A mutation-selection model for general genotypes with recombination

October, 2009
Report Number: 
717
Authors: 
Steven N. Evans, David Steinsaltz, Kenneth W. Wachter
Abstract: 

We investigate a continuous time, probability measure valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on selective costs. Our model arises when we incorporate very general recombination mechanisms into a previous model of mutation and selection from Steinsaltz, Evans and Wachter (2005) and take the relative strength of mutation and selection to be sufficiently small. The resulting dynamical system is a flow of measures on the space of loci. Each such measure is the intensity measure of a Poisson random measure on the space of loci: the points of a realization of the random measure record the set of loci at which the genotype of a uniformly chosen individual differs from a reference wild type due to an accumulation of ancestral mutations. Our main motivation for working in such a general setting is to provide a basis for understanding mutation-driven changes in age-specific demographic schedules that arise from the complex interaction of many genes, and hence to develop a framework for understanding the evolution of aging.

PDF File: