-inv (HK) 15 22 22 23 25 0.014 0.06 0.53
RUV-rinv (HK) 17 21 22 23 24 0.019 0.07 0.53
RUV-4-evar (HK) 15 18 20 23 24 0.015 0.05 0.5
RUV-inv-evar (HK) 15 22 22 24 26 0.012 0.05 0.5
RUV-rinv-evar (HK) 16 21 23 24 24 0.012 0.05 0.5
RUV-4 (Full) 15 18 20 22 23 0.025 0.09 0.56
RUV-inv (Full) 14 16 18 20 23 0.011 0.05 0.51
RUV-rinv (Full) 15 17 20 23 23 0.012 0.06 0.52
RUV-4-evar (Full) 14 18 20 21 22 0.011 0.05 0.5
RUV-inv-evar (Full) 13 16 18 21 22 0.011 0.05 0.5
RUV-rinv-evar (Full) 15 18 20 21 23 0.011 0.05 0.5
RUV-4 (Empi) 16 20 23 24 24 0.029 0.09 0.56
RUV-inv (Empi) 17 22 24 24 24 0.014 0.06 0.52
RUV-rinv (Empi) 16 22 23 23 23 0.014 0.06 0.51
RUV-4-evar (Empi) 16 21 23 24 24 0.013 0.05 0.5
RUV-inv-evar (Empi) 16 22 23 24 24 0.012 0.05 0.5
RUV-rinv-evar (Empi) 16 22 22 23 23 0.012 0.05 0.5

Table 36: TCGA (Exon Subset)
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Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 15 17 18 19 19 0.009 0.05 0.53
SVA-TS 14 18 19 19 21 0.014 0.06 0.51
LEAPP 15 18 19 22 22 0.045 0.12 0.59
ICE 17 21 21 22 22 0.004 0.03 0.45
RUV-4 (HK) 16 19 20 22 26 0.031 0.1 0.57
RUV-inv (HK) 16 19 19 21 22 0.008 0.04 0.49
RUV-rinv (HK) 16 19 21 23 23 0.008 0.05 0.5
RUV-4-evar (HK) 16 19 21 26 27 0.015 0.05 0.49
RUV-inv-evar (HK) 16 19 20 21 22 0.011 0.05 0.49
RUV-rinv-evar (HK) 16 19 21 22 23 0.011 0.05 0.5
RUV-4 (Full) 16 20 22 22 22 0.027 0.09 0.55
RUV-inv (Full) 15 20 22 22 23 0.008 0.05 0.5
RUV-rinv (Full) 15 20 20 21 23 0.01 0.06 0.5
RUV-4-evar (Full) 16 21 22 22 22 0.012 0.06 0.49
RUV-inv-evar (Full) 15 20 22 22 25 0.011 0.05 0.5
RUV-rinv-evar (Full) 15 20 21 22 23 0.01 0.06 0.49
RUV-4 (Empi) 16 20 22 23 23 0.025 0.09 0.55
RUV-inv (Empi) 16 20 21 23 25 0.008 0.05 0.49
RUV-rinv (Empi) 16 20 21 22 24 0.01 0.06 0.5
RUV-4-evar (Empi) 16 20 23 24 24 0.012 0.05 0.5
RUV-inv-evar (Empi) 16 21 22 24 26 0.011 0.05 0.49
RUV-rinv-evar (Empi) 16 21 23 23 24 0.01 0.05 0.49

Table 37: TCGA (HG U133A Subset)

Top 20 Top 40 Top 60 Top 80 Top 100 Type I (0.01) Type I (0.05) Type I (0.5)
unadjusted 11 14 18 18 19 0.008 0.05 0.52
SVA-TS 13 18 20 21 23 0.01 0.05 0.51
LEAPP 13 16 18 19 21 0.031 0.1 0.57
ICE 17 22 22 23 23 0.003 0.03 0.44
RUV-4 (HK) 15 17 19 19 19 0.026 0.1 0.57
RUV-inv (HK) 16 18 20 20 20 0.005 0.04 0.49
RUV-rinv (HK) 16 19 22 22 23 0.004 0.04 0.49
RUV-4-evar (HK) 15 18 19 21 22 0.013 0.06 0.5
RUV-inv-evar (HK) 16 18 20 20 20 0.01 0.05 0.5
RUV-rinv-evar (HK) 16 20 21 21 23 0.008 0.05 0.51
RUV-4 (Full) 14 17 21 22 22 0.023 0.08 0.55
RUV-inv (Full) 15 19 19 20 20 0.008 0.04 0.48
RUV-rinv (Full) 15 20 20 20 22 0.009 0.05 0.49
RUV-4-evar (Full) 13 19 21 22 22 0.012 0.05 0.5
RUV-inv-evar (Full) 13 19 19 20 20 0.012 0.05 0.49
RUV-rinv-evar (Full) 15 19 20 20 21 0.012 0.05 0.49
RUV-4 (Empi) 16 20 21 22 23 0.022 0.08 0.55
RUV-inv (Empi) 17 22 22 23 23 0.006 0.04 0.47
RUV-rinv (Empi) 16 21 23 23 23 0.007 0.04 0.48
RUV-4-evar (Empi) 15 19 21 22 23 0.012 0.05 0.5
RUV-inv-evar (Empi) 16 22 22 23 23 0.011 0.05 0.5
RUV-rinv-evar (Empi) 16 21 23 23 23 0.01 0.05 0.5

Table 38: TCGA (Agilent Subset)
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